## USA 10

Gerhard G. Thomas
On permutographs

In: Zdeněk Frolík (ed.): Proceedings of the 10th Winter School on Abstract Analysis. Circolo Matematico di Palermo, Palermo, 1982. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplements No. 2. pp. [275]--286.

Persistent URL: http://dml.cz/dmlcz/701282

## Terms of use:

© Circolo Matematico di Palermo, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

## On Permutographs

## Gerhard G. Thomas

Summary: The mathematical analysis of many-valued logic and of its supplement, the logic of value-contextures*, leads to structures of permutations and problems of combinatorics. This exploration uses methods of graph theory. The fundamental operator of logic - the (many-valued) negation - was picked out to demonstrate something about the connection of many-valuedness and contextures. The network of negations of this logic are permutographs: regular graphs on permutations. Homogeneousness of knots (points) in connected simple graphs will introduced.

## Introduction

The following graph theoretical structures and problems emerged in the context of questions of the many-valued logic of Gotthard Günther. In my context the focal point is put on the presentation of mathematical problems, only slight attention is given to many-valued logic, i.e. there will be only some short (technical) annotations concerning the field of manyvalued logic. In many-valued logic - including also the case of $n=2$ (that means the classic mathematical logic respectively the Aristotelian logic or predicative logic) - the focus is on $n$ logical values. These values may not nessecarily be truth values (Wahrheitswerte).
In the approach of Günther these logical values are homogeneous and there exists no relation of subsumption or ordination between them and they are for the present independent.


These values can be connected by logical operators. As we shall see soon the attributes of the logical values together with the negation operator $N$ (negator) can be described by structures of permutations.

A negator $N$ is a one-placed function, defined on two values $x_{1}, x_{2}$

$$
N\left(x_{1}\right)=x_{2} \text { and } N\left(x_{2}\right)=x_{1}
$$

The logical variables $p, q, r, \ldots$ are defined on the range of logical values

$$
1,2,3, \ldots
$$

For $n=2$ we get the well-known figure

| $p$ | $N(p)$ |
| :---: | :---: |
| 1 | 2 |
| 2 | 1 |

If $\mathbf{n}=3$, then we get already five different negations of p .

[^0]| $p$ | $N_{1}(p)$ | $N_{2}(p)$ | $N_{1} N_{2}(p)$ | $N_{2} N_{1}(p)$ | $N_{1} N_{2} N_{1}(p)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 1 | 2 | 3 | 3 |
| 2 | 1 | 3 | 3 | 1 | 2 |
| 3 | 3 | 2 | 1 | 2 | 1 |

$p$ and its five negations correspond exactly to 3 ! permutations of degree 3 . Also for $n=3$ holds $N_{i} N_{i}(p)=p$.

If we transform logical negation problems into graph theoretical structures, we will see that exactly n - 1 negators are sufficient to generate all $n$ ! states of negation (including the identity).

## Value-contextures generate permutographs

Be II the set of $n$ ! permutations. The elements of II coriespond to the $n$ ! possible states of a $n$-valued logic of negations. The Negator $N$ shall be an one-place relation on to values $x_{1}, x_{2}$

$$
x_{1} \stackrel{N}{\longleftrightarrow} x_{2}
$$

$N\left(x_{1}\right)=x_{2}$ and $N\left(x_{2}\right)=x_{1}$ hold at the same time.
In the two-valued logic $x_{1}$ and $x_{2}$ stand for 'true' and 'false'. In combinatorics we call the exchange of two integers (or elements) transposition. When both the integers of a transposition $t$ are in ascending order ( $\mathrm{i}, \mathrm{i}+1$ ), then we name t standard transposition.
There are $\left(\frac{n}{2}\right)$ different transpositions. They form the set TR of transpositions. If we apply a qualified sequence of transpositions

$$
t_{i_{1}}, t_{i_{2}}, t_{i_{3}}, \cdots, t_{i_{r}}
$$

to a permutation $\pi$, so we get all of the other $n!-1$ permutations after a finite number of steps. In other words: From every permutation $\pi$ you can construct the whole set $\Pi$ of permutations by using the right transpositions. The following theorem says, that it is not nessesary to use all $\binom{n}{2}$ transpositions for the construction of $\Pi$.

A connected graph $T$ is called tree, if the graph is connected and acyclic. A tree of $n$ knots (points) has $n-1$ edges (lines).

