USA 10

Volker Wrobel

Tensor products of linear operators in locally convex spaces

In: Zdeněk Frolík (ed.): Proceedings of the 10th Winter School on Abstract Analysis. Circolo Matematico di Palermo, Palermo, 1982. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplements No. 2. pp. [299]--315.

Persistent URL: http://dml.cz/dmlcz/701285

Terms of use:

© Circolo Matematico di Palermo, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

TENSOR PRODUCTS OF LINEAR OPERATORS IN LOCALLY CONVEX SPACES

Volker Wrobel

Given continuous linear operators $T_{i}: E_{i} \longrightarrow E_{i}$ on locally convex spaces $E_{i}(i=1,2)$ and a polynomial P in two variables, spectral properties of polynomial operators

$$
P\left(T_{1} \hat{\otimes} I_{2}, I_{1} \hat{\otimes} T_{2}\right): E_{1} \hat{\otimes} E_{2} \longrightarrow E_{1} \hat{\otimes} E_{2}
$$

are studied in dependence of the spectral properties of their components T_{1} and T_{2}. Here $E_{1} \hat{\otimes} E_{2}$ denotes the completion of the tensor product $E_{1} \otimes E_{2}$ with respect to a suitable tensor product topology lying between the ε - and the π-topology, and I_{i} denotes the identity map on E_{i}.

One of the main problems is to establish spectral mapping theorems of the form
(i) $P\left(\sigma\left(T_{1} ; \ldots\right), \sigma\left(T_{2} ; \ldots\right)\right) C \sigma\left(P\left(T_{1} \hat{\otimes} I_{2}, I_{1} \hat{\otimes} T_{2}\right) ; \ldots\right)$
and

$$
\begin{equation*}
P\left(\sigma\left(T_{1} ; \ldots\right), \sigma\left(T_{2} ; \ldots\right)\right) \supset \sigma\left(P\left(T_{1} \hat{\otimes} I_{2}, I_{1} \hat{\otimes} T_{2}\right) ; \ldots\right) \tag{ii}
\end{equation*}
$$

where $\sigma^{\prime}(S ; \ldots):=\{\lambda \in \mathbb{C}: \lambda-S$ has no inverse in\} for $S \in L(F)$ denote suitable spectra depending on subsets ... from the algebra $L(F)$.

In [3] A. Brown and C. Pearcy established (i) and (ii) for $\mathrm{P}\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)=\mathrm{z}_{1} \mathrm{z}_{2}$ in the Hilbert space setting, and M. Schechter [23] proved both for bounded linear operators on Banach spaces and general polynomials P. The case of unbounded, closed operators on Ba nach spaces, which arises from problems in evolution equations (cf. [2]), differential equations with operator coefficients (cf. [4]), and N-body problems in quantum mechanics, has been investigated by T. Ichinose [13] - [17] and M. Reed and B. Simon [21]. It turns out that (i) is always true, whereas (ii) in general fails even if the left hand side of (ii) is replaced by its closure in \mathbb{C}.

Since many problems for unbounded, closed operators on Banach spaces admit a reformulation in a locally convex setting with continuous linear operators, this may draw some attention to the situ-
ation studied in this paper, too.
This article is based on a part of the author's Habilitationsschrift [28].
O. Preliminaries. We start with some basic algebraic notions. Let A denote an algebra with unit element e over the complex numbers \mathbb{C}, and let M be a subset of A. For $a_{i} \in A^{-}(i=1,2, \ldots, n)$ denote by $\rho\left(a_{1}, a_{2}, \ldots, a_{n} ; M\right)$ the set of all those $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \dot{\in} \mathbb{C}^{n}$ such that there exist $b_{i} \in M(i=1,2, \ldots, n)$ with

$$
e=b_{1}\left(\lambda_{1} e-a_{1}\right)+\ddot{b}_{2}\left(\lambda_{2} e-a_{2}\right)+\ldots+b_{n}\left(\lambda_{n} e-a_{n}\right)
$$

The set
(0.1) $\sigma\left(a_{1}, a_{2}, \ldots, a_{n} ; M\right):=\mathbb{C}^{n} \backslash\left(a_{1}, a_{2}, \ldots, a_{n} ; M\right)$
is called joint spectrum of $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ with respect to M.
If $M=A$ this notion is well known from Banach algebra theory, but
it turns out that for purposes of locally convex algebra theory one has to choose smaller sets M (cf. [28]). Throughout this paper we will restrict our attention to commutative subalgebras of the locally convex algebra $L_{S}(E)$ of all continuous linear operators on a locally convex space E equipped with the topology of pointwise convergence.

If Γ denotes a fundamental system of continuous semi-norms E, let
(0.2) $G(E ; \Gamma):=\{T \in L(E): \exists c>0$ s.t. $p o T \leq c p$ for all $p \in \Gamma\}$. If E is Mackey-complete, then $G(E, \Gamma)$ is a Banach algebra, when equipped with the norm
(0.3) $\|T\|_{\Gamma}:=\sup \{\sup \{p(T x): x \in E, p(x)=1\}: p \in \Gamma\}$ (cf. [19]). Lateron, we shall deal with a decomposition of $\sigma(T ; G(E ; \Gamma))$ for $T \in L(E)$. For that purpose let

$$
\Lambda(T ; \Gamma):=\{\lambda \in \mathbb{C}: \exists \mathrm{c}>0 \text { s.t. } p \circ(T-\lambda) \geq \text { cp for all } p \in \Gamma\}
$$

and
(0.4) $\pi(T ; \Gamma):=\mathbb{C} \backslash \boldsymbol{L}(T ;)$
(0.5) $\quad \gamma(T ; \Gamma):=\left\{\zeta \epsilon \mathcal{\Lambda}(T ; \Gamma): \overline{(T-\zeta)} \mathrm{E}^{\mathrm{E}} \neq \mathrm{E}\right\}$.

Moreover let

$$
\mathcal{L}(T):=\bigcup_{\Gamma} \mathcal{L}(T ; \Gamma)
$$

where the union runs over all fundamental systems of continuous semi-norms on E, and let
(0.6) $\pi(T):=\mathbb{C} \backslash \Lambda(T)$
(0.7) $\quad \gamma(T):=\left\{\zeta \in \Lambda(T): \overline{(T-\zeta) E^{E}} \neq E\right\}$

0.1. Remarks.

(1) The sets $\pi(T ; \Gamma), \pi(T)$ and $\gamma(T ; \Gamma), \gamma(T)$ are very similar to Halmos' notions of approximate point spectrum and compression spectrum (cf. [13], [18]).
(2) For every $T \in L(E)$ we have $\rho(T ; G(E ; \Gamma)) \subset \mathcal{L}(T ; \Gamma)$ and hence $\rho(T ; G(E)) C \Omega(T)$, where
(O.8) $G(E):=\bigcup_{\Gamma} G(E ; \Gamma)$,
the union taken over all fundamental systems of continuous seminorms on E.
(3) Let $T \in L(E)$, and let \tilde{T} denote the (unique) continuous extension of T onto the completion \tilde{E} of E. Then

$$
\begin{aligned}
& \pi(\tilde{T} ; \Gamma)=\pi(T ; \Gamma), \quad \pi(\tilde{T})=\pi(T) \\
& \gamma(\tilde{T} ; \Gamma)=\gamma(T ; \Gamma), \quad \gamma(\tilde{T})=\gamma(T) \quad(c f .[28]) .
\end{aligned}
$$

(4) If E is a complete locally convex space, and $T \in L(E)$, then

$$
\begin{array}{ll}
\sigma(T ; G(E ; \Gamma)) & =\pi(T ; \Gamma) \cup \gamma(T ; \Gamma) \\
\sigma(T ; G(E)) & =\pi(T) \cup \gamma(T) \quad(c f .[28]) .
\end{array}
$$

If A is a subset of $L(E)$, let
(O.9) $\quad A_{b}:=A \cap G(E)$.

The elements of A_{b} will be called AZlan-bounded operators in order to distinguish them from bounded operators (cf. [1], [19], [29]).

The following lemma can be proved by means of Gelfand theory (see [28] for a more general result).
O.2. LEMMA. Let E denote a Mackey-complete locally convex space, and let $A \subset L(E)$ be a commutative subalgebra containing I_{E}. Let $T_{1}, T_{2} \in A$, let P be a polynomial in two variables, and suppose that neither $\sigma\left(T_{1} ; G(E ; \Gamma) \cap A\right)$ nor $\sigma\left(T_{2} ; G(E ; \Gamma) \cap A\right)$ covers the whole plane \mathbb{C}. Then

$$
P\left(\boldsymbol{\sigma}\left(T_{1}, T_{2} ; A \cap G(E ; \Gamma)\right)\right) \subset \quad \sigma\left(P\left(T_{1}, T_{2}\right) ; A \cap G(E ; \Gamma)\right)
$$

In general this inclusion is strict, but there is equality, if T_{1}, $T_{2} \in G(E ; \Gamma)$.

