USA 10

Ryszard Grzaślewicz

On isometric domains of positive operators on orlicz spaces

In: Zdeněk Frolík (ed.): Proceedings of the 10th Winter School on Abstract Analysis. Circolo Matematico di Palermo, Palermo, 1982. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplements No. 2. pp. [131]--134.

Persistent URL: http://dml.cz/dmlcz/701267

Terms of use:

© Circolo Matematico di Palermo, 1982
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Ryszard Grzaslewicz

The purpose of this note is to establish a characterization of L^{p}-spaces, where $1 \leq p<+\infty$, in class of Orlicz spaces in terms of positive operators acting on them.

Given real Banach space E, we denote by $\mathcal{L}(E)$ the Banach spm ace of all bounded linear pperators from E into E. For an operator $T \in \mathcal{L}(E)$ we define its isometric domain $M(T)$ as
(see [2]):
Let $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a convex strictly increasing function with $\varphi(0)=0$. We denote by L_{φ} the corresponding Orlicz space equipped with the norm $\|\cdot\|$, sometimes called the Luxembirg norm of L_{φ}. That is, L_{y} is the linear space of all equivalence clam sses of Lebesgue measurable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\int \varphi(|f(x)| / \alpha) d x<\infty$ for some $\alpha>0$ and

$$
\|f\|=\inf \left\{\alpha>0: \quad \int \varphi(|f(x)| / \alpha) d x \leqslant 1\right\}
$$

As well known, L_{y} is a Banach lattice (for details see [3] .
In case $\varphi(t)=t^{p}$, where $1<p<\infty$ (i.e. $L_{\varphi}=L_{p}$), $M(T)$ is a linear sublattice of L_{φ} for every positive operator $T \in \mathcal{L}\left(I_{y}\right)$ (see [2],Theorem 2) . We shall prove a converse of this result.

Theorem. If $M(T)$ is a linear subspace of L_{φ} for every positive operator $T \in \mathcal{L}\left(L_{\varphi}\right)$, then $\varphi(t)=C t^{p}$,where $C>0$ and $1<p<\infty$. Proof. We may and do assume that $\varphi(1)=1$. For every $a, b, c, d \in \mathbb{R}$ and $f \in L_{\varphi}$ we put

$$
U_{a, b, c, d} \quad f=\left(\frac{1}{a-b} \int_{a}^{b} f d x\right) 1_{[c, d]}
$$

where ${ }^{1}[c, d]$ denotes the characteristic function of the interva] $[c, d]$. By Jensen's inequality, $U_{a, b, c, d} \in \mathcal{L}\left(L_{y}\right)$.

Fix $a, b, c>0$ and put for $\eta, \xi \geqslant 0$

$$
\begin{gathered}
\xi_{1}=\left\|1_{[0, b]}\right\| /\left\|1_{[0, c]}\right\| \\
R_{\eta_{1} \xi}=\eta_{-a, 0,-a, 0}+\xi U_{0, b, 0, c} .
\end{gathered}
$$

Jensen's inequality yields $\left\|\xi_{1} U_{0, b}, 0, c\right\|=1$. Obviously, $\left\|R_{\eta, \xi}\right\| \rightarrow \infty$ as $\xi \rightarrow \infty$ for fixed η and $\| R_{\eta, \xi \| \rightarrow \infty}$ as $\eta \rightarrow \infty$ for fixed ξ. We put

$$
h_{\eta, \xi}(\beta)=\frac{\left\|R_{\eta, \xi} f_{\beta}\right\|}{\left\|f_{\beta}\right\|}
$$

for $\eta, \xi \geqslant 0, \beta \in[0,1]$, where $f_{\beta}=(1-\beta){ }^{1}[-a, 0]+\beta{ }^{1}[0, b]$. Note that $h_{\eta, \xi}(\beta)$ is continuous as a function of β, η, ξ and $\left\|R_{\eta, \xi}\right\|=H_{\eta, \xi} \quad$ where

