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ON ISOMETRIC DOMAINS OP POSITIVE OPERATORS ON ORLICZ SPACES 

Ryszard Grz$£lewicz 

The purpose of this note is to establish a characterization 

of Lp-spaces f where 1< p< + o© , in class of Orlicz spaces in 

terms of positive operators acting on them* 

Given real Banach space E, we denote by X,(E) the Banach sp-* 

ace of all bounded linear operators from E into E. For an operator 

T e <L(E) we define its isometric domain M(T) as 

[feE: |Tf||-|Tl Ifl } 
( see [2] ) . 

Let vj : [R —»IR be a convex strictly increasing function 

with vjlO)= 0 . We denote by L^ the corresponding Orlicz space 

equipped with the norm ||-| » sometimes called the Luxemburg norm 

of Ly • That is, L^ is the linear space of all equivalence cla

sses of Lebesgue measurable functions f: IP -* IR such that 

^y(lf(X)l /<0 dx < oo for some <*> o and 

llf|l=inf {<o 0: 5<?(lf<x>l/0 dx * 1 \ 
As well known, L^ is a Banach lattice (for details see [3] • 

In case v§(t) • tp , where 1<p<:oo (i.e. L^ *L ) , M(T) 

is a linear sublattice rf L^ for every positive operator TeJL(L^ 

(see [2] ,Theorem 2) . We shall prove a converse of this result. 

Theorem. If M(T) is a linear subspace of L^ for every positive 

operator T £ iAL,-) 9 then vj(t) =Ctp,where C > 0 and 1 < p < 00 9 

Proof. We may and do assume that vg(1)s1. For every a,b,c,d e IR 
and f 6 L^ we put 

"a.b.c.d f "(i-b ] f d x ) 1[c,dl 
where 1r ,-1 denotes the characteristic function of the interval 

[ctd] . By Jensen's inequality » u a fc c a
 € <̂  H*s* • 

Fix a fb tc>0 and put for ^ , ^ 0 

1 , - n i o . i , ] ! / « 1 i o , c ] H 
\ \ *^U-a,0,-a,0 + t, uo,b,0,c 



132 Ryszard Grzaslewicz 

Jensen's inequality yields H %* UQ , Q J| *1. Obviously, llR̂ .tU-*oo 

as I"* 0 0 for fixed \ and U R ̂  ̂u-̂ oo as U-*°° for fixed \ .We put 

*L<% H f ̂  II 

f o r ^ , ^ > / 0 , f b 6 [ 0 f l ] f where f^ = (1-^») 1 [-a,0] + < b 1 [ 0 , b ] • N o t e 

that nr},fr ( ( ^ i s cont inuous as a f u n c t i o n of ( b , ^ ,§ and 
ll Ro-, | H = H n c w h e r e 

H „^ --sup h ^ ^ M . 

Indeed, since,obviously, H^f(- < II R̂ .̂ ll , we need to show that 

1 R * c U Hnc • To this end fix a nonnegative f € L^ and put 
i ° i & 

A=s — $ f dx and B-= r- J f dx . We may and do assume that 
a -a 0 

A+B> 0 . Putting (b = B /(A+B) we have 

Hence,by Jensen's inequality, u H^,^ f ^ U ^ H ^ u f « .ClearlytH,^ 
is continuous as a function of ̂  and \ .For every ^ , ̂  > 0 there 
exists P>e[0,l] with h nc lf>) = H ^ c 

Step I. Suppose that inf h.- u lf»»1. Then h^ ̂  (ft) =1 
for all pe [0,1] . * 

Indeed, in view of the definition of h. r ,we have 

™ "l1-<i) 1t-a.O] + P»*1 1tO,c] " > B(1-^' '[-a.Ol+^no.b]" 
for all (bt[0,1] . Note that equality in (x) holds for (b =0 
and 1. Consider now S 6 <$L ( L^) defined by 

Ss U-a,0,-a,0 * 1/ il U0,c,0,b 
Observe that S --1 . T o this end fix a nonnegative function fe L^ 

1 0 1 c 

and put A=- - X f dx and B= —=- J f dx . We may and do 
a -a C*1 o 

assume that A+B > 0. By (x) with (> = B /(A+B) and Jensen's 
inequality we get 

,Sf"-"AVa.O] + B1lO,b]1' < WA1[-a.O] + M , ^O.c]" * " f "• 
It follows that 1, 01 ' 1 [0 cl € M ^ # S i n c e • bv assumption 
M(S) is linear space , in ( x) equality holds for all ^e[0,ll 
and we are done . 

Step II. There exist V7 t t| > 0 such that h ̂  c attains 

its supremum at least two distinct points ( i.e. there exist 

p>1 t Q> 2 in [0,1] with H^^ = h ^ c ^ ) , i-1.2) .Suppose, 

to get a contradiction , that for every pair ^ , ̂  there exists 

a unique (b such that *Wa ((-0 * **"7)£ • T n u s we can define a 

function k: IrVlR -* [0,1] by h ^ ^ ( k ( ^ t % > ) =- H ^ . 