THEOREM: $\mathrm{Be} X:=(1,2, \ldots, n)$. A set $T$ of $n-1$ transpositions generates the symmetric group $S_{n}$ (with $n!$ 'elements) if, and only if, the graph ( $X, T$ ) forms a tree.

The proof of this theorem you will find, for example in Berge [1] .

Be (1) $X:=(1,2, \ldots, n)$ the set of $n$ values;
(2) $\Pi=\left(\pi_{1} \pi_{2} \cdots \hbar_{p(r, n)}\right)$ the set of permutations; $P(r, n):=$ total number of permutations;
(3) $T:=\left(t_{1}, t_{2}, \cdots, t_{m}\right) \quad 2 \leqslant m \leqslant\left(\frac{n_{2}}{2}\right)$ a set of transpositions of elements of $X$;
(4) the contexture $C T=(X, T)$ is a (connected) graph with $|X|$ knots and $|T|$ edges;
(5) $\Pi$ is interpreted as the set of knots of graph PG;
(6) two knots $\pi_{i}, \pi_{j} \in \Pi$ are only then connected, if there exists at $\epsilon T$, which transforms

$$
\pi_{i} \stackrel{t}{\longleftrightarrow} \pi_{j} ;
$$

(7) all $t \in T$ are edges of the |III knots of a graph PG;
if (1) to (7) holds then $P G=P G(\Pi, C T)$ is called a permutograph.

Remark: Every permutograph PG is m-regular.

# Gerhard G. Thomas 

On Permutographs


PG ${ }_{1}(5)$ : Mandala of Negations

Because theorem 1 holds, it is clear that $n-1$ transpositions are enough to connect all $\pi \in \Pi$. That means the minimal contexture CT is a tree. In this case the graph PG is $(\mathrm{n}-1)$-regular.

EXAMPLE 1

tree-contexture of values 1,2,3 forms a line.
Negator $N_{1}$ changes $1 \longleftrightarrow 2$
Negator $\mathrm{N}_{2}$ changes $\mathbf{2} \longleftrightarrow \mathbf{3}$

The tree-contexture describes the generating scheme of permutographs.

These sequences of negations form the identity:
$N_{1} N_{2} N_{1} N_{2} N_{1} N_{2} \pi=\pi$
$N_{2} N_{1} N_{2} N_{1} N_{2} N_{7} \pi=\pi$
Permutograph PG(|3!!,|נ.ט.ם)

In Harary [ 5 ] you find diagrams of unlabelled trees for $n=1,2, \ldots, 10$. The following table is an extraction of Sloane [7].

| $n$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T(n)$ | 1 | 2 | 3 | 6 | 11 | 23 | 47 | 106 | 235 | 551 | 1301 | 3159 |

number of different unlabelled trees

Cayley [2] found in 1889 that there exist $n^{n-2}$ labelled trees. That means, for a given $n$ there exist $\boldsymbol{n}^{n-2}$ different negation systems with a minimum number of negators (if the arrangement of the values is also regarded). Since all labelled trees generate isomorphic permutographs, it is sufficient to regard only one value contexture.

For $\mathbf{n}=\mathbf{4}$ there exist $\mathbf{2}$ different tree-contextures and therefor $\mathbf{2}$ different permutographs on 4-permutations:


[^1]
## Basic cycles in permutographs PG with tree-contexture

In this chapter we régard permutographs with a tree-contexture CT $=T(n) . T(n)$ is a tree on $n$ knots (values). The permutograph PG(II, $T(n)$ ) represents a network for $n>2$, i.e. the net of negations of a $n$-valued logic. This net can be constructed from mashes (Maschen) of minimal length. These constistuting mashes are called basic cycles (Basiskreise), i.e. cycles without chords. Basic cycles always have the length of 4 or 6 , if the contexture of values forms a tree.

THEOREM 1: Every tree contexture $T(n)$ (tree of negators) produces a permutograph PG containing $\binom{n-1}{2}$ different basic cycles.

