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CAUCHY-KOWALEWSKI THEOREMS IN 

CLIFFORD ANALYSIS : A SURVEY 

F.Brackx, R. Delanghe, F. Sommen(*) 

1. Introduction 

Along with the theory of holomorphic functions of several 

complex variables, other directions have been followed to construct 

function theories in higher dimension. In particular we t h i n k of 

quaternionic analysis set up by Moisil-Theodorescu [ 11 ] and Fueter 

[ 6 ] . It was also Fueter who introduced the generalized Cauchy-

Riemann operator in t h e framework of Clifford algebra (see [ 7 ] ), 

an idea wh ich was taken up again by Iftimie [10] , Hestenes [9] and 

Delanghe [4,5] in t h e late sixties. 

Meanwhile t h i s t h e o r y has grown out to a r a t h e r vast domain 

called Clifford analysis. The progress made by t h e Ghent school 

in t h e last four years was b rough t t o g e t h e r into book-form (see 

[ 1 ] ). 

With in t h e scope of t h i s paper it is of course impossible to 

give an overview of all results obtained, but n e v e r t h e l e s s t h e 

Cauchy-Kowalewski Theorems dealt w i t h , will give a r a t h e r nice 

impression of what Clifford-analysis looks like, how it has indeed 

fulfilled t h e initial aim of generalizing holomorphic function t h e o ­

ry in one variable and of refining t h e t h e o r y of harmonic functions, 

and how it creates an opening towards differential geometry and 

mathema t i ca l p h y s i c s , as recently elaborated by Sommen in [ 15, 16] . 

2. Clifford algebra 

Constructed in 1878 by Clifford in an attempt to combine t h e 

properties of t h e Grasmann algebra and Hamilton's quaternion algebra 

into a single geometric algebra, t h e so-called Clifford algebra was 

not used in p h y s i c s until just before 1930. 

The way Clifford algebra is briefly introduced here is r a t h e r 

constructive, as contrasted w i th o t h e r possible approaches [2,3,12] 

(*) The third a u t h o r is a Senior Resea rch Assistant supported by 

N.F.W.O.(National Fund for Scientific Resea rch ) - Belgium 
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wiuth are mostly formal algebra ; moreover we confine ourselves to 

the special Clifford algebra which is used in the sequel. 

Let V be an n-dimensional real (resp.complex) vector space with 

a bilinear form (vlw), v, w e V and an associated orthonormal basis 

(e., , e0, ..., e ) such that 
v 1 ' 2' ' n̂  

(e.|e.)=0 if i*i 
i J 

(ei|ei)=-1, i=1,...,n. 

Then consider the 2 -dimensional real (resp. complex) vector space 

A (resp. A ) with basis 

{eA=eh ...h : A = 0 V " - > hrJ e P{1,...,n}:1<h1<...<hr<n}, 

e being written as e or 1. An arbitrary element of A(resp.AC) 

is then written as 

a = ^ eAaA' aA G R (resp.aA e (C) . 

Now a product may be defined on A by the rule 

e e =r-i)tt(AnB) p(A,B) 
eAeB l rj l U eAAB 

where p(A,B)= I p(A,j), p (A, j ) =#{ iGA, i>j } , the sets A,B and AAB 
jEB 

being ordered in the prescribed way. 

It follows at once from this multiplication rule that 

(i) e is the identity element; 

(ii) e.e .+e.e.=-26. . 
I j j l 13 

(iii)if h1<h0<...<h then eu .e, ...e, =e, , . 1 2 r h1 h2 hr h1...hr 

It is an easy matter now to check that in this way A(resp.A ) 

is turned into a linear, associative but non-commutative algebra, 

called the real(resp.complex) universal Clifford algebra over V. 

c 2n 2n 

As A(resp.A ) is isomorphic to IR (resp. (E ) we may provide 
it with the Euclidean norm 

I» ' = ( I " A ' 2 ) 1 / 2 
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and i t i s easy t o show t h a t 

| a . b | < 2 n / 2 | a | . | b | , a ,b e A ( r e s p . A c ) . 

Hence A ( r e s p . A c ) i s a Banach a l g e b r a fo r the C l i f f o r d norm 

| a | = 2 ' I a | . 

3. Monogenic functions 

Clifford analysis is developed w i t h i n t h e following framework. 