$$
H_{\eta, \xi}=\sup _{\xi} h_{\eta, \xi}(\beta) .
$$

Indeed, since, obviously, ${\underset{\eta}{\eta, \xi}}^{n}\left\|\mathrm{R}_{\eta, \xi}\right\|$, we need to show that $\left\|R_{\eta, \xi}\right\| \leqslant H_{\eta, \xi}$. To this end fix a nonnegative $f \in L_{\varphi}$ and put $A=\frac{1}{a} \int_{-a}^{0} f d x$ and $B=\frac{1}{b} \int_{0}^{b} f d x$. We may and do assume that $A+B>0$. Putting $\quad \beta=B /(A+B)$ we have

$$
\left\|R_{\eta, \xi} \quad f_{\beta}\right\|=\left\|(A+B) R_{\eta, j} \quad f_{\beta}\right\| \leqslant \quad H_{\eta, \xi}\left\|(A+B) f_{\beta}\right\| .
$$

Hence, by Jensen's inequality, " $R_{\eta, \xi} f_{\beta}\left\|\leq H_{\eta, \xi}\right\| f \| . C l e a r l y, H_{\eta, \xi}$ is continuous as a function of η and ξ. For every $\eta, \xi>0$ there exists $\beta \in[0,1]$ with $h_{\eta, \xi}(\beta)=H_{\eta, \xi}$.

Step I. Suppose that $\inf _{\beta} h_{1}, \xi_{1}(\beta)=1$. Then $h_{1, \xi_{1}}(\beta)=1$ for all $\beta \in[0,1]$.

Indeed, in view of the definition of h_{1}, ξ_{1}, we have
(天) $\left\|(1-\beta){ }^{1}[-a, 0]+\beta \xi_{1}{ }^{1}[0, c]\right\| \geqslant\left\|(1-\beta){ }^{1}{ }_{[-a, 0]+}{ }^{1} \beta{ }^{1}[0, b]\right\|$ for all $\beta \in[0,1]$. Note that equality in (x) holds for $\beta=0$ and 1. Consider now $S \in \mathcal{L}(L, \varphi)$ defined by

$$
S=U_{-a, 0,-a, 0}+1 / \xi_{51} \quad U_{0, c, 0, b}
$$

Observe that $S_{0}=1$. To this end fix a nonnegative function $f \in L_{\varphi}$ and put $A=\frac{1}{a} \int_{-a}^{0} f d x$ and $B=\frac{1}{C \xi_{1}} \int_{0}^{c} f d x$. We may and do assume that $A+B>0$. By (x) with $\quad \beta=B /(A+B)$ and Jensen's inequality we get
$\|S f\|=\left\|A{ }_{[-a, 0]}+{ }^{B 1}[0, b]\right\| \leq{ }^{1}{ }_{[-a, 0]}+B \xi_{1}{ }^{1}[0, c]\|\leqslant\| f \|$. It follows that ${ }^{1}[-a, 0],{ }^{1}[0, c] \in M(S)$. Since, by assumption $M(S)$ is linear space, in (n) equality holds for all $\beta \in[0,1]$ and we are done.

Step II. There exist $\eta, \xi>0$ such that $h_{\eta, \xi}$ attains its supremum at least two distinct points (ie. there exist
$\beta_{1} \neq \beta_{2}$ in $[0,1]$ with $\left.H_{\eta, \xi}=h_{\eta, \xi}\left(\beta_{i}\right), i=1,2\right)$.Suppose, to get a contradiction, that for every pair η, ξ there exists a unique β such that $h_{\eta, \xi}(\beta)=H_{\eta, \xi}$. Thus we can define a function $k: \mathbb{R}_{+} \times \mathbb{R} \rightarrow[0,1]$ by $h_{\eta, \xi}(k(\eta, \xi))=H_{\eta, \xi}$. The function k as a function of ξ for fixed η is containnous. Indeed, let $\xi_{n} \rightarrow \xi_{0}$. We put $\beta_{n}=k\left(\eta, \xi_{n}\right), n \geqslant 0$.