1. Tensor products and admissible topologies. Let E_{1} and E_{2} be locally convex spaces, and let $\mathrm{E}_{1} \otimes \mathrm{E}_{2}$ denote their algebraic tensor product. A semi-norm p on $E_{1} \otimes E_{2}$ is called cross-semi-norm, provided there exist continuous semi-norms p_{i} on $E_{i}(i=1,2)$ such that

$$
\begin{equation*}
p\left(x_{1} \otimes x_{2}\right)=p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right) \text { for every } x_{1} \otimes x_{2} \in E_{1} \otimes E_{2} \tag{1.1}
\end{equation*}
$$

If (1.1) holds true, we shall abbreviate this by writing $p=p_{1} \otimes p_{2}$. By $E_{1} \boldsymbol{\otimes}_{\alpha} E_{2}$ we denote $E_{1} \otimes E_{2}$ equipped with a locally convex topology α. If Γ is a fundamental system of continuous semi-norms on $E_{1} \boldsymbol{\theta}_{\alpha} E_{2}$ we call Γ a D-fundamental system, provided Γ consists of cross-seminorms only, and if there exists a constant $k(\Gamma)>0$ such that (1.2) $p=p_{1} \otimes p_{2}$ implies $p \geq k(\Gamma) p_{1} \otimes_{\varepsilon} p_{2}$ for all $p \in \Gamma$,
where $p_{1} \otimes_{\varepsilon} p_{2}$ denotes a canonical semi-norm of the ε-tensor product (cf. [22]). More specially we shall consider only those locally convex topologies α on $E_{1} \otimes E_{2}$ "fulfilling the following conditions:
(i) There exists a D-fundamental system on $E_{1} \otimes_{\alpha} E_{2}$.
(1.3) (ii) If $A_{i} \subset L\left(E_{i}\right)(i=1,2)$ are equicontinuous subsets, then $A_{1} \otimes A_{2} \subset L\left(E_{1} \otimes_{\alpha} E_{2}\right)$ is equicontinuous.
1.1. Remarks.
(1) The letter "D" in D-fundamental system is to suggest "dualizable" since in the normed case (1.2) with $k(\Gamma)=1$ implies, that the dual norm is a cross-norm, too.
(2) If Γ is a D-fundamentalsystem, and if $p_{1} \otimes p_{2}=p \in \Gamma$, then
(1.4) $\quad U_{p_{1}}{ }^{\circ} \otimes_{U_{p_{2}}}{ }^{\circ}<k(\Gamma)^{-1} U_{p}{ }^{\circ}$.
(3) For $\alpha=\varepsilon, \alpha=\pi$ or more general for locally convex tensornormtopologies as studied by Harksen [10], condition (1.2) is automatically fulfilled with constant $k(\Gamma)=1$.
(4) For every cross-semi-norm $p=p_{1} \otimes p_{2}$ one has $p \leq p_{1} \boldsymbol{\theta}_{\pi} p_{2}$.
(5) Condition (1.3) (ii) especially implies $E_{1}{ }^{\prime} \otimes E_{2}^{\prime} C\left(E_{1} \otimes_{\alpha} E_{2}\right)^{\prime}$.

By $T_{1} \hat{\otimes} T_{2}$ we denote the extension of $T_{1} \otimes T_{2}$ onto the completion $E_{1} \widehat{\otimes}_{\alpha} E_{2}$ of $E_{1} \boldsymbol{\otimes}_{\alpha} E_{2}$.
In order to avoid technical difficulties, we make the following general assumption :
E_{1}, E_{2} and $E_{1} \hat{\otimes}_{\alpha} E_{2}$ are barrelled locally convex spaces, and E_{1}, E_{2} are complete.
As we have announced in the introduction, we have to establish relations between spectra of operators on tensor products and spectra of their components. In order to do so, we start with a simple
1.2. LEMMA. Let $T_{1} \in L\left(E_{1}\right)$, and let a denote a tensor product topology fulfilling (1.3) on $E_{1} \otimes E_{2}$. Then we have
(i) $\boldsymbol{\sigma}\left(T_{1} \hat{\boldsymbol{\theta}}_{2} ; L\left(E_{1} \widehat{\boldsymbol{\otimes}}_{\alpha} E_{2}\right)\right)=\boldsymbol{\sigma}\left(T_{1} ; L\left(E_{1}\right)\right)$
(ii) $\sigma\left(T_{1} \hat{\otimes} I_{2} ;\left(L_{s}\left(E_{1} \hat{\otimes}_{\alpha} E_{2}\right)\right)_{b}\right)=\sigma\left(T_{1} ;\left(L_{s}\left(E_{1}\right)\right)_{b}\right)$, and consequently the sets $\sigma\left(T_{1} \widehat{\otimes} I_{2} ; L\left(E_{1} \widehat{\otimes}_{\alpha} E_{2}\right)\right)$ and
$\boldsymbol{\sigma}\left(T_{1} \hat{ब}_{2} ;\left(L_{s}\left(E_{1} \widehat{\otimes}_{\alpha} E_{2}\right)\right)_{b}\right)$ are independent of the special topology α. One of the main difficulties when dealing with operators on tensor products of locally convex spaces originates from the fact, that not every Allan-bounded operator $C \in L_{s}\left(E_{1} \widehat{\theta}_{\alpha} E_{2}\right)$ is already contained in some $G\left(E_{1} \widehat{\boldsymbol{\otimes}}_{\alpha} E_{2} ; \Gamma\right)$, where Γ is a D-fundamental system (cf. [28], p. 35 for an example). Therefore we consider the following subclasses of operators:
1.3. DEFINITION. For a subset $A \subset L_{s}\left(E_{1} \widehat{\otimes}_{\alpha} E_{2}\right)$ let

$$
A_{c b}:=\bigcup_{\Gamma}\left(A \cap G\left(E_{1} \hat{\otimes}_{\alpha} E_{2} ; \Gamma\right)\right)
$$

where the union is taken over all D-fundamental system Γ on $E_{1} \hat{\boldsymbol{\theta}}_{\alpha} E_{2}$ The elements of $A_{c b}$ are called Cross-semi-norm bounded operators. Moreover, an operator $C \in L\left(E_{1} \hat{\boldsymbol{\theta}}_{\alpha} \mathrm{E}_{2}\right)$ is said to be cross-semi-norm stable, provided the following condition is fulfilled: For every $R \in\left(\left\{C ; L\left(E_{1} \hat{\boldsymbol{\theta}}_{\alpha} E_{2}\right)\right\}^{c c}\right)_{c b}\left(\{\ldots\}^{c c}\right.$ denoting the bicommutant of $\{\ldots\}$ in $\left.L\left(E_{1} \widehat{\boldsymbol{\otimes}}_{\alpha} E_{2}\right)\right\}$ there exists a D-fundamental system Γ such that $C, R \in G\left(E_{1} \hat{\boldsymbol{\theta}}_{\alpha} E_{2} ; \Gamma\right)$.
Let

$$
A_{C S}:=\{C \in A: C \text { is cross-semi-norm stable }\}
$$

For every subset $A \subset L_{S}\left(E_{1} \hat{\theta}_{\alpha} E_{2}\right)$ we have $A_{C S} \subset A_{c b} \subset A_{b}$. If A is a commutative algebra, then so is A_{b}, but we do not know whether $A_{c s}$ or $A_{c b}$ are. For our purposes the following result will be sufficient 1.4. LEMMA. Let $A \subset L_{s}\left(E_{1} \widehat{\otimes}_{\alpha} E_{2}\right)$ denote a commutative subalgebra. Then the following hold true:

$$
\begin{aligned}
& \text { (i) } A_{c s}+A_{c s} \subset A_{c b} \\
& \text { (ii) } A_{c s} \circ A_{c s} \subset A_{c b} \\
& \text { (iii) }\left\{\sum_{f i n i t e} T_{i} \hat{\otimes}_{i}: T_{i} \in\left(L_{s}\left(E_{1}\right)\right)_{b}, S_{i} \in\left(L_{s}\left(E_{2}\right)\right)_{b}, T_{i} \hat{\otimes}_{i} \in A\right\} \subset A_{c s}
\end{aligned}
$$

Proof. Since (i) and (ii) follow immediately from the definitions, only (iii) needs a proof. So let $T_{i} \widehat{\otimes} S_{i} \in A, T_{i}$ and S_{i} Allan-bounded ($i=1,2, \ldots, k$), let Γ denote any D-fundamental system, let $p \in \Gamma$ with $p=p_{1} \otimes p_{2}$, and let $R \in A \cap G\left(E_{1} \widehat{\boldsymbol{\otimes}}_{\alpha} E_{2} ; \Gamma\right)$. Let

$$
\hat{p}(z):=\sup \left\{p\left(T_{1}{ }^{\mathrm{n}_{1}} \hat{\otimes}_{S_{1}}{ }^{\mathrm{n}_{2}} \mathrm{z}\right): \mathrm{n}_{1}, \mathrm{n}_{2} \geq 0\right\}
$$

Then \hat{p} is a continuous cross-semi-norm, for we have

$$
\begin{aligned}
\hat{p}\left(x_{1} \otimes x_{2}\right) & =\sup \left\{p_{1}\left(T_{1}{ }^{n_{1}} x_{1}\right) p_{2}\left(S_{1}{ }^{n_{2}} x_{2}\right): n_{1}, n_{2} \geq o\right\} \\
& =\hat{p}_{1}\left(x_{1}\right) \hat{p}_{2}\left(x_{2}\right)
\end{aligned}
$$