On t h e one hand we have t h e Euclidean space Rm+1, t h e points of 

wh ich are denoted alternatively by 

x=(xQ, x1,...,xm)=(xo,x), 

x l a y i n g in the hyperplane XQ = 0 wh ich i s i d e n t i f i e d w i t h fRm. By 

(R we mean \R \ {0} . 

On t h e o t h e r hand we have t h e Clifford algebra A, its space of 

1-vectors A..=sp{e.: i = 1,...,n} having dimension n; it is assumed 

t h a t m<n. 

For x £ IR , x £ IR we put 

m _̂  ^ m 
x= J e.x.=x +x, x= y e.x., 

i-0 X 1 ° j=1 J J 

x= J Q
 eixi=xo-x-

By n(resp.fi) we always denote an open set in IR (resp.lR ). 

The functions under consideration are of t h e form 

f:n-Af x-f(x)= I eAfA(x), fA:n->R. 

Introducing t h e generalized Cauchy-Riemann operator 

m m 
D= У e.Ә =e Ә +D , D = У e.Ә 

±-0 X Xi ° Xo ° ° j=1 J xj 
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and its conjugate 

_ m _ 
D= Y e.3 =e 9 -D , 

i=0 x xi ° xo ° 

monogenic functions are defined as follows. 

Definition 1. A function f e e (ft;A) is left (resp.right) mono­

genic in ft if and only if "Df=-0 (resp. fD = 0) in ft. 

The space of all left monogenic functions in ft is denoted by M(ft;A); 

it is a right A-module. 

Now as DD=DD=A + 1
e (linearization of the (m+1)-dimensional 

Laplacian) we have at once 

M(ft;A) c Harm(ft;A) c#(ft;A) c E(ft;A) 

where Harm(ft;A),#(ft;A) and E(ft;A) stand for the respective right 

A-modules of A-valued harmonic, analytic and indefinitely differen-

tiable functions in ft. 

Endowed with the topology of uniform compact convergence, M(ft;A) 

becomes a right Frechet A-module. 

4. Taylor series expansion 

To give some idea of how monogenic functions look like, we pay 

attention to the local behaviour of a monogenic function. To that 

end introduce the hypercomplex variables 

z =xne -x ert, £=1 , . ..,m I I o o I9 ' ' 

and the homogeneous polynomials 

Ä1...Av(x)= ţy [ z 

where the sum runs over all distinguishable permutations of the 

,k sequence (£.,...,£,) e {1,...,m} , wh ich are clearly b o t h left 

and r i g h t monogenic in t h e whole of IR 
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Theorem 1. Let f be l e f t monogenic in the open b a l l B ( 0 , R ) . 
Then 

oo 

f ( * ) " X I V (x) 3 . . . 3 f ( 0 ) , (1) 
k = 0 ( £ 1 , . . . , £ k ) V ^ k X£1

 X £ k 

considered as a multiple power series, converges uniformly on com-
o 

pact subsets of B(0,(v2-1)R), while, bracketing terms together 

oo 

f(x)= I P f(x) (2) 
k = 0 K 

with 

Pkf(x)= I Vf. ...t (x)3x •••3 X f(0), 
(£. , . . . >^kJ 1 K x, - £•• 

o 

converges uniformly on compact subsets of B(0,R). 

Notice that in the special case where f is left monogenic in the 

whole of {R then both Taylor series (1) and (2) converge in 

Rm+1. 

5. The Cauchy-Kowalewski Theorem in the complex case 

If we compare t h e functions sinx and arctgx ( x e R ) t h e n , both 

being analytic in R, the Taylor series of sinx at t h e origin 

converges in IR, w h i l e for arctgx t h e convergence only holds in 

]-l,1[. The very reason for t h i s fact lays of course in t h e 

complex plane w h e r e sinx' is holomorphic in C w i t h a Taylor series 

expansion at t h e origin converging in (C, w h i l e t h e Taylor series 

of arctgx at t h e origin converges only in t h e unit disk, due to 

t h e poles at i and -i. So we see t h a t t h e b e h a v i o u r of real-analy­

tic functions on t h e real axis is in fact governed by t h e i r holo­

m o r p h i c extensions in t h e complex plane. T h i s is t h e contents of 

t h e so-called Cauchy-Kowalewski Theorem for holomorphic functions: 

if f(z) is holomorphic in ftcc w i t h ft^nR^ t h e n t h e restriction 
of f to Q is a complex-valued analytic function in ft; conversely 
if f is analytic in ftcR open, t h e n t h e r e exists an open n e i g h b o u r -
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-> -> . -> 
hood ft of ft in C and a holomorphic function f in ft s u c h t h a t f=f|ft. 