Suppose that some subsequence $\left\{\beta_{n}\right\}$ of $\left\{\beta_{n}\right\}$ converges to β^{\prime}. We have $\left\|R_{\eta_{1} \xi_{n^{\prime}}}\right\|=\left\|R_{\eta, \xi_{n^{\prime}}} f_{\beta_{n^{\prime}}} /\right\| f_{\eta_{n^{\prime}}} \|$ and $\left\|R_{\eta, \xi_{n^{\prime}}}\right\|\left\|R_{\eta, \xi_{0}}\right\|$, so $\left\|R_{\eta, \xi_{0}^{\prime}}\right\|=\left\|R_{\eta, \xi_{0}} f_{\beta^{\prime}}\right\| /\left\|f_{(\prime \prime}\right\|$. By uniqueness of such β we get $\beta=k\left(\eta, \xi_{0}\right)$. Thus, by compactness of $[0,1]$, we obtain $\beta_{n} \rightarrow \beta_{0}$. By an analogous argument, the function $k(\cdot, \xi)$ (for fixed ξ) is continuous.

We have $h_{1, \xi_{1}}(0)=h_{1, \xi_{1}}(1)=1$, so $H_{1, \xi_{1}}>1$.
Put $\beta_{\text {max }}=k\left(1, \xi_{1}\right)$; obviously $h_{1}, \xi_{1}^{\left(\beta_{\text {max }}\right)}>1$. By Step I $\inf _{\beta} h_{1, \xi_{1}}(\beta)<1$. Choose $\quad \beta_{\min } \in(0,1)$ with $h_{1, \xi_{1}}\left(\beta_{\min }\right)=$ $\inf _{\beta} h_{1, \xi_{1}}\left(\beta\right.$. There are two possibilities: (a) $0<\beta_{\min }<\beta_{\max }<1$, or (b) $0<\beta_{\max }<\beta_{\text {min }}<1$.

In case (a) consider $k(1, \xi)$ as a function of ξ. We have
 $\left\|R_{1, \xi_{1}}\right\| \geqslant 1$. This contradies the Darboux property of the contimusous function $k(1, \cdot)$ on $\left[0, \xi_{1}\right]$, because $k\left(1, \xi_{1}\right)=\beta_{\max }$ and $k(1,0)=0$. In case (b) consider $k\left(\eta, \xi_{1}\right)$ as a function of η. By similar arguments we obtain a contradiction, because $k\left(1, \xi_{1}\right)=$ $\beta_{\text {max }}, k\left(0, \xi_{1}\right)=1$ and $k\left(\eta, \xi_{1}\right) \neq \beta_{\text {min }}$ for all $\eta \in[0,1]$. Step III. We have

$$
\left\|(1-\beta) 1_{[-a, 0]}+\beta \xi_{1} 1_{[0, c]}\right\|=\left\|(1-\beta) 1_{[-a, 0]}+\beta 1_{[0, b]}\right\|
$$

for all $\beta \in[0,1]$. Indeed, by Step II there exist $\eta, \xi, \beta_{1}, \beta_{2}$ such that $\left\|R_{\eta_{1} \xi} f_{\beta}\right\|\left\|R_{\eta_{1} \xi}\right\|\left\|f_{\beta}\right\|$ for all $\beta[0,1]$ and equalits holds for β_{1}, β_{2}. Thus $\mathrm{f}_{\beta_{1}}, \mathrm{f}_{\beta_{2} \in M\left(\mathrm{R}_{1} \xi\right) \text {. Since, }} \in$ by assumption, $M\left(R_{\eta_{1},}\right)$ is a linear subspace, we have $\left\|R \eta_{1} \xi f_{\beta}\right\|=$ $\|R\|\left\|f_{\beta}\right\|$ for all $\beta \in[0,1]$. In particular, for $\beta=0$ and 1 . we obtain $\eta=\left\|R_{\eta, \xi}\right\|$ and $\xi=\left\|R_{\eta, \xi}\right\| \xi_{1}$. Therefore $R_{1, \xi}=R_{\eta, \xi} /\left\|R_{\eta, 3}\right\|$ and $\left\|R_{1, \xi} \quad f_{\beta}\right\|^{1,3}=\left\|f_{\beta}\right\|$ for all $\beta \in[0,1]$ Step IV. Put $\psi=\varphi^{-1}$. We have