Proof_We label the $n \cdot 1$ edges of the tree of negators by $N_{1}, N_{2}, \ldots, N_{n \cdot 1}$. We differentiate neighboured und unneighboured edges of the tree-contexture $T(n)$.
In logical terms we express identity as follows:

$$
N_{i} N_{j} \ldots N_{k}(\pi)=\pi
$$

That means identity corresponds with a cycle in PG. In case of alternating indices of negators we get the identities after a sequence of 4 or 6 negators. Consequently we gain a basic cycle of length 6 , if the edges of the tree-contexture $T$ are neighboured and a basic cycle of length 4, if these edges are unneighboured.

$$
\begin{array}{lll}
\text { 6-cycle: } & N_{i} N_{j} N_{i} N_{j} N_{i} N_{j} \equiv 1 & \left(N_{i}, N_{j}\right. \text { neighboured) } \\
\text { 4-cycle: } & N_{i} N_{k} N_{i} N_{k} \equiv 1 & \left(N_{i}, N_{k}\right. \text { unneighboured) }
\end{array}
$$

By matching all possible indices - neighboured or not - we get the total number of basic cycles $\binom{n-1}{2}$, because every graph,constituting a tree has $n \cdot 1$ edges.

There exist permutographs PG with basic cycles only of length 6 . The corresponding tree $T$ of these PG has the shape of a star, i.e. one knot of $T$ is connected with all other ( $n-1$ ) knots. Following theorem 1 there are $\binom{n-1}{2}$ different basic cycles of length 6 .

If the tree-contexture $T$ of PG forms a line
ם.ם.ס. ... .
we have $\binom{n-2}{2}$ basic cycles of length 4 and $n-2$ basic cycles of length 6 ; in total $\binom{n-2}{2}+n-2=\binom{n-1}{2}$ basic cycles.
THEOREM 2. Be $B C 4(n)$ respectively $B C 6(n)$ the total number of basic cycles of length 4 respectively of length $6, d_{i}$ the number of knots with degree $i$ of the tree-contexture $T(n)$ of PG, then

$$
B C 6(n)=\sum_{i=2}^{r}\left(\frac{i}{2}\right) d_{i} \quad r:=\text { maximal degree of a knot in } T(n) 2 \geqslant r \geqslant n-1
$$

$$
B C 4(n)=\binom{n-1}{2}-B C 6(n)
$$

Proof: Basic cycles of length 6 corresponds with neighboured edges in $T(n)$. A knot of degree $i(i>1)$ has exactly ineighbours in $T(n)$. Each pair of neighboured edges constitutes a basic cycle of length 6

$$
N_{i} N_{j} N_{i} N_{j} N_{i} N_{j}
$$

The number $d_{i}$ of the matched neighboured edges of a knot with degree $i$ is $\left(\frac{i}{2}\right)$. A knot of degree 1 has only one neighbour so that a matching of neighbours is impossible. It follows the number of

$$
B C 6(n)=\sum_{i=2}^{r}\left(\frac{i}{2}\right) d_{i}
$$

basic cycles of length 6 . Following theorem 1 there exists $\binom{n-1}{2} \cdot \operatorname{BC} 6(n)$ basic cycles, so that

$$
B C 4(n)=\binom{n-1}{2} \cdot B C 6(n)
$$

Example: $\mathrm{CT}:=\mathrm{T}_{2}(6)$ (see suppl. tab. basic cycles), $d_{1}=3, d_{2}=2, d_{3}=1 ; B C 6\left(T_{2}(6)\right)=3\left(\frac{1}{2}\right)+2\left(\frac{2}{2}\right)+\left(\frac{3}{2}\right)=0+2+3=5$

COROLLARY 1: The total number of basic cycles of length 4 respectively length 6 be $M 4(n)$ resp. M6(n). If the valuecontexture forms a tree, then

$$
M 4(n)=\frac{P(r, n) B C 4(n)}{4} \quad M 6(n)=\frac{P(r, n) B C 6(n)}{6}
$$

Proof: $P G(I I, T)$ contains $P(r, n)$ knots. Every knot $k$ belongs to the $B C 4(n)$ basic cycles of length 4 and to the $B C 6(n)$ basic cycles of length 6 . A basic cycle consists of 4 respectively 6 knots. Therefrom the result follows immediately.

Remark (quoted from FioriniWilson [3]): In 1973 Szekeres introduced two-coloured cycles (this corresponds with the alternating indices) of cubic graphs and called it basic circuits. Each edge of G lies exactly on two of these basic circuits. That also holds for all edges of PG and PG must not be cubic.