We s h a l l see in t h e next section t h a t t h e same goes t h r o u g h for 

monogenic functions in tR versus analytic functions in IR . 

6. The C a u c h y - K o w a l e w s k i T h e o r e m in Clifford analysis 

As an immediate consequence of t h e Taylor series expansion of 

a monogenic function (see section 4) we have 

Proposition 1 . Let f e M(ft;A) and ftn{x =0}*fi^; t h e n f=f | fte £(ft ; A) . 

As to t h e converse we first need t h e following definition. 

Definition 2. The open set ft in R is called an x -normal open 
-*• m neighbourhood of ftcjR if for each x̂ ft t h e line segment 

{x+te }nft is connected and contains just one point of ft. 
o 

Theorem 2(Cauchy-Kowalewski). Let f e&(ft;A); then t h e r e exist a 

maximal x -normal open ne ighbour] 

f e M(ft;A) such t h a t f(0+x)=f(x) 

maximal x -normal open ne ighbourhood ft of ft and a unique function 

Th i s pair (f,ft) is called t h e C-K-extension of f in ft. It is imme-
-> -> 

diately clear t h a t , given ft and f, two problems have to be solved 

for determining t h e C-K-extension: bo th t h e maximal region ft and 

t h e function f have to be found. And, t h i n k i n g of t h e complex case, 

it is also clear t h a t in general no complete solution to t h i s pro­

blem can be given. Indeed, for sinx e <&(|R) we have as C-K-exten­

sion (sinx,C) , wh i l e for arctgx e t3.((R) t h e C-K-extension is 

(arctgz, C\{iy:(y)>1}). Moreover if we substitute z for x in 

r k X 2 k + 1 

a rc tgx= I (-1) -jrrpT > - 1 < x < 1 

k=0 -K+--t 

then the holomorphic extension 

? k z2k+1 

arctgz= I (-1)k \ ^ T -

k=0 Z K + I 

is only obtained in the open unit disk, which is not maximal. 
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However, for c a l c u l a t i n g t h e e x t e n s i o n f of f i n t h e C l i f f o r d c a s e 

we have t h e d i s p o s a l of t h e f o l l o w i n g f o r m u l a . 

->- "*• m 

P r o p o s i t i o n 2. I f f i s a n a l y t i c i n ftc|R t h e n t h e f u n c t i o n f g iven by 

x
2k

+
1 

f(x)= I (- i^-I-Ьттr^A^ 
k=0 

is left monogenic in a n e i g h b o u r h o o d ft of ft in tR and satisfies 

f(0+x)=f(x) in ft. 

F u r t h e r we would expect an analogous result as in t h e complex case 

if series expansion is under consideration; t h a t t h i s it not entire 

ly t h e case, but t h a t in fact t h e region of convergence is dramati­

cally contracted, is shown in t h e following t h e o r e m . 

First we introduce 

Definition 3. Call 

C
m
(0,R)={x e ^

m
:|x

j
|<R

j
, j=1,...,m} 

ar/d 

C m + 1 ( 0 , R ) = {x є [ R m + 1 : x2

Q+x2 < R2 j = 1 , . . . , m) 
J J 

Clearly C
m + 1

(O,R)n{x
o
=0}=C

m
(O,R). 

->• 

T h e o r e m 3. Let f be analytic s u c h t h a t 

m m -> ->• 1
 ш 

f
W

=
 I и ï ••• I XZ •••xí Xi i 

k=0 к* £,=1 ІL =1 *1 *k *1 ' '
 ,x,

k 
1 k 

converges as a multiple power series in C (0,R). T h e n 

00
 / . m m \ 

1 (ţT l ••• l , -j, •••zi Л

я
 •••l ) (3) 

m / 9 > 

converges uniformly on t h e compact subsets of C ..(0,2 R) to 
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left monogenic function f such t h a t f|C (0,2~m'2R)=f. 

It should be remarked t h a t in section 8 better results will be ob­

tained as to t h e region of absolute convergence of t h e series (3) 

then considered as a multiple power series. However t h i s Theorem 3 

has an interesting corollary. 

Definition 4. If f is analytic in R such t h a t its Taylor series at 

t h e origin converges as a multiple power series in t h e whole of R , 

then f is called entire-analytic, wh ich is denoted by 

?e<*ent(|R
m
;A). 