On the other hand

$$
\hat{p}(R z)=\sup \left\{p\left(R\left(T_{1}{ }^{n_{1}} \hat{\otimes} S_{1}{ }^{n_{2}}\right) z\right): n_{1}, n_{2} \geq 0\right\} \leq\|R\|_{\Gamma} \hat{p}(z)
$$

and therefore $R \in G\left(E_{1} \hat{\otimes}_{\alpha} E_{2} ; \hat{\Gamma}\right)$. But Proposition 1.5 below tells us that $\hat{\Gamma}$ is a D-fundamental system, and so we are done by repeating the above argument k-times. //
1.5. PROPOSITION. Let $G_{i} \subset L\left(E_{i}\right)(i=1,2)$ denote equicontinuous subsets such that $G_{i} \circ G_{i} \subset G_{i}$. Then for every D-fundamental system Γ_{0} on $E_{1} \hat{\boldsymbol{\theta}}_{\alpha} E_{2}$ there exists another D-fundamental system Γ, such that

$$
\sup \left\{\|T \widehat{\otimes} S\|_{\Gamma}: T \in G_{1}, S \in G_{2}\right\} \leq 1
$$

Proof. Let $p \in \Gamma_{0}$ such that
(*)

$$
\mathrm{p}=\mathrm{p}_{1} \otimes \mathrm{p}_{2} \text { and } \mathrm{p} \geq \mathrm{k}\left(\Gamma_{o}\right) \mathrm{p}_{1} \hat{\otimes}_{\varepsilon} \mathrm{p}_{2}
$$

Then $\hat{p}_{i}\left(x_{i}\right):=\sup \left\{p_{i}\left(T_{i} x\right): T_{i} \in G_{i}\right\}$ define continuous semi-norms on E_{i} such that $\hat{p}_{i} \geq p_{i}$ and $\hat{p}_{i} \circ R \leq \hat{p}_{i}$ for all $R \in G_{i}(i=1,2)$.
Next let

$$
\begin{aligned}
& \hat{p}(z):=\sup \left\{p(T \hat{\theta} I z): T \in G_{1}\right\} \\
& \left(p_{1} \hat{\otimes}_{\varepsilon} p_{2}\right)(z):=\sup \left\{\left(p_{1} \hat{\boldsymbol{\theta}}_{\varepsilon} p_{2}\right)(T \hat{\boldsymbol{\theta}} I z): T \in G_{1}\right\} .
\end{aligned}
$$

Because of (*) we obtain

$$
\hat{p} \geq k\left(\Gamma_{0}\right) \hat{p}_{1} \hat{\otimes}_{\varepsilon} p_{2} \text { and } \hat{p}=\hat{p}_{1} \otimes p_{2}
$$

On the other hand

$$
\begin{aligned}
\hat{p}_{1}(x) & =\sup \left\{|(\phi, T x)|: T \in G_{1}, \phi \in U_{p_{1}}{ }^{\circ}\right\} \\
& =\sup \left\{|(\psi, x)|: \psi \in U_{p_{1}} o^{\prime}\right\}
\end{aligned}
$$

and hence

$$
\hat{p}_{1} \hat{\otimes}_{\varepsilon} p_{2}=\hat{p}_{1} \otimes_{\varepsilon} p_{2}, \hat{p}=\hat{p}_{1} \otimes p_{2}, \text { and } \hat{p} \geq k\left(\Gamma_{o}\right) \hat{p}_{1} \hat{\theta}_{\varepsilon} p_{2}
$$

By repeating this argument for G_{2} and p_{2}, we obtain the desired result.//
2. Joint spectra of tensor products of operators. Our main result in this section will be the following
2.1. THEOREM. Let E_{1} and E_{2} denote two locally convex spaces, let α be a tensor product topology fulfilling (1.3), let $T_{i} \in L\left(E_{i}\right)(i=$ 1,2), and Let A denote the bicommutant of $T_{1} \hat{\otimes} I_{2}, I_{1} \hat{\otimes}_{T_{2}}^{i}$ in the algebra $L_{s}\left(E_{1} \widehat{\boldsymbol{\otimes}}_{\alpha} E_{2}\right)$. Then

$$
\boldsymbol{\sigma}\left(T_{1} \hat{\otimes} I_{2}, I_{1} \hat{\otimes} T_{2} ; A_{c s}\right)=\sigma\left(T_{1} ;\left(L_{s}\left(E_{1}\right)\right)_{b}\right) \times \sigma\left(T_{2} ;\left(L_{s}\left(E_{2}\right)\right)_{b}\right)
$$

2.2. Remark. If E_{1} and E_{2} are Banach spaces, then 2.1 generalizes slightly a result of Dash and Schechter [6] to quasi-uniform crossnorms in the sense of Ichinose [17]. In this setting it turns out,
that 2.1 holds also true, if A denotes the (bigger) commutant of $T_{1} \hat{\boldsymbol{\theta}} \mathrm{I}_{2}, \mathrm{I}_{1} \hat{\boldsymbol{\otimes}} \mathrm{~T}_{2}$ in $\mathrm{L}_{\mathrm{s}}\left(\mathrm{E}_{1} \widehat{\boldsymbol{\otimes}}_{\alpha} \mathrm{E}_{2}\right)$. Indeed this sharpened version of 2.1 can be proved for bounded operators on Fréchet spaces E_{1} and E_{2}. For this and related results concerning the "classical" bicommutant spectra, the reader is referred to [28], II.3.

In order to prove 2.1, we need the following
2.3. LEMMA. Let $T_{i} \in L\left(E_{i}\right)(i=1,2)$, Let $(\lambda, \gamma) \in \pi\left(T_{1}\right) \times \pi\left(T_{2}\right)$ (cf. (0.6)), and let Γ denote a D-fundamental system on $E_{1} \widehat{\boldsymbol{\theta}}_{\alpha} E_{2}$. Then for $\varepsilon>0$ given, the set

$$
\begin{array}{r}
\Gamma_{\varepsilon}:=\left\{p \in \Gamma: \exists x \otimes y \in E_{1} \otimes_{2} \text { s.t. } \varepsilon p(x \otimes y)>\max \left\{p\left(\left(T_{1}-\lambda\right) x \otimes y\right),\right.\right. \\
\left.\left.p\left(x \otimes\left(T_{2}-\gamma\right) y\right)\right\}\right\}
\end{array}
$$

is also a D-fundamental system.
Proof. Let $q \in \Gamma$ be given. If for every $p \in \Gamma$ such that $p=p_{1} \otimes p_{2}$ and $p \geq q$, we had $\varepsilon p_{1}(x) p_{2}(y)<p_{1}\left(\left(T_{1}-\lambda\right) x\right) p_{2}(y)$ for all $x \otimes y$, then $\lambda \in \Lambda\left(T_{1}\right)$ contradicting our assumptions. Therefore

$$
\left.\tilde{\Gamma}_{\varepsilon}:=\left\{p \in \Gamma: \exists x \otimes y \in E_{1} \otimes E_{2} s . t . \varepsilon p(x \otimes y)>p\left(T_{1}-\lambda\right) x \otimes y\right)\right\}
$$

is a D-fundamental system. But for every $p \in \tilde{\Gamma}_{\varepsilon}$ such that $p=p_{1} \otimes p_{2}$ there exists $x_{1} \in E_{1}$ such that
$\varepsilon p\left(x_{1} \otimes y\right)>p\left(\left(T_{1}-\lambda\right) x_{1} \otimes y\right)$ for all $y \in E_{2}$ such that $p_{2}(y) \neq 0$. Ey repeating the argument above for $\tilde{\Gamma}_{\varepsilon}$ replacing Γ and $T_{2}-\gamma I_{2}$, we obtain the desired result. //
Proof of 2.1.
1^{0} By 1.4 (iii) the operators $\left(T_{1}-\lambda\right)^{-1} \hat{\otimes} I_{2}$ and $I_{1} \hat{\otimes}\left(T_{2}-\gamma\right)^{-1}$ belong to $A_{C S}$, provided they are Allan-bounded only. Therefore

$$
\sigma\left(T_{1} \hat{\otimes} I_{2}, I_{1} \hat{\otimes} T_{2} ; A_{C S}\right) C \sigma\left(T_{1} \hat{\otimes} I_{2} ; A_{b}\right) \times \sigma\left(I_{1} \hat{\otimes} T_{2} ; A_{b}\right)
$$

By 1.2 (ii) this gives one half of the Theorem. In order to prove the inclusion " $>$ " let
$2^{\circ} \quad(\lambda, \gamma) \in \pi\left(T_{1}\right) \times \pi\left(T_{2}\right)$. Suppose $(\lambda, \gamma) \in \rho\left(T_{1} \widehat{\boldsymbol{\theta}} I_{2}, I_{1} \hat{\boldsymbol{\theta}}^{\prime} T_{2} ; A_{C S}\right)$. Then there exist $C_{1}, C_{2} \in A_{c s}$ such that
(2.1) $I_{1} \hat{\boldsymbol{\theta}} I_{2}=C_{1}\left(\left(T_{1}-\lambda\right) \hat{\boldsymbol{\theta}} I_{2}\right)+C_{2}\left(I_{1} \hat{\boldsymbol{\theta}}\left(T_{2}-\gamma\right)\right)$.