$$
\psi\left(\frac{1}{b}\right) \psi\left(\frac{b}{c(a+b)}\right)=\psi\left(\frac{1}{c}\right) \psi\left(\frac{1}{a+b}\right)
$$

indeed, for every $g, h \in \mathbb{R}$ with $g<h$ we note that

$$
\left\|{ }^{n}[\mathrm{~g}, \mathrm{~h}]\right\|=1 / \psi(1 /(\mathrm{h}-\mathrm{g})) .
$$

Moreover, we have $\xi_{1}=\psi(1 / \mathrm{c}) / \psi(1 / \mathrm{b})$. By Step III with $\beta=1 / 2$, we get $\quad\left\|1_{[-a, 0]}+\xi_{1}^{1}[0, c]\right\|=1 / \psi(1 /(a+b))$
It follows that

$$
a \varphi\left[\psi\left(\frac{1}{a+b}\right)\right]+c \varphi\left[\frac{\psi(1 / c)}{\psi(1 / b)} \psi\left(\frac{1}{a+b}\right)\right]=1
$$

which yields the desired equality.
To prove the Theorem, apply Step IV first with $b=1$ and then with $c=1$. Taking into account that $\psi(1)=1$, we get

$$
\psi\left(\frac{1}{c a+1}\right)=\psi\left(\frac{1}{c}\right) \psi\left(\frac{1}{a+1}\right), \quad \psi\left(\frac{1}{a+b}\right)=\psi\left(\frac{1}{b}\right) \psi\left(\frac{b}{a+b}\right)
$$

It follows that

$$
\psi(t s)=\psi(t) \psi(s)
$$

for all $t, s>0$. Since ψ is, moreover, continuous, $\psi(t)=t^{1 / p}$ $([1], 2.1 .2)$. Hence $\varphi(t)=t^{p}$. In view of the convexity of φ, we have $p \geqslant 1$. Since, as easily seen, the assumption of the Theorem fails for L_{1}, we conclude that $p>1$.

Remark 1. The proof above uses the assumption of the Theorem for a certain family of two-dimensional operators, only.

Remark 2. The Theorem remains valued if we consider L_{φ} on some measurable subset Ω of \mathbb{R} with $m(\Omega)>0$. Then, in the our proof, we should use instead of the intervals $[-a, 0]$, $[0, b],[0, c]$ subsets X, Y, Z of Ω such that $X \cap Y=\varnothing$ and $X \cap Z=\varnothing$. Conseduently, $\psi(s t)=\psi(s) \psi(t)$ would hold for $t>0, s>1 / m(\Omega)$. It is easy to see that $\psi(t)=t^{1 / p}$ for $t>0$, too.

The author wishes to thank Dr. Z.Lipecki whose suggestions improved the text.

REFERENCES

[1] J.Aczel "Vorlesungen über Funktionalgleichungen ind ihre Anwendungen" Berlin 1961 .
[2] Grzaślewicz R. "Isometric domain of positive operators on $L^{p}{ }_{-}$ spaces", submitted to Colloq. Math.
[3] Weiss G. "A note on Orlicz spaces", Portugaliae Math. 15 (1956), 35-47.

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF WROClAW
50-370 WROCモAW, POLAND