Corollary. If f is entire-analytic then its left C-K-extension f is 

left monogenic in t h e whole of E 

Th is corollary enables us to define a product of monogenic func­

tions wh ich is not at all trivial since, due to t h e non-commutativi-

ty of t h e multiplication in A, t h e pointwise product of two (left) 

monogenic functions is not necessarily (left) monogenic anymore. 

Let f and g be left monogenic in IR ; then f=f |IR and g=g|IR are 

entire-analytic in lRm and so is f.g; t h e left C-K-extension of 

f.g, wh ich is left monogenic in ff 

duct of f and g, denoted by f0,g. 

f.g, wh ich is left monogenic in IR , is by definition t h e C-K-pro-

Th i s C-K-product enjoys t h e following properties: 

(i) It is associative. 

(ii) If (f|(Rm).(g|IRm) = (g|lRm).(f|lRm) then f©Lg=g©Lf. 

(iii)1©f=f©L1=f. 

(iv) M((R ;A) ^ is a real algebra. 
' ' L 

In illustration of t h i s C-K-product let us give a few examples. 

The C-K-extension of x.(i=1,...,m) is z.=x.e -x e.; t h e C-K-exten-
. 1 V ' ' J 1 ? 1 O O 1 ' 

sion of x.x. is ^ ( z . z . + z.zOif i^j or zf if i = j ; this implies 
I J 2! v

 I j j î  J
 I * 

t h a t 

z ,© T z . = z .© R * J S -V, . (x) i f i* j 
i L j l K J -O 



CAUCHY-KOWALEWSKI THEOREMS IN CLIFFORD ANALYSIS: A SURVEY 63 

The l e f t and r i g h t C-K-product of z. and z . c o i n c i d e and moreover 

i t i s commutative ; so we a r r i v e a t 

z i 1

e - - - z i k

= z i v - - C m = n i ! - - - n

m

! V . l . . . . k w 

where n. stands for t h e number of times t h a t i appears in 

U
r
...Jl

k
). 

With an analogous meaning for n.' we also have 

V ©V 
Л

r
. . £ k s r..s t 

/uiTn'iM, 
i=iV n. ) \ v - H V - - V 

A second application of t h e Cauchy-Kowalewski extension theorem is 

t h e construction of elementary functions, especially t h e exponen­

tial functions wh ich are used in defining Fourier and generalized 

Laplace transforms in a Clifford setting (see [1, 13, 14] ). 

First for t £ IR and x e (R define for j = 1,...,m 

exp(t.x.e.)=e cos(t.x.)+e.sin(t.x.) F J J J o j y j j y 

v 1 <_k k k 
) rr t.x.e . 

k=0 k ! J J J 

wh ich are entire-analytic in IR . T h e i r left C-K-extensions are 

then t h e functions exp(t.z.e.) given by 

exp(t.z.e.)= y x-r t.z.e. (j = 1,...,m), 
P J J J k = 0

 k ! J J J 

wh ich are left monogenic in IR 

Next we define t h e entire-analytic function in IR 

m 

E(t,x)= -0-! exp(t.x e ) 

k1 k 
t, ' . ..t m k, k k, k 

= I I v1! ^ T x/.-.x me/...e m 

k=0 k1 + ...+k =k V ' - ' V
 1 m 1 

i m 

yielding as left C-K-extension t h e so-called exponential function 

._> m r 
E(t,x)= n © exp(t z e ) 

j=1 L 
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k, k k, L 

k=0 k ^ + . ľ . + k =k 
I I г,\..гш V, 1 Сх)е1#!.С 

"1 m Vr k 
I m 

w h i c h is left monogenic in IR 

Observe t h a t in t h e particular case w h e r e m=1 t h e functions 

E(t ̂ x^exptt-jX.. e j = e cos(t
l
x

l
)+e

1
sin(t

l
x

1
) 

and 

E(t,x)=exp(t
1
z

1
e

1
)=exp(t

1
 (x.

]
e

o
-x

o
e

1
)e

1
) 

may be identified w i t h e"
1 x
 and e"

1 z
, teR,xeR, z

G
<C respectively. 

7. T h e C a u c h y - K o w a l e . w s k i T h e o r e m on an anlytic surface 

Let £ be an analytic m-dimensional surface in JR. and let 

g be an A-valued analytic function in I. The problem now is to find 

a left monogenic function f in a certain n e i g h b o u r h o o d of S s u c h 

t h a t f|Z=g. 