It follows from the definition of $A_{c s}$ that there exist a D-fundamental system Γ and constants c_{1}, c_{2} such that
(2.2) $p \circ C_{1} \leqslant c_{1} p$ and $p \circ C_{2} \leqslant c_{2} p$ for all $p \in \Gamma$.

Choose $0<\varepsilon<\left(4\left(c_{1}+c_{2}\right)\right)^{-1}$ and apply Lemma 2.3. Hence there exists a D-fundamental system $\Gamma_{\varepsilon} \subset \Gamma$ such that for every $p \in \Gamma_{\varepsilon}$ we find $\bar{x} \otimes \bar{y}$ obeying
$\varepsilon p(\bar{x} \otimes \bar{y})>\max \left\{p\left(\left(T_{1}-\lambda\right) \bar{x} \otimes \bar{y}\right), p\left(\bar{x} \otimes\left(T_{2}-\gamma\right) \bar{y}\right)\right\}$.
But if we evaluate equation (2.1) in $\bar{x} \otimes \bar{y}$ and then apply p, we obtain by considering (2.2)

$$
\begin{aligned}
p(\bar{x} \otimes \bar{y}) & \leqslant c_{1} p\left(\left(T_{1}-\lambda\right) \bar{x} \otimes \bar{y}\right)+p\left(\bar{x} \otimes\left(T_{2}-\gamma\right) \bar{y}\right)< \\
& <\varepsilon c_{1} p(\bar{x} \otimes \bar{y})+\varepsilon c_{2} p(\bar{x} \otimes \bar{y})<4^{-1} p(\bar{x} \otimes \bar{y})
\end{aligned}
$$

and hence a contradiction, which gives

$3^{\circ} \quad(\lambda, \gamma) \in \gamma\left(T_{1}\right) \times \gamma\left(T_{2}\right):$ Choosing
$\phi \in\left(\left(T_{1}-\lambda\right) E_{1}\right)^{0}, x_{1} \in E_{1}$ such that $\phi\left(x_{1}\right)=1$ and
$\psi \in\left(\left(T_{2}-\gamma\right) E_{2}\right)^{o}, x_{2} \in E_{2}$ such that $\psi\left(x_{2}\right)=1$,
we find that $\phi \hat{\otimes} \psi$ vanishes on both $\left(T_{1}-\lambda\right) \hat{\boldsymbol{\theta}}_{2} I_{2}\left(E_{1} \hat{\boldsymbol{\theta}}_{\alpha} E_{2}\right)$ and $I_{1} \hat{\boldsymbol{\theta}}\left(T_{2}-\gamma\right)\left(E_{1} \hat{\otimes}_{\alpha} E_{2}\right)$. Therefore (2.1) cannot be fulfilled by some pair $\left(C_{1}, C_{2}\right) \in A^{2}$: evaluate (2.1) in $x_{1} \otimes x_{2}$ and apply $\phi \hat{\boldsymbol{\otimes}} \psi$; then the left-hand side gives 1, whereas the right-hand side vanishes. So we have

$$
\gamma\left(T_{1}\right) \times \gamma\left(T_{2}\right) \subset \sigma\left(T_{1} \widehat{\otimes} I_{2}, I_{1} \hat{\otimes} T_{2} ; A\right)
$$

$4^{\circ}(\lambda, \gamma) \in \pi\left(T_{1}\right) \times \gamma\left(T_{2}\right)$ (and symmetrically $\left.(\lambda, \gamma) \in \gamma\left(T_{1}\right) \times \pi\left(T_{2}\right)\right):$ Suppose $(\lambda, \gamma) \in \rho\left(T_{1} \widehat{\boldsymbol{\theta}} I_{2}, I_{1} \widehat{\boldsymbol{\theta}} T_{2} ; A_{C S}\right)$. Then (2.1) is fulfilled for suitable $C_{1}, C_{2} \in G\left(E_{1} \hat{\otimes}_{\alpha} E_{2} ; \Gamma\right), \Gamma$ denoting some D-fundamental system. Choose $0<\varepsilon<k(\Gamma)\left(4\left\|C_{1}\right\|_{\Gamma}\right)^{-1}$. Since $\left(T_{2}-\gamma\right) E_{2}$ is not dense in E_{2}, there exists a continuous semi-norm p_{2} on E_{2} such that $\left.\Psi_{2}-\gamma\right) E_{2}$ is not $U_{p_{2}}$-dense. If $p_{1} \neq 0$ is a continuous semi-norm on E_{1}, we find $p_{o} \in \Gamma_{\varepsilon}$ such that $p_{0} \geq p_{1} \hat{\boldsymbol{\theta}}_{\varepsilon} p_{2}$ and a constant $c>0$ such that. $p_{02} \geq c p_{2}$, where $p_{0}=p_{01} \otimes p_{02}$. Therefore $\overline{\left(T T_{2}-\gamma\right) E_{2}}$ is not $p_{02}{ }^{-}$ dense, too, and we find by considering the quotient space $E_{2} /\left(\bar{T}_{2}-\gamma\right) E_{2}$ an $x_{2} \in E_{2}$ such that $p_{o 2}\left(x_{2}\right)=1$ and $\psi \in U_{p_{o 2}} \quad$ such that $\psi\left(x_{2}\right)=2^{-1}$. By 2.3 we find $x_{1} \otimes y_{1} \in E_{1} \otimes E_{2}$ such that

$$
\varepsilon p_{o}\left(x_{1} \otimes Y_{q}\right)>p_{o}\left(\left(T_{1}-\lambda\right) x_{1} \otimes y_{1}\right)
$$

Since p_{0} is a cross-semi-norm this implies

$$
\varepsilon p_{o}\left(x_{1} \otimes x_{2}\right)>p_{o}\left(\left(T_{1}-\lambda\right) x_{1} \otimes x_{2}\right)
$$

Now choose $\phi \in U_{p} \circ$ such that $\phi\left(x_{1}\right)=p_{o 1}\left(x_{1}\right)$. Then the extension $\phi \widehat{\boldsymbol{\theta}} \psi$ of $\phi \boldsymbol{\otimes} \psi$ ont8 ${ }^{1}$ the completion lies in $U_{p}{ }_{0}$ by (1.4). So evaluate (2.1) in $x_{1} \otimes x_{2}$ and apply $\phi \hat{\boldsymbol{\otimes}} \psi$. Then we obtßin taking into consideration $(\phi \hat{\otimes} \psi)\left(C_{2}\left(x_{1} \otimes\left(T_{2}-\gamma\right) x_{2}\right)=0:\right.$

$$
\mathrm{p}_{01}\left(\mathrm{x}_{1}\right) 2^{-1}=\phi\left(\mathrm{x}_{1}\right) \psi\left(\mathrm{x}_{2}\right)=(\phi \hat{\boldsymbol{\theta}} \psi)\left(\mathrm{C}_{1}\left(\left(\mathrm{~T}_{1}-\lambda\right) \mathrm{x}_{1} \otimes \mathrm{x}_{2}\right)\right) \leqslant
$$

$$
\begin{aligned}
& \leq k(\Gamma)^{-1} p_{o}\left(C_{1}\left(\left(T_{1}-\lambda\right) x_{1} \otimes x_{2}\right)\right) \\
& \leq k(\Gamma)^{-1}\left\|C_{1}\right\|_{\Gamma} p_{o}\left(\left(T_{1}-\lambda\right) x_{1} \otimes x_{2}\right) \\
& \leqslant 4^{-1} p_{o}\left(x_{1} \otimes x_{2}\right)=4^{-1} p_{o 1}\left(x_{1}\right)
\end{aligned}
$$

and hence a contradiction: By Remark 0.1 (4) we are done.//
In doing the proof of 2.1 with a fixed D-fundamental system Γ and taking into consideration 0.1 (4), we get the following variant of 2.1
2.4. COROLLARY. Suppose the assumptions of 2.1 are fulfilled. Then for every fixed D-fundamental system Γ on $E_{1} \hat{\otimes}_{\alpha} E_{2}$, we have

$$
\begin{aligned}
& \sigma\left(T_{1} \hat{\boldsymbol{\theta}}_{2}, I_{1} \hat{\boldsymbol{\theta}} T_{2} ; A \cap G\left(E_{1} \hat{\boldsymbol{\theta}}_{\alpha} E_{2} ; \Gamma\right)\right)= \\
& =\sigma\left(T_{i} \hat{\boldsymbol{\theta}} I_{2} ; A \cap G\left(E_{1} \hat{\boldsymbol{\theta}}_{\alpha} E_{2} ; \Gamma\right)\right) \times \sigma\left(I_{1} \hat{\boldsymbol{\theta}} T_{2} ; A \cap G\left(E_{1} \hat{\boldsymbol{\theta}}_{\alpha} E_{2} ; \Gamma\right)\right) \\
& =\sigma\left(T_{1} ; G\left(E_{1} ; \Gamma_{1}\right)\right) \times \sigma\left(T_{2} ; G\left(E_{2} ; \Gamma_{2}\right)\right),
\end{aligned}
$$

where $\Gamma_{1}:=\left\{p\left(\cdot \otimes x_{2}\right): p \in \Gamma\right\}, \Gamma_{2}:=\left\{p\left(x_{1} \otimes \cdot\right): p \in \Gamma\right\}$ with $0 \neq$ $x_{1} \otimes x_{2} \in E_{1} \otimes E_{2}$ fixed.