## Compositions and Decompositions of Permutographs by Unions or Subgraphs of Tree-contextures

Here are given only some small examples for the understanding of the effect of contextures. A more detailed analysis will appear later. The indices on edges of a permutograph are negator-indices. Integers in squares are names of values. Integers surrounded by cycles are ordinal numbers of permutations in lexicographic order.

## 1. Decompositions

Because the tree-contextures are minimal contextures to generate a connected permutograph on all $\mathrm{P}(\mathrm{r}, \mathrm{n})$ permutations, it is clear, that a contexture, which is a subgraph of such a tree-contexture leads to a decompositon of the $P(r, n)$-perinutograph.

Example 1:

$$
P_{1}(4!; 0-0-0)
$$

$$
C T_{1}:=1{ }^{\mathrm{N} 1}{ }^{\mathrm{N} 2} 4
$$

f.e. is a sub-contexture of $\mathrm{CT}_{1}$

$$
C T_{1 a}:=1 \mathrm{~N}_{1} \mathrm{~N}_{2} .
$$

permutographs PG(3! ; 맘) $).$

$$
\mathrm{PG}_{1 \mathrm{a}}:=\mathrm{PG}(4!; \square \square) \quad \text { is a decomposition of } \mathrm{PG}_{1} \text { into } 4
$$




If you choose the subcontexture

$$
\text { sub CT } 1 \mathrm{l}:=1 \sqrt{1}^{2} \quad 3 \sqrt[3]{4}
$$

then you get a decompositon of $\mathrm{PG}_{1}$ with 6 components, which are not permutographs (with a tree-contexture) of lower order; but the components have the shape of basic cycles

$$
C_{4}:=(1313)
$$

Example 2:

$$
\begin{gathered}
\mathrm{PG}_{2}(5!; 0-0-0-0-0) \\
\text { sub } \mathrm{Cr}_{2 \mathrm{a}}:=1 \int^{1} \sqrt{2} 4^{4} \sqrt{5}
\end{gathered}
$$

$\mathrm{PG}_{2}$ is decomposed by $\mathrm{CT}_{2 a}$ into 30 components of the shape

$$
C_{4}:=(1414) .
$$

## 2. Compositions

The union of at least two contextures is called a (contexture-) composition.
Example 3: Given $P G_{2}:=P G\left(5!; T_{1}(5)\right) ; \mathrm{CT}_{2}:=T_{1}(5):=1-2-3-4-5$.
A composition of two subgraphs of $T_{1}(5)$ - for instance
1 1, 2, 3 and $3-4,5$ leads to the complete contexture of $\mathrm{PG}_{2}$.

| A permutograph PG is called | contexture CT |
| :---: | :---: |
| unbalanced | CT is disconected |
| balanced | CT is a tree |
| overbalanced | (a minimal connected graph). |
| CT is a graph with cycles. |  |

Example 4: $\mathrm{CT}_{3 \mathrm{a}}:=1$ 2-2 $\quad \mathrm{CT}_{3 \mathrm{~b}}:=1 \sqrt{3} \sqrt{5}$. The union $\mathrm{CT}_{3 \mathrm{a}} \cup \mathrm{CT}_{3 \mathrm{~b}}$ is

$\mathrm{PG}_{3}\left(5!; \mathrm{CT}_{3}\right)$ is an unbalanced permutograph with 5 components; each on different 24 permutations ( $5 \times 24=120$ ). Each component is an overbalanced permutograph on 4 values (values $1-5$ except value 4): $\mathrm{PG}\left(41\right.$; $\mathrm{CT}_{3} / 4$ ).

The following contextures are possible compositions of the two tree-contextures for 4 values. It depends on the connections of values - not only on the (tree-) structure of the contextures, if you get a composed contexture with 4,5 or 6 different negations. Two line-contextures are sufficient for a complete contexture (i.e. all values are connected with all other values ). By the unions of only star-contextures you need for the complete contexture 3 star-contextures. Of course are all such compositions overbalanced.









> Compositions of tree-contextures on 4 values

The following two permutographs are overbalanced and compositions of minimal permutographs, which are shown above. Permutograph $\mathrm{PG}_{4}$ has only basic cycles of length 4. This is a consequence of neighbourhood of the values in the cyclecontexture.