The function k as a function of f for fixed ^ is contin

uous. Indeed, let ^ n " * % 0 • »
Ve Put (b n *

 k (°£ • \J) , n } 0 . 
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Suppose that some subsequence j p .\ of [P>n\ converges tofb' .We 
have H R ^ H - * R t , t n . f f c n ' 1 1 / u * 0>rf

t t and | R ^ J l » R , l | # l f 

s o X R ^ c l i a u R ^ t ^f t» l ( / li *V* • By uniquness of such p> we ge t 
(S » k ( ^ f | , } . Thus, by compactness of [0 ,1 ] , we obta in fin - > /s0 • 

By an analogous argument, the f u n c t i o n k (, • , ( | ) I f o r f i x e d | ) i s 
c o n t i n u o u s . 

We have ^ , 1 0 ) - ^ . (1 )«1 , so H1 . > 1 • 

Put Cbmax= M l ^ ^ ^ o b v i o u s l y h 1 f ^ l f r m a x } > 1 . By Step I 

i n f h^^ C(b) < 1 • Choose ^m±n € ( 0 , l ) ' w i t h h ^ K * ^ -

i n f h1 c^'» There are two p o s s i b i l i t i e s : ta) 0 < ^ m i n 4 p> « « . < 1» 
or (Jtrt * 0 < ft v < (*m. < 1 . v v max v min 

In case KB.) c o n s i d e r k (1 ,£> as a f u n c t i o n o f | . We have 

" A t t a i n f o r a l l i « [ 0 , y , b e c a u « | R 1 t % f <J, m i n » *» * ?> m l » «rt. 
H R^ c It ^.1 • This c o n t r a d i e s the Darboux property of the c o n t i n u 

ous f u n c t i o n k ( 1 t
- ) on 1 0 , ^ ] , because kCl,*^) = frmax

 a n d 

k(1>0) =0 . In case (b) c o n s i d e r k l f l £ » | i ) as a f u n c t i o n o f ^ * 
By s i m i l a r arguments we ob ta in a c o n t r a d i c t i o n , because k ( l , ^ * 

frmax • k ( 0 » l ^ = 1 a n d k t v f i ) ? * ^ m i n f o r a 1 1 ^ 6 [ ° > 1 ] ' 
Step I I I . We have 

Ki -po V a > 0 1 + c>i, i l 0 i O l II - \ H 1 - ^ i t . a f 0 1 ^ i l 0 f i a l 

f o r a l l ( b * [ 0 , i ] . Indeed, by Step I I there e x i s t ^ , ^ , ^ , Ap 

such that U R ^ g f (b l l U R 1 , € " j| f 0>11 f o r a 1 1 ^ [ ° « 1 3 a n d equa l 

i t y h o l d s f o r (b^, (b2 • Thus f C>-j t f ft 2
 € M ^ , ^ • S i n c e , 

by assumption, M^R^e") i s a l i n e a r subspace , we have ftR«*c fftU « 

UR U U f^tt f o r a l l p e t O , l ] . In p a r t i c u l a r , f o r fb =0 and 1 vre 

o b t a i n v£»l|R*cll and | ^UR^^U | ± . Therefore R1 < " R * i / » R ^ 

and HR1 ,
 f f ! V s H V f o r a 1 1 ( * 6 t °» 1 ] * 

Step IV. Put 4/ a uj ~1
 # We have 

i n d e e d , f o r every g , h 6 \R wi th g < h we note that 

" 1lg,h^= 1 '* ( 1 / V h-«>)-

Moreover, we have ^= vyu/c') / ^ U/b) . By Step III with 

(b- 1/2 , we get II 1 c. a > o l + f^Co.c]11 = 1 / * (1/ca+bl) 

It follows that 

which yields the desired equality. 

To prove the Theorem, apply Step IV first with b=1 and then 

with c«1 • Taking into account that vyU)=1 , we get 
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* l-in-) -"(i) *(-&) • * l ^ - + li)*(-?-) 
It follows that 

^(ts) = ̂ U) *ls) 

for all t,s>0. Since v̂  is , moreover , continuous, vy(t) » t '** 

( [1], 2.1.2) . Hence ^t) = tp . In view of the convexity of ^ f 

we have p^1« Since, as easily seen, the assumption of the Theorem 

fails for L., , we conclude that p> 1. 

Remark 1. The proof above uses the assumption of the Theorem 

for a certain family of two-dimensional operators, only. 

Remark 2. The Theorem remains valued if we consider L^ on 

some measurable subset St of IR with m(fl)>0. Then, in the our 

proof, we should use instead of the intervals ^-a,Ol , [0,b] , [0,c] 

subsets X,Y,Z of 2 such that X o Y » <f> and X n Z =- f& . Conseq

uently, ^{Qt) =vVls)>Vlt̂  would hold for t>0 , s > 1/ m[SL) .It is 

easy to see that v̂ (t) = t ' p for t > 0 , too . 

The author wishes to thank Dr. Z.Lipecki whose suggestions 

improved the text. 
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