For a given D-fundamental system Γ let Γ_{1}, Γ_{2} denote the fundamental systems of continuous semi-norms on E_{1}, E_{2} as defined in 2.4. Then

$$
\begin{aligned}
\sigma^{\prime}\left(T_{1} \hat{\otimes} I_{2}, I_{1} \hat{\otimes} T_{2} ; A_{C s}\right) & ? \bigcap_{\Gamma} \sigma\left(T_{1} \hat{\boldsymbol{\theta}}_{2}, I_{1} \hat{\otimes}_{T_{2}} ; A \cap G\left(E_{1} \hat{\otimes}_{a} E_{2} ; \Gamma\right)\right. \\
& =\widehat{\Gamma}_{1} \sigma\left(T_{1} ; G\left(E_{1} ; \Gamma_{1}\right)\right) \times \widehat{\Gamma}_{2} \sigma\left(T_{2} ; G\left(E_{2} ;{ }_{2}\right)\right) \\
& =\sigma\left(T_{1} ; G\left(E_{1}\right)\right) \times \sigma\left(T_{2} ; G\left(E_{2}\right)\right) \\
& =\sigma\left(T_{1} \hat{\otimes}_{1}, I_{1} \hat{\otimes} T_{2} ; A_{c s}\right) .
\end{aligned}
$$

The first inclusion is true because of the definition of $A_{c s^{\prime}}$ the first equality is true by 2.4 , the second by (0.8), and the last one is 2.1. The intersection is taken over all D-fundamental systems Γ. Therefore we abtained the following approximation theorem for joint spectra:
2.5. COROLLARY. Let the assumptions of 2.1 be fulfilled. Then
where the intersection is taken over all D-fundamental systems. 2.6. Remark. We do not know, whether 2.1 holds with $A_{\text {cs }}$ replaced by A_{b}. For all examples we know this is true. Moreover, taking the notations of 2.1, we pose the following problem concerning "classi-
cal" joint spectra:
Let E_{1} and E_{2} denote two Fréchet spaces. Prove or disprove $\boldsymbol{\sigma}\left(T_{1} \hat{\boldsymbol{\otimes}} I_{2}, I_{1} \hat{\boldsymbol{\otimes}} T_{2} ; A\right)=\boldsymbol{\sigma}\left(T_{1} ; L\left(E_{1}\right)\right) \times \boldsymbol{\sigma}\left(T_{2} ; L\left(E_{2}\right)\right)$.
3. Spectral mapping theorems. In section 2 we succeeded in describing the Cartesian product $\sigma\left(T_{1} ;\left(L_{s}\left(E_{1}\right)\right)_{b}\right) \times \sigma\left(T_{2} ;\left(L_{s}\left(E_{2}\right)\right)_{b}\right)$ as a bicommutant joint spectrum. In order to solve the announced problem, we have to establish polynomial spectral mapping theorems. For that purpose we start with a refinement of 2.5 .
3.1. APPROXIMATION THEOREM. Let E_{1} and E_{2} denote two locally convex spaces, and let α denote a tensor product topology fulfilling (1.3). Moreover let $T_{i} \in\left(L_{s}\left(E_{i}\right)\right)_{b}(i=1,2)$, and let A be the $b i$ commutant of $T_{1} \hat{\boldsymbol{\theta}}_{2}, I_{1} \hat{\boldsymbol{\theta}}_{T_{2}}{ }^{\mathrm{s}}$ in $L_{s}{ }_{s}\left(E_{1} \hat{\boldsymbol{\theta}}_{\alpha} E_{2}\right)$. Given $C \in A_{c b}$ and an open neighborhood U of $\boldsymbol{\sigma}\left(T_{1} \widehat{\boldsymbol{\otimes}} I_{2}, I_{1} \hat{\otimes} T_{2} ; A_{c s}\right)$, there exists a D-fundamental system Γ on $E_{1} \hat{\boldsymbol{\theta}}_{\alpha} E_{2}$ such that

$$
u \supset \sigma\left(T_{1} \hat{\boldsymbol{\otimes}} I_{2}, I_{1} \hat{\boldsymbol{\otimes}} T_{2} ; A \wedge G\left(E_{1} \hat{\boldsymbol{\theta}}_{\alpha} E_{2} ; \Gamma\right)\right)
$$

and

$$
\left.T_{1} \hat{\boldsymbol{\theta}} I_{2}, \quad I_{1} \hat{\boldsymbol{\otimes}} T_{2}, \quad C \in A \cap G\left(E_{1} \hat{\boldsymbol{\otimes}}_{\alpha} E_{2} ; \Gamma\right)\right)
$$

In order to prove this, we need the following slight modification of Proposition 1.5.
3.2. PROPOSITION. Let $G_{i} \subset L\left(E_{i}\right)(i=1,2)$ denote equicontinuous subsets such that $G_{i} \circ G_{i} \subset G_{i} . L e t \Gamma$ denote any D-fundamental system on $E_{1} \widehat{\boldsymbol{\theta}}_{\alpha} E_{2}$, and let $C \in G\left(E_{1} \hat{\boldsymbol{\theta}}_{\alpha} E_{2} ; \Gamma\right)$. If C commutes with all elements of $G_{1} \otimes I_{2}$ and $I_{1} \otimes G_{2}$, then there exists a D-fundamental system $\bar{\Gamma}$ such that
$C \in G\left(E_{1} \hat{\bigotimes}_{\alpha} E_{2} ; \bar{\Gamma}\right)$ and $\sup \left\{\|T \otimes S\|_{\bar{\Gamma}}: T \in G_{1}, S \in G_{2}\right\} \leq 1$.
The D-fundamental system $\bar{\Gamma}$ constructed in the proof of 1.5 has the desired properties.

Proof of 3.1. Let $U_{i} \supset \sigma\left(T_{i} ;\left(L_{S}\left(E_{i}\right)\right)_{b}\right)(i=1,2)$ denote open neighborhoods such that $U_{1} \times U_{2} \mathbb{C} U$. By [19], Lemma 12 there exist fundamental system Γ_{i} of continuous semi-norms on E_{i} such that $T_{i} \in G\left(E_{i} ; \Gamma_{i}\right)$ and $G\left(T_{i} ; G\left(E_{i} ; \Gamma_{i}\right)\right) \subset U_{i}(i=1,2)$.
Therefore the sets $\left\{\left(T_{i}-\lambda\right): \lambda \in \mathbb{C} \backslash U_{i}\right\}$ are contained in a multiple of the unit-balls $\mathrm{B}_{1}{ }^{(i)}$ of $\left(G\left(E_{i} ; \stackrel{I}{\Gamma}_{i}\right),\|.\|_{\Gamma_{i}}\right) \cap\left\{T_{i} ; L\left(E_{i}\right)\right\}^{C C}$. Let $C \in G\left(\dot{E}_{1} \hat{\otimes}_{\alpha_{C}} E_{2} ; \Gamma\right) \cap A$. Since $\left\{T_{1} ; L\left(E_{1}\right)\right\}^{C C}{ }_{\otimes}^{1} I_{2}$ and $I_{1} \otimes\left\{T_{2} ; L\left(E_{2}\right)\right\}^{C C}$ are contained in the commutative algebra A, C and $B_{1}(i)$ fulfill the assumptions of 3.2. Hence there exists a D-funda-
mental system $\bar{\Gamma}$ such that $C \in G\left(E_{1} \hat{\boldsymbol{\otimes}}_{\alpha} E_{2} ; \bar{\Gamma}\right)$ and

$$
\sup \left\{\|T \hat{\boldsymbol{\theta}} S\|_{\bar{\Gamma}}: T \in B_{1}{ }^{(1)}, S \in B_{1}^{(2)}\right\} \leq 1 .
$$

But this especially means, that for all $\lambda \in \mathbb{C} \backslash U_{1}$ and $\gamma \in \mathbb{C} \backslash U_{2}$ we have

$$
\begin{aligned}
& \left\|\left(T_{1}-\lambda\right)^{-1} \hat{\otimes} I_{2}\right\|_{\bar{\Gamma}} \leq\left\|\left(T_{1}-\lambda\right)^{-1}\right\|_{\Gamma_{1}} \text { and } \\
& \left\|I_{1} \hat{\otimes}\left(T_{2}-\gamma\right)^{-1}\right\|_{\bar{\Gamma}} \leq\left\|\left(T_{2}-\gamma\right)^{-1}\right\|_{\Gamma_{2}} .
\end{aligned}
$$