## Homogeneity of knots

By construction the permutographs have a certain equality in structure. They are very symmetrical. All knots of a permutograph, e.g. the permutations $\pi \in \Pi$, are of equal rank. Each knot is embedded in the same set of cycles without chords* (basic cycles).
A graph G is called knot-homogeneous, if each knot is embedded in the same (isomorph) set of cycles without chords. Obviously all knot-homogeneous graphs are regular. Knot-homogeneous ar for example all cycle-graphs $\mathrm{C}_{\mathrm{n}}$, complete graphs $K_{n}$, the graphs of the 5 platonic solids (tetrahedron, cube, octahedron, dodecahedron, icosahedron) and also the Petersen graph.

We characterize knot-homogeneous graphs by

$$
G_{\text {hom }}:=G(n, r, M)
$$

$n$ is the number of knots, $r$ the degree of regularity, and $M$ is the set of all cycles whithout chords through some knot. If all cycles $c \in M$ have the same length, then you get a perfect symmetry.

The knowledge of $M$ is not only useful for the discovering of symmetry or antisymmetry but also helpfull for regarding of coverings, decompositions, matroids etc.. Because there is a connection between basic cycles and contextures, it is possible to study the above marked hints from a new point of view.

Be $M_{i}$ the set of all cycles $c$ through a certain knot $k_{i}$ of a knot-homogeneous graph $G_{\text {hom }}$. From the property of knothomogeneity follows: all $M_{i}$ are isomorph. Also trivial is, that it is always possible to get a $B \subset M$ so, that $B$ is sufficient for a complete covering of $G_{\text {hom }}$ (basic set $B$ ). Some examples may illustrate the preceding remarks.



G(4,2, $\left.C_{4}\right)$

$G\left(4,3,3 C_{3}\right)$


G(5,2, $C_{5}$ )


G(5,4,6C $\left.)_{3}\right)$

G(6,2, $C_{6}$ )

$\mathrm{G}\left(6,3, \mathrm{C}_{3} 2 \mathrm{C}_{4}\right)$

G(6,3,6C4)

$\mathrm{G}\left(6,5,10 \mathrm{C}_{3}\right)$


G(6,4,4C3 ${ }_{3} \mathrm{C}_{6}$ )

The first 10 graphs are all knot-homogeneous graphs up to 6 knots.

Petersen graph $\rightarrow$

$G\left(10,3,6 C_{5}\right)$

[^2]
## Supplement

The first two tables of the two balanced permutographs with a line-contexture resp. a star-contexture you can use to work with negations in a 4 -valued negation-system. For example holds
in the negations-system with the line-contexture

$$
\begin{aligned}
& N_{1} N_{2} N_{1} N_{3} N_{2} N_{1} \\
= & N_{1} N_{2} N_{1} N_{3} N_{2} N_{1} \\
= & N_{1} N_{2} N_{1} N_{3} N_{2} \\
= & N_{1} N_{2} N_{1} N_{3} \\
= & N_{1} N_{2} N_{1} \\
= & N_{1} N_{2} \\
= & N_{1}
\end{aligned}
$$

| permutation |  | N1 | N2 | N3 |
| ---: | ---: | ---: | ---: | ---: |
| 1234 | 1 | 7 | 3 | 2 |
| 1243 | 2 | 8 | 4 | 1 |
| 1324 | 3 | 9 | 1 | 5 |
| 1342 | 4 | 10 | 2 | 6 |
| 1423 | 5 | 11 | 6 | 3 |
| 1432 | 6 | 12 | 5 | 4 |
| 2134 | 7 | 1 | 13 | 8 |
| 2143 | 8 | 2 | 14 | 7 |
| 2314 | 9 | 3 | 15 | 11 |
| 2341 | 10 | 4 | 16 | 12 |
| 2413 | 11 | 5 | 17 | 9 |
| 2431 | 12 | 6 | 18 | 10 |
| 3124 | 13 | 15 | 7 | 19 |
| 3142 | 14 | 16 | 8 | 20 |
| 3214 | 15 | 13 | 9 | 21 |
| 3241 | 16 | 14 | 10 | 22 |
| 3412 | 17 | 18 | 11 | 23 |
| 3421 | 18 | 17 | 12 | 24 |
| 4123 | 19 | 21 | 20 | 13 |
| 4132 | 20 | 22 | 19 | 14 |
| 4213 | 21 | 19 | 23 | 15 |
| 4231 | 22 | 20 | 24 | 16 |
| 4312 | 23 | 24 | 21 | 17 |
| 4321 | 24 | 23 | 22 | 18 |