Th i s problem is solved by a Cauchy-Kowalewski type theorem, 

but first we introduce some notions and notations. 

For p e z we denote by (N (p),..., N (p)) t h e components of t h e 

unit normal vector to E at t h e point p ; we also put 

m 
N(P)= I N . ( p ) e . . 

i = 0 1 2 

Definition 5. An open ne ighbourhood to of E is called normal w i t h 

respect to £ if t h e following conditions are satisfied : 

(i) for every x e w t h e r e exist unique p e £ and n e (R 

such t h a t x = p +n N(p ); 

(ii) p and n are b o t h C -functions in a); 
v J * x x °° ' 

( i i i ) f o r every x e CJ , the-drine segment 

{px+AN(px) :0<A sgn n x < | n x | } 



CAUCHY-KOWALEWSKI THEOREMS IN CLIFFORD ANALYSIS: A SURVEY 65 

is contained in w. 

Definition 6. An A-valued C -function f in a) is called projective if 
oo r J 

it satisfies f(x)=f(p ) for all x e a). 

m 
The unit normal vector field being N= \ N.e., we put 

i = 0 1 1 

m 
9XT=<N,V>= V N.8 . Furthermore in co we introduce t h e Cauchy-Riemann 
N ' . L

 n 1 x. J 

1 = 0 I 

operators associated with Z : 

r =ND-8XT o N 

1 1 

V k[ 9N'rk-1 ] s s k ( 3 N r k - r r k - i a N ) ' k = 1 > 2 > - - - • 

Theorem 4. Let g be analytic in Z. Then there exists a unique left 

monogenic function f in a maximal normal open neighbourhood co of 

Z such that f|Z=g. 

This extension f is called the Cauchy-Kowalewski extension of g. 

Now it is possible to give a. structure formula for the C-K-extension 

f of g, which is made explicit in the special cases where 
v m m A r c m 

£=R and Z=S . 

Indeed, if f is analytic in co then f can be developed into a unique 

series of the form 

f(x)= I n\ f (x), 
k=0 x K 

the functions f, , k e JM, being projective, converging absolutely in 

a maximal open neighbourhood of Z depending upon f and the analytici-

ty of Z. 

Introducing a local coordinate system (n,8) in w, given by 

(n,e)(x)=(nx,9(px)), 

8 being a local coordinate system in Z, the above expansion then 

reads 

f(x)= I nk£ (6). 
k=0 K 
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Now if moreover f is assumed to be left monogenic in w, then it may 

be proved t h a t 

£
k(9)=

 0
k
£
o(

Q)> k=1,2,... 

where t h e differential operators ©v, k e N , are polynomials in 

V гr---> гk-

Th i s means t h a t if f is t h e C-K-extension in w of t h e analytic func­

tion g in I, t h e n 

f(x)= I n
k
 e g(9). 

k=0
 K 

In t h e case w h e r e E=IR we obtain t h a t 

0. =
 (
"

1 ] (D-9 )
k 

k k!
 v
 x

 J 

o 

leading to t h e formula already obtained in Proposition 2. 

In t h e case of t h e unit s p h e r e Z=S we have t h a t 

(
-p

k
 Y k-a 

°k ki l0 \f,
T 

where 

s
k t= I h---h- h'^-'-' k

"
1 

and r is t h e s p h e r i c a l Cauchy-Riemann operator given by 

m 
Г=o)Ә , Ә = У 

1 Әoo 
U) ' (JÜ • " 1 i -. o Ә i i 

j = 1 _Э.Lo 2 J •> 

lэвj 
m m 

X.
 c 0

Ш with co= J co,e. = £ e. i e S 
i = 0 x i = 0 x I xl 

and 6., j=1,...,m t h e angular s p h e r i c a l coordinates. 

8. T h e convergence problem optimally solved 

Now let us come back to t h e convergence problem for t h e ex­

pansion of t h e C-K-extension of a given analytic function in 0, c IR . 
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In [ 8 ] Hayman proved t h a t a harmonic function, and a fortiori a ho-

lomorph ic function in t h e open unit disk, wh ich of course has an 

analytic restriction to ]-1,1[ c (R, admits a multiple Taylor series 

expansion about t h e origin converging absolutely in t h e square 
{(x,y) e (R2:| xl +l yl <1 } . 