But from this it follows, that every $(\lambda, \gamma) \in \mathbb{C}^{2} \backslash\left(U_{1} \times U_{2}\right)$ is already contained in $\rho\left(T_{1} \hat{\boldsymbol{\theta}} \mathrm{I}_{2}, \mathrm{I}_{1} \hat{\boldsymbol{\theta}} \mathrm{~T}_{2} ; \mathrm{A} \cap \mathrm{G}\left(\mathrm{E}_{1} \hat{\boldsymbol{\theta}}_{\alpha} \mathrm{E}_{2} ; \bar{\Gamma}\right)\right)$, and hence

$$
ઢ\left(T_{1} \hat{\otimes} I_{2}, I_{1} \hat{\otimes} T_{2} ; A \cap G\left(E_{1} \hat{\otimes}_{\alpha} E_{2} ; \bar{\Gamma}\right)\right) \subset U_{1} \times U_{2} \subset U . / /
$$

Theorem 3.1 turns out to be the main tool in order to prove the second part of the following
3.3. SPECTRAL MAPPING THEOREM. Let $T_{i} \in L\left(E_{i}\right)(i=1,2)$, let P be a polynomial in two variables, and let A denote the bicommutant of $T_{1} \hat{\boldsymbol{\otimes}} I_{2}, I_{1} \hat{\boldsymbol{\otimes}} T_{2}$ in the algebra $L_{s}\left(E_{1} \hat{\boldsymbol{\theta}}_{\alpha} E_{2}\right)$.
(i) If $\boldsymbol{\sigma}\left(T_{i} ;\left(L_{s}\left(E_{i}\right)\right)_{b}\right) \neq \mathbb{C}(i=1,2)$, then $P\left(\boldsymbol{\sigma}\left(T_{1} ;\left(L_{s}\left(E_{1}\right)\right){ }_{b}\right), \boldsymbol{\sigma}\left(T_{2} ;\left(L_{s}\left(E_{2}\right)\right)_{b}\right)\right) \subset \boldsymbol{\sigma}\left(P\left(T_{1} \hat{\boldsymbol{\theta}}_{2}, I_{1} \hat{\theta}^{2} T_{2}\right) ; A_{c b}\right)$
(ii) If moreover T_{1} and T_{2} are Allan-bounded, then

$$
\begin{aligned}
P\left(\boldsymbol{\sigma}\left(T_{1} ;\left(L_{s}\left(E_{1}\right)\right)_{b}\right), \boldsymbol{\sigma}\left(T_{2} ;\left(L_{s}\left(E_{2}\right)\right)_{b}\right)\right. & =\boldsymbol{\sigma}\left(P\left(T_{1} \hat{\boldsymbol{\otimes}} I_{2}, I_{1} \hat{\boldsymbol{\otimes}} T_{2}\right), A_{c s}\right) \\
& =\boldsymbol{\sigma}\left(P\left(T_{1} \hat{\otimes} I_{2}, I_{1} \hat{\otimes} T_{2}\right), A_{c b}\right)
\end{aligned}
$$

Proof. By 2.1 and 2.5 we have

$$
\begin{aligned}
& G\left(T_{1} ;\left(L_{s}\left(E_{1}\right)\right)_{b}\right) \times G\left(T_{2} ;\left(L_{s}\left(E_{2}\right)\right)_{b}\right)= \\
& \quad=\bigcap_{\Gamma} \sigma\left(T_{1} \hat{\otimes}_{2}, I_{1} \hat{\otimes} T_{2} ; A \cap G\left(E_{1} \hat{\Theta}_{\alpha} E_{2} ; \Gamma\right)\right)
\end{aligned}
$$

where it is sufficient to take the intersection over all those D-fundamental system Γ such that neither $\sigma\left(T_{1} \widehat{\otimes} I_{2} ; A \cap G\left(E_{1} \hat{\otimes}_{\alpha} E_{2} ; \Gamma\right)\right)$ nor $\sigma\left(I_{1} \hat{\otimes}_{2} ; A \cap G\left(E_{1} \hat{\otimes}_{\alpha} E_{2} ; \Gamma\right)\right)$ coter the whole complex plane. Since $\left(A \cap G\left(E_{1} \hat{\otimes}_{\alpha} E_{2} ; \Gamma\right), \| \cdot{ }^{\|} \Gamma\right.$) is a Banach algebra by (0.3), we apply Lemma 0.2 which gives

$$
P\left(\delta\left(T_{1} \hat{\otimes} I_{2}, I_{1} \hat{\otimes} T_{2} ; A \wedge G\left(E_{1} \hat{\otimes}_{\alpha} E_{2} ; \Gamma\right)\right)\right) C
$$

$$
C \sigma\left(P\left(T_{1} \hat{\otimes} I_{2}, I_{1} \hat{\otimes} T_{2}\right) ; A \cap G\left(E_{1} \widehat{\otimes}_{\alpha} E_{2} ; \Gamma\right)\right)
$$

and hence

$$
\begin{aligned}
&\left.P\left(\delta\left(T_{1} ;\left(L_{s}\left(E_{1}\right)\right)\right)_{b}\right), \delta\left(T_{2} ;\left(L_{s}\left(E_{2}\right)\right){ }_{b}\right)\right)= \\
&=P\left(\bigcap_{\Gamma} \sigma\left(T_{1} \hat{\otimes} I_{2}, I_{1} \hat{\otimes} T_{2} ; A \cap G\left(E_{1} \hat{\otimes}_{\alpha} E_{2} ; \Gamma\right)\right)\right) \\
& \subseteq \bigcap_{\Gamma} P\left(\sigma\left(T_{1} \hat{\otimes} I_{2}, I_{1} \hat{\otimes}_{2} ; A \cap G\left(E_{1} \hat{\otimes}_{\alpha} E_{2} ; \Gamma\right)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& c \bigcap \Omega\left(P\left(T_{1} \hat{\otimes} I_{2}, I_{1} \hat{\otimes} T_{2}\right) ; A \cap G\left(E_{1} \widehat{\otimes}_{\alpha} E_{2} ; \Gamma\right)\right)= \\
& =\sigma\left(P\left(T_{1} \hat{\otimes} I_{2}, I_{1} \hat{\otimes}_{2}\right) ; A_{c b}\right) .
\end{aligned}
$$

This proves (i).
In order to prove (ii), let $\gamma \notin P\left(G\left(T_{1} ;\left(L_{s}\left(E_{1}\right)\right)_{b}\right), \mathcal{G}\left(T_{2} ;\left(L_{s}\left(E_{2}\right)\right){ }_{b}\right)\right)$ and let V denote an open neighborhood of this set such that $\gamma \notin V$. Then there exists an open neighborhood $U \supset . \sigma\left(T_{1} \widehat{\boldsymbol{\theta}} \mathrm{I}_{2}, \mathrm{I}_{1} \hat{\boldsymbol{\theta}}_{\mathrm{X}} \mathrm{T}_{2} ; \mathrm{A}_{\mathrm{CS}}\right.$) such that $P(U) C V$. By 3.1 there exists a D-fundamental system Γ such that $T_{1} \hat{\otimes} I_{2}, I_{1} \hat{\otimes} T_{2} \in G\left(E_{1} \hat{\boldsymbol{\theta}}_{\alpha} E_{2} ; \Gamma\right)$ and U contains $\hat{\sigma}\left(T_{1} \hat{\otimes} I_{2}, I_{1} \hat{\otimes} T_{2} ; A \cap G\left(E_{1} \hat{\otimes}_{\hat{\alpha}} E_{2} ; \Gamma\right)\right)$, and hence
 elements of the Banach algebra ($A \cap G\left(E_{1} \hat{\otimes}_{\alpha} E_{2} ; \Gamma\right.$), $\left\|^{\prime}\right\|_{\Gamma}$), the spectral mapping theorem for joint spectra in Banach algebras gives

$$
\begin{aligned}
& P\left(\Theta\left(T_{1} \hat{\otimes} I_{2}, I_{1} \hat{\otimes} T_{2} ; A \cap G\left(E_{1} \hat{\otimes}_{\alpha} E_{2} ; \Gamma\right)\right)\right)= \\
& =\sigma\left(P\left(T_{1} \widehat{\otimes} I_{2}, I_{1} \hat{\otimes} T_{2}\right) ; A \cap G\left(E_{1} \hat{\otimes}_{\alpha} E_{2} ; \Gamma\right)\right) .
\end{aligned}
$$

But this implies $\gamma \notin \mathcal{O}\left(P\left(T_{1} \hat{\boldsymbol{\otimes}} \mathrm{I}_{2}, I_{1} \hat{\boldsymbol{\otimes}}_{2} \mathrm{~T}_{2}\right) ; \mathrm{A}_{\mathrm{Cb}}\right)$. It remains to be shown that

$$
C:=\left(\gamma I_{1} \hat{\otimes} I_{2}-P\left(T_{1} \hat{\otimes} I_{2}, I_{1} \hat{\otimes} T_{2}\right)\right)^{-1} \in A_{C S}
$$