Table of negations
Permutograph with line contexture

in the negation-system with the star-contexture

$$
\begin{aligned}
& N_{1} N_{2} N_{1} N_{3} N_{2} N_{1} \\
= & N_{1} N_{2} N_{1} N_{3} N_{2} N_{1} \\
= & N_{1} N_{2} N_{1} N_{3} N_{2} \\
= & N_{1} N_{2} N_{1} N_{3} \\
= & N_{1} N_{2} N_{1} \\
= & N_{1} N_{2} \\
= & N_{1}
\end{aligned}
$$

| permutation |  | N1 | N2 | N3 |
| ---: | ---: | ---: | ---: | ---: |
| 1234 | 1 | 7 | 15 | 22 |
| 1243 | 2 | 8 | 16 | 21 |
| 1324 | 3 | 9 | 13 | 24 |
| 1342 | 4 | 10 | 14 | 23 |
| 1423 | 5 | 11 | 18 | 19 |
| 1432 | 6 | 12 | 17 | 20 |
| 2134 | 7 | 1 | 9 | 12 |
| 2143 | 8 | 2 | 10 | 11 |
| 2314 | 9 | 3 | 7 | 10 |
| 2341 | 10 | 4 | 8 | 9 |
| 2413 | 11 | 5 | 12 | 8 |
| 2431 | 12 | 6 | 11 | 7 |
| 3124 | 13 | 15 | 3 | 18 |
| 3142 | 14 | 16 | 4 | 17 |
| 3214 | 15 | 13 | 1 | 16 |
| 3241 | 16 | 14 | 2 | 15 |
| 3412 | 17 | 18 | 6 | 14 |
| 3421 | 18 | 17 | 5 | 13 |
| 4123 | 19 | 21 | 24 | 2 |
| 4132 | 20 | 22 | 23 | 6 |
| 4213 | 21 | 19 | 22 | 2 |
| 4231 | 22 | 20 | 21 | 1 |
| 4312 | 23 | 24 | 20 | 4 |
| 4321 | 24 | 23 | 19 | 3 |

Table of negations
Permutograph with star contexture



Table: Basic cycles in permutographs (with tree-contextures) on n-permutations


## Acknowledgement

My thanks are due to Prof. G. Günther for his numerous helpful and agreeing remarks to work in the discussed direction and R. Kaehr [6], who impulsed me often to publish some of my ideas of the formalization of some points of the manyvalued logic. And last, but not least I thank Mrs. H. Klein for her drawing of the graphic representations.

The copyright of all drawings is by the autor.

## References

[1] Berge,C. 'Principles of Combinatorics', Academic Press New York and London (1971) p. 141.
[2] Cayley,A. "A Theorem on Trees", Quart. J. Math. 23 (1889), 376-378.
[3] Günther,G. "Beiträge zur Grundlegung einer operationsfähigen Dialektik", Felix Meiner Hamburg, Band 1-3 (1976-1980).
[4] Günther, G. "Idee und Grundriß einer nicht-Aristotelischen Logik", Felix Meiner Hamburg, (1978) 2.Aufl.
[5] Harary,F. "Graph Theory", Addison-Wesley Publ. Inc. Co. (1969).
[6] Kaehr, R. "Materialien zur Formalisierung der dialektischen Logik und der Morphogrammatik 1973-1975 117S. Anhang in [4].
[7] Sloane, N.J.A. "A Handbook of Integer Sequences", Academic Press (1973). Sequence 299.

GERHARD G. THOMAS
INSTITUT FÜR MEDIZINISCHE STATISTIK
UND DOKUMENTATION
dER FREIEN UNIVERSITÄT BERLIN
HINDENBURGDAMM 30
1000 Berlin (West) 45


[^0]:    *For detailed introduction into the philosophy of many-valued logic and contextures see [3], especially volume 3. Articles are written in english or german.

[^1]:    The coloured figure on the folded page is one possible geometrical representation of the permutograph PG(5!, ם..ם...ם.....ם).

[^2]:    - Edges, which connect knots of a cycle, but do not belong to the cycle are called chords.