Th is result is now generalized to monogenic functions in t h e follo­

wing sense:taking an analytic function f t h e multiple Taylor series 

of wh ich converges absolutely in a domain of (R , we look for t h e 

optimal domain in R where t h e multiple Taylor series of t h e mono-

genie extension of f converges absolutely. To t h i s end we define 

a hypercomplex version of t h e Radon transform 

P : 0 T (B(O,1)-+0(B(O,1)) 

given by 

P(T)(u)= <TC, TZL-r >, 

where 0(B(0,1)) stands for t h e space of holomorphic functions in t h e 

open unit disk and ( ) ' (B (0 ,1 ) ) for t h e space of continuous linear 

functionals on 0(B(0,1)= lim ind 0 (B (0,1+e)). 
e>0 

The kernel function for t h i s generalized Radon transform is 

1-<u,£>-u t " - » - k 
P ( u , 0 = ^ = I (<u, C >e -u O k 

-* -»• 2 2 r 2 1< = 0 ° 
( 1 - < u , C > ) z

+ u Z I C. k ° 
J - 1 

• • • , 0 є <Em, ç = 
j - 1 

where fo r u=u +u e [R and ( r , - , . . . , . ; ) e (Cm, ;= i e . r,. and 
o i m -i = 1 J J 

m 

<u,?>= I u «; . 
j=1 J ^ 

Th is kernel is holomorphic in t h e variable r, and monogenic in t h e 

variable u in t h e region (IR x(E )\S, where S is t h e set of zeros of 

t h e denominator. 

Now let ft be one of t h e following t h r e e domains of holomorphy in^ : 

A(R)={t e Cm:l C j K R > 

^ . m 
A(R) = U e <Cm: j R.I M < 1 } 
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B*(0 ,R) -{? e Cm:l X\ 2= f l U 2 < R 2 } ; 
j = 1 J 

w i t h each of those domains we make correspond an open region ft in 

(R wh ich is given respectively by 

n(R)={x e IR111 ' : | x I I Rl + V R.I x.l <1 } 
j = 1 J J 

~ -> m + 1 
n(R)= .n1 {x e jRm ' : | x I +l x.l <R.} 

* - 1 m + 1 -> 
n (R ' ) = {x e Em ' :| x I +l xl <R}. 

* —* C C 

Then, if 0 r(M(ft ;A ) denotes t h e r i g h t A -module of all continuous 
c ( -* left A -linear functionals on 

(Ä)(ß ;A ) = l i m i n d °czл^ӣ

ЄУA
 ) 

e>0 

ft being an open e-ne ighbourhood of ft , t h e following i somorph i sm 

may be proved. 

Theorem 5. Let T e 0 . (ft*;A
c
), t h e n 

P(T)(u)=<T-,P(u,t)> 

is left monogenic in ft and its multiple Taylor series expansion about 

t h e origin converges absolutely in ft. 

Conversely, if f is left monogenic in ft such t h a t its multiple 

Taylor series converges absolutely in ft, t h e n t h e r e exists 

T e 0* (ft*;A
C
) such t h a t P(T)=f. 

* —* c 
Th i s c h a r a c t e r i z a t i o n of P(0 (ft ;A )) will now lead to an optimal 

version of t h e Cauchy-Kowalewski extension t h e o r e m . Hereby notice 

-> -> c * 

t h a t if f(c) is an A -valued holomorphic function in ft , t h e n its 
-> -> c * 

restriction f(x) is an A -valued analytic function in ft , given 

respectively by 
—> —> m —> 

A ( R )
r e s t

= { x € R :lxjKRj}=Cm(0,R) 

~ -> -» m m 

A { R )rest = { x e R : .1 R j l x j l < 1 } 

j = 1 J J 

* —> m -> 

B ( ° » R ) r e s t = { x £ R : | X | < R } ' 
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Next we have that the above cited regions ft in IRm are optimal with 

respect to absolute convergence, meaning that for every u e (R \ ft 

there exists a left monogenic function f in ft such that the multiple 

Taylor series expansion of f about the origin converges absolutely 

in ft but not in u. 

Finally we obtain 

-> -> c * 
Theorem 6. Let f(rj be an A -valued holomorphic function in ft and 

? -> c * - > - - > • 
(x) be its A -valued analytic restriction to ft ... Then f(x) K J J rest ^ -* 

admits a unique left monogenic extension f(x) to ft, given by 

2k+1 
0 0 r X -1 

£(x)= Jo H } MiWvW/ 
The multiple Taylor series expansion of f about the origin converges 

absolutely in ft, which is optimal with respect to absolute conver-, 

gence. 
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