Thus let $D \in\left(\left\{C ; L_{s}\left(E_{1} \widehat{\boldsymbol{\theta}}_{\alpha} E_{2}\right)\right\}^{C C}\right)_{C b}$. In applying 3.1 we find a D-fundamental system $\bar{\Gamma}$ such that $D, T_{1} \hat{\boldsymbol{\theta}}_{2}, I_{1} \hat{\otimes} T_{2} \in G\left(E_{1} \hat{\otimes}_{\alpha} E_{2} ; \bar{\Gamma}\right.$) and $U \supset \boldsymbol{\sigma}\left(T_{1} \hat{\boldsymbol{\theta}}_{2} I_{2} I_{1} \hat{\boldsymbol{\theta}}_{2} ; A \cap G\left(E_{1} \hat{\boldsymbol{\theta}}_{\alpha} \mathrm{E}_{2} ; \bar{\Gamma}\right)\right)$. A repetion of the spec-
 But this means, that $c \in A \cap G\left(E_{1} \widehat{\boldsymbol{\theta}}_{\alpha} E_{2} ; \bar{\Gamma}\right)$, and hence $c \in A_{C S}$. Connected with part (i) this proves (ii).//
3.4. Remarks.
(1) We do not know whether 3.1 (ii) can be sharpened by substituting A_{b} for $A_{c b}$. Such a result has been announced by Kawamura [18] in the case where E_{1} and E_{2} are Frechet spaces, one of which has to be nuclear, but it turns out that there is a gap in Kawamura's proof, because the central Proposition 4.1 is false.
(2) The spectral mapping theorem can be generalized from polynomials to functions, which are analytic in a neighborhood of the joint spectrum, by means of an analytic functional calculus (see [28], II. 4 for details).
(3) The inclusion in 3.3 (i) is strict in general as we shall illustrate by several counterexamples below. In order to get the reverse inclusion for non-Allan-bounded operators, too, one has to pose additional conditions upon the operators T_{1}, T_{2} and/or the polynomial P. In [28], III. we have given a functional calculus ori-
ginally due to Sebastião e Silva [26], which guarantees two-sided spectral mapping theorems under conditions that are fulfilled in applications to abstract Cauchy problems. We shall give an example below.
3.5. COUNTEREXAMPLES.

For $n \in 7$ let

$$
\varepsilon_{(-\infty, n)}:=\left\{u \in C^{\infty}(\mathbb{R}): \operatorname{supp} u \subset(-\infty, n)\right\}
$$

equipped with the topology induced from $C^{\infty}(\mathbb{R})$. Then the space

$$
\mathcal{D}_{-}:=\bigcup_{n \in Z} \varepsilon_{(-\infty, n)}
$$

being equipped with the canonical topology of the inductive limit is a strict (LF)-space, and a nuclear space. Hence the strong dual

$$
\mathcal{L}_{+}^{\prime}:=\left(\mathcal{D}_{-}\right)_{s}
$$

is especially a Montel space, and hence $L_{s}\left(D_{+}^{\prime}\right)$ is sequentially complete. As sets we have

$$
\mathcal{D}_{+}^{\prime}=\left\{\phi \in \mathcal{D}^{\prime}: \text { supp } \phi \text { is bounded from the left }\right\}
$$

and hence \mathcal{D}_{+}^{\prime} admits a convolution product. For every $\lambda \in \mathbb{C}$ the operator $\frac{d}{d x}-\lambda$ has an inverse in $L\left(D_{+}^{\prime}\right)$, which can be written as convolution operator $\left(e^{\lambda \cdot} H().\right) *$. Consequently the spectrum $\sigma\left(\frac{d}{d x} ; L\left(D_{+}^{\prime}\right)\right)$ is empty, but since the function $\lambda \leadsto\left(e^{\lambda \cdot} H(\cdot)\right) *$ is analytic with respect to the $L_{S}\left(D_{+}^{\prime}\right)$-topology, $\sigma\left(\frac{d}{d x} ;\left(L_{s}\left(D_{+}^{\prime}\right)\right)_{b}\right)$ is empty, too, and hence $\sigma\left(\left(\frac{d}{d x}\right)^{-\boldsymbol{q}} ;\left(L_{s}^{+}\left(\mathscr{L}_{+}^{\prime}\right)\right)_{b}\right)=\{0\}$.

A necessary (but by no means sufficient) condition for a distribution $u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{2}\right)$ to be contained in $\mathscr{D}^{\prime}+\hat{\otimes}_{\pi} \delta_{+}^{\prime}$ is, that for every $\phi \in \mathcal{D}_{-}, u(\phi)$ belongs to \mathcal{D}_{+}^{\prime} (look at u as an element from $L\left(D_{-}\right.$, D_{+}^{\prime}); Schwartz [24], p. 51).

Next let $v \in C^{\infty}\left(\mathbb{R}^{2} \backslash\{0\}\right)$ denote a function, which is real-analytic outside the origin, and let $\phi \in C_{o}^{\infty}(\mathbb{R} \backslash\{0\})$. Then the function

$$
\begin{equation*}
y \leadsto-\oint_{0}^{\infty} v(x, y) \phi(x) d x \tag{*}
\end{equation*}
$$

is real-analytic, and hence is contained in D_{+}^{\prime} if and only if it vanishes identically. From these facts we infer, that the CauchyRiemann operator

$$
\frac{d}{d x} \hat{\boldsymbol{\theta}} I+i I \hat{\theta^{2}} \frac{d}{d y}: \mathcal{D}_{+}^{\prime} \hat{\boldsymbol{\theta}}_{\pi} \mathcal{D}_{+}^{\prime} \longrightarrow \delta^{\prime}+\hat{\boldsymbol{\otimes}}_{\pi} \mathcal{D}_{+}^{\prime}
$$

has no fundamental solution in $\mathcal{D}_{+}^{\prime} \hat{\boldsymbol{\theta}}_{\pi} D_{+\prime}^{\prime}$, and consequently is not surjective. But this is clear, since every fundamental solution of the Cauchy-Riemann operator is analytic outside the origin, and hence by $(*)$ cannot be contained in $\delta_{+}^{\prime} \hat{\otimes}_{\pi} \delta_{+}^{\prime}$.

After these preliminary remarks we shall consider three cases, which show, that for non-Allan-bounded operators the spectral mapping theorem 3.3 (i) can fail in a dramatic manner.
(1) Let $E_{1}=E_{2}=D_{+}^{\prime}$, let $T_{1}:=\frac{d}{d x}, T_{2}:=i \frac{d}{d y}$. Then $\mathcal{G}\left(T_{i} ;\left(L_{s}\left(E_{i}\right)\right)_{b}\right)$
$=\varnothing(i=1,2)$. On the other hand, we shall show, that

$$
\sigma\left(T_{1} \hat{\otimes} I_{2}+I_{1} \hat{\otimes} T_{2} ; L\left(E_{1} \widehat{\otimes}_{\pi} E_{2}\right)\right)=\mathbb{C}
$$

For that purpose note that $T_{1} \hat{\boldsymbol{\theta}} I_{2}+I_{1} \hat{\boldsymbol{\theta}} T_{2}-\lambda I_{1} \hat{\boldsymbol{\theta}} I_{2}(\lambda \in \mathbb{C})$ has no fundamental solution u in $E_{1} \hat{\otimes}_{\pi} E_{2}$, for otherwise $\exp \left(-\frac{\lambda}{2}(x-i y)\right) u$ would be a fundamental solution of the Cauchy-Riemann operator.
(2) Let E_{1}, E_{2}, and T_{1} as above, and let $T_{2}:=\left(\frac{d}{d y}\right)^{-1}$. Then by similar arguments as above, one can prove (cf.[28], II.4.18)

$$
\sigma\left(T_{1} \hat{\boldsymbol{\theta}}_{\infty} T_{2} ;\left(L_{s}\left(E_{1} \hat{\otimes}_{\pi} E_{2}\right)\right)_{b}\right)=\mathbb{C}
$$

(3) Let $E_{1}:=\prod_{1}^{\infty} \mathbb{C}, T_{1} \in L\left(E_{1}\right)$ the left-s.shift, $E_{2}=D_{+\prime}^{\prime}, T_{2}=\frac{d}{d y}$. Then $T_{1} \hat{\otimes} I_{2}$ operates as left-shift on $\prod_{1} E_{2} \cong E_{1} \hat{\otimes}_{\pi} E_{2}$, and $I_{1} \hat{\otimes} T_{2}$ operates coordinate-wise. Thus for every $\lambda \in \mathbb{C}$ the sequence $\left(\left(\lambda T_{2}{ }^{-1}\right) \delta\right)_{n \in \mathbb{N}}$ is an eigenvector of $T_{1} \hat{\otimes} T_{2}$, and hence

$$
\mathcal{\sigma}\left(\mathrm{T}_{1} \hat{\boldsymbol{\otimes}} \mathrm{~T}_{2} ; L\left(\mathrm{E}_{1} \hat{\boldsymbol{\theta}}_{\pi} \mathrm{E}_{2}\right)\right)=\mathbf{C} .
$$

4. A distributional Cauchy problem. Since it is beyond the scope of this paper to present the functional calculus as devellopped in [28], we content ourselves with giving a typical example illustrating of what kind conditions have to be assuring a tensor product of operators to be invertible. For that purpose let $T \in L(E)$, let P denote a polynomial in two variables, and consider the distributional Cauchy problem for the operator

$$
P\left(\frac{d}{d t} \hat{\otimes} I, I \hat{\otimes} T\right): \mathcal{D}_{+}: \hat{\otimes}_{\pi} E \longrightarrow \mathcal{D}_{+} \hat{\otimes}_{\pi} E
$$

If $P\left(z_{1}, z_{2}\right)=z_{1}-z_{2}$ this is a tensor product notation of a Hille-Yosida-type problem.
In order to give sufficient conditions for $P\left(\frac{d}{d t} \hat{\boldsymbol{\theta}} I, I \hat{\boldsymbol{\theta}} T\right)$ to be invertible, we need the following (cf. [28], p. 60)
4.1. LEMMA. For all $k \in \mathbb{Z}$ the function

$$
\lambda \leadsto\left(\frac{d}{d t}-\lambda\right)^{-1}=e^{\lambda \cdot} H(.) * \in L_{8}\left(D_{+}^{\prime}\right)
$$

is bounded on $F_{k}=\{\lambda \in \mathbb{C}: \operatorname{Re}(\lambda)<k\}$.
4.2. THEOREM. Let E be a locally convex space, let $T \in L(E)$, and Let $c \in \mathbb{R}$. Suppose that the function $\lambda m P(\lambda, T)^{-1}$ is bounded on
$c \backslash F_{c}=\{\lambda \in \mathbb{C}: \operatorname{Re}(\lambda) \geq c\}$. Then $P\left(\frac{d}{d t} \hat{\otimes} I, I \hat{\otimes} T\right) \in L\left(\mathcal{D}_{+}^{\prime} \hat{\otimes}_{\pi} E\right)$ is invertible and
$P\left(\frac{d}{d t} \hat{\boldsymbol{\otimes}} I, I \hat{\otimes} T\right)^{-1}=\left(\frac{d}{d t}-\lambda_{0}\right)^{2} \hat{\boldsymbol{\otimes}} I \frac{1}{2 \pi i} \int_{c+i \mathbb{R}}\left(\lambda-\lambda_{0}\right)^{-2}\left(\frac{d}{d t}-\lambda\right)^{-1} \hat{\boldsymbol{\otimes}} P(\lambda, T)^{-1} d \lambda$, where $\lambda_{0} \in F_{c}$ is arbitrarily chosen and the integral is an improper Riemann integral.

We sketch a proof. By 4.1 the function $\lambda \leadsto\left(\frac{d}{d t}-\lambda\right)^{-1} \epsilon L_{s}\left(\delta_{+}^{\prime}\right)$ is bounded on F_{C}. Therefore the integral exists as an improper Riemannintegral. Multiplying this integral by $P\left(\frac{d}{d t} \widehat{\boldsymbol{Q}} I, I \widehat{\boldsymbol{Q}} \mathrm{~T}\right)$ we obtain $P\left(\frac{d}{d t} \hat{\otimes} I, I \hat{\otimes} T\right) \int_{C+i R} \ldots=\int\left\{\left(P\left(\frac{d}{d t} \hat{\otimes} I, I \hat{\otimes} T\right)-P(\lambda I \hat{\otimes} I, I \hat{\otimes} T)\right\} \ldots d \lambda+\right.$ $+\int P(\lambda I \hat{\boldsymbol{\theta}} I, I \hat{\boldsymbol{\theta}} T) \ldots d \lambda$,
where ... denotes the integrand of the integral in the statement of the theorem. In the first integrand, $\{\quad\}$ contains $\left(\frac{d}{d t}-\lambda\right) \hat{\boldsymbol{\theta}} I$ as a factor. Therefore the first integral vanishes by a residuum calculation. Since $P(\lambda I \hat{\boldsymbol{\theta}} I, I \hat{\boldsymbol{\theta}} T) \in \hat{\boldsymbol{\theta}} P(\lambda, T)^{-1}=I \hat{\boldsymbol{\theta}} I$, the second integral gives $2 \pi i\left(\frac{d}{d t}-\lambda_{0}\right)^{-2} \widehat{\otimes} I$, which proves the theorem.

By taking an m-th power of $\left(\lambda-\lambda_{0}\right)^{-1}$ and $\left(\frac{d}{d t}-\lambda_{0}\right)$ if necessary, the assumptions of the theorem can be weakened, so that $P(\cdot, T)^{-1}$ is polynomially increasing in some right half-plane. It is well known, that in such a case $P(., T)^{-1}$ is Laplace-transform of an operator-valued distribution u. In the case of a Banach space E, u can be shown to be a fundamental solution for the operator $P\left(\frac{d}{d t} \hat{\otimes} I, I \hat{\boldsymbol{\theta}} T\right)$, and one gets the inverse operator by means of convolution of vector-valued distributions. This method of proof for 4.2 is the so-called Laplace-transform-method (cf. Beals [2]). It seems to us, that our proof is more elementary even for Banach spaces. If E is a proper locally convex space, the Laplace-transform does not work in general, because a convolution cannot be defined on the whole of $\mathcal{D}_{+}^{\prime} \hat{\boldsymbol{\otimes}}_{\pi} \mathrm{E}$ (cf. Fattorini [7]).

- REFERENCES

1. ALLAN G.R. "A spectral theory for locally convex algebras", Proc. London Math. Soc. (3) 15 (1965), $399-421$
2. BEALS R. "Laplace transform method for evolution equations" in: Garnir (ed.) Boundary value problems for linear evolution equations. Reidel Publishing Dordrecht 1977
3. BROWN A., PEARCY C. "Spectra of tensor products of operators", Proc. A.M.S. 17 (1966), 162 - 166
4. CARROLL R.W. "Transmutations and operator differential equations", Nortth-Holland Amsterdam 1979
5. CHAZARAIN J. "Problèmes de Cauchy abstraits et applications à quelques problèmes mixtes", Journ. Funct. Analysis $\underline{7}$ (1971) 386-446
6. DASH A.T., SCHECHTER M. "Tensor products and joint spectra", Israel J. Math. 8 (1970), 191-193
7. FATTORINI H.O. "On a class of differential equations for vector valued distributions", Pac. J. Math. 32 (1970), 79-104
8. GROTHENDIECK A. "Résumè de la théorie metrique des produits tensoriels topologiques", Bol. Soc. Mat. Sao Paulo 7 (1952)
9. ------------- "Produits tensoriels topologiques et espaces nucléaires", Memoirs A.M.S. 16 Providence 1955
10. HARKSEN J. "Tensornormtopologien", Dissertation Kiel 1979
11. HARTE R.E. "Tensor products, multiplication operators and the spectral mapping theorem", Proc. Roy. Ir. Acad. Sect. A 73 (1973), 285 - 302
12. HÖRMANDER L. "Linear partial differential operators", Berlin-Heidelberg-New York 1969
13. ICHINOSE T. "On the spectra of tensor products of linear operators in Banach spaces. J. Reine Angew. Math. $\underline{244}$ (1970), 119 153
14. -------- "Operators on tensor products of Banach spaces", Trans. A.M.S. 170 (1972), 197 - 219
15. -------- "Tensor products of linear operators and the method of separation of variables", Hokkaido Math. J. 3 (1974), 161 189
16. -------- "Operational calculus for tensor products of linear operators in Banach spaces", Hokkaido Math. J. $\underline{4}$ (1975), 306 334
17. -------- "Spectral properties of tensor products of linear operators I,II", Trans. A.M.S. 235 (1978), 75-113; 237 (1978), 223-254
18. KAWAMURA S. "On the spectra of tensor products of linear operators in locally convex spaces", Tohoku Math. J. $\underline{27}$ (1975), 247-258
19. MOORE R.T. "Banach algebras of operators on locally convex spaces", Bull. A.M.S. 75 (1969), 68-73
20. NEUBAUER G. "Zur Spektraltheorie in lokalkonvexen Algebren", Math. Ann. 142 (1961), 131 - 164
21. REED M., SIMON B. "Tensor products of closed operators on Ba-
nach spaces", Journ. Funct. Analysis 13 (1973), 107-124
22. SCHAEFER H. H. "Topological vector spaces", New York-HeidelbergBerlin 1970
23. SCHECHTER M. "On the spectra of operators on tensor products", Journ. Funct. Analysis $\underline{4}$ (1969), 95-99
24. SCHWARTZ L. "Théorie des distributions à valeurs vectorielles I" Ann. Inst. Fourier 7 (1957), 1 - 142
25. -------- "Théorie des distributions... II", Ann. Inst. Fourier 8 (1958) 1-209
26. SEBASTIAO E SILVA J. "Sur le calcul symbolique d" opérateurs permutables à spectre vide ou non borné", Annali di Mat. pura ed appl. (Bologna) (4) 58 (1962), 219-275
27. SIMON B. "Uniform Cross-norms" Pac. J. Math. 46 (1973), 555 560
28. WROBEL V. "Tensorproduktoperatoren in lokalkonvexen Räumen", Habilitationsschrift Kiel 1981
29. -n---- "Spektraltheorie stetiger Endomorphismen eines lokalkonvexen Raumes", Math. Ann. 234 (1978), 193-208

VOLKER WROBEL
MATHEMATISCHES SEMINAR DER UNIVERSITÄT KIEL
OLSHAUSENSTRASSE 40 - 60
D-2300 KIEL
FEDERAL REPUBLIC GERMANY

