USA 11

Sylvia Pulmannová

On the products of quantum logics

In: Zdeněk Frolík (ed.): Proceedings of the 11th Winter School on Abstract Analysis. Circolo Matematico di Palermo, Palermo, 1984. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplements No. 3. pp. [231]--235.

Persistent URL: http://dml.cz/dmlcz/701316

Terms of use:

© Circolo Matematico di Palermo, 1984
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON THE PRODUCTS OF QUANTUM LOGICS

SYLVIA PULMANNOVA

A definition of a product of quantum logics is formulated and a comparison with the free orthodistributive product of orthomodular σ-lattices is given.

A quantum logic is the couple (L, M) , where L is an orthomodular σ-lattice and M is a set of states (i.e. probability measures) on L, which is strong for L, i.e. the statement
$\{m \in M: m(a)=1\}(\{m \in M: m(b)=1\}$
implies that $a \leq b, a, b \in L$. This notion was introduced by Gudder [4]. The physical interpretation of (L, M) is as follows. The set L is interpreted as the set of all experimentally verifiable propositions of a physical system(the " logic" of the system) , and M is the set of physical states. The requirement of the existence of a strong set of states restricts the choice of orthomodular σ-lattices suited for description of physical systems, there are orthomodular σ-lattices with no states[3]. We shall also suppose the Jauch - Piron property, i.e.

$$
m\left(a_{i}\right)=1 \text { for all } i \in N \text { iff } m\left(\prod_{i \not N} a_{i}\right)=1
$$

for any $m \in M$. More details on quantum logicd can be found in [6] and [9].

To describe a physical system which is composed of two other systems, we need a kind of the product of quantum logics. In the traditional approach to quantum theory, it is supposed that to any physical system there is a Hilbert space (complex, separable, with the dimension at least three) . The set of propositions is the lattice $L(H)$ of all closed linear subspaces of H and states are represented by the density operators. The joint physical system consisting of two other systems is then described by the tensor product of the Hilbert spaces of these two systems.

A product of orthomodular σ-lattices was defined in the following way [5]. We recall that the elements a, b of an orthomodular lattice L are compatible $(a \leftrightarrow b)$ if

$$
a=(a \wedge b) \vee\left(a \wedge b^{2}\right) .
$$

Definition 1 . Let C be a subcategory of the category of orthomodular σ-lattices. Let $\left\{L_{i}: i \in I\right\}$ and L be elements of \mathcal{C}. Then $\left(L,\left(u_{i}\right)_{i \& I}\right)$ is a tensor product (or free orthodistributive product) of the L_{i} 's if
(i) $u_{i}: L_{i} \rightarrow_{L}$ are injections in $C, i \in I$,
(ii) $\underbrace{}_{i \in I} \mu_{i}\left(L_{i}\right)$ generates L,
(iii) for any at moist countable subset F of I,
$\widehat{i \& f}_{i} u_{i}\left(a_{i}\right)=0$ for $a_{i} \in L_{i}$ iffy at least one a_{i} is zero,
(iv) $u_{i}\left(a_{i}\right) \leftrightarrow u_{j}\left(a_{j}\right)$ for any $i, j \in I, i \neq j$.

In the category of Hilbert space lattices, it was shown [1] ,[5] that if $\mathrm{H}_{1}, \mathrm{H}_{2}$ are complex, separable, of the dimension at least three, then there are exactly two (unequivalent) products, defined by
(i) $u_{1}: L\left(\mathrm{H}_{1}\right) \rightarrow \mathrm{L}\left(\mathrm{H}_{1} \otimes \mathrm{H}_{2}\right)$

$$
P \longmapsto P \mathrm{H}_{2}
$$

$$
\begin{gathered}
u_{2}: L\left(H_{2}\right) \rightarrow L_{(}\left(H_{1} \otimes H_{2}\right) \\
P \xrightarrow{P} H_{1} \otimes P
\end{gathered}
$$

and
(ii) $u_{1} L\left(H_{1}\right) \rightarrow L\left(\bar{H}_{1} \otimes H_{2}\right)$ $\mathrm{P} \mapsto \overline{\mathrm{P}}_{1} \otimes \mathrm{H}_{2}$
$u_{2} L\left(\mathrm{H}_{2}\right) \rightarrow L\left(\bar{H}_{1} \otimes \mathrm{H}_{2}\right)$
$P \mapsto \bar{H}_{1}$ (2) P
where $H_{1} \odot H_{2}$ is the tensor product of Hilbert spaces H_{1} and H_{2}, and \vec{H} is the dual of H.

In the case of real Hilbert spaces there is exactly one product defined by (i).

We shall introduce a definition of a product of quantum logics. We need some preliminary remarks. Let S be a setof states on a logic L . We say that a state p on L is a superposition of the states in S if $S(a)=1$ implies $p(a)=1$ for $a \in L$, where $S(a)=1$ means that $s(a)=1$ for any $s \in S$ [9]. If (L, M) is a quantum logid, we shall write $\bar{S}=\{p \in M: S(a)=1 \Rightarrow p(a)=1\}$ for any $S C_{M}$.

Definition 2 . Let (L_{1}, M_{1}), ($\left.L_{2}, M_{2}\right)$, (L, M) be quantum logics. We shall say that $(L, M)_{\alpha_{1},}$ is the tensor product of $\left(L_{i}, M_{i}\right), i$
if
(i) $\quad \alpha: L_{1} \times L_{2} \rightarrow L, \quad B: M_{1} \times M_{2} \rightarrow M$
$B\left(m_{1}, m_{2}\right)\left(\alpha\left(a_{1}, a_{2}\right)\right)=m_{1}\left(a_{1}\right) \cdot m_{2}\left(a_{2}\right)$
for any $m_{i} \in M_{i}, a_{i} \in L_{i}, i=1,2$,
(ii) $\{m \in M: m(a)=1\}=\left\{\beta\left(m_{1}, m_{2}\right): \beta\left(m_{1}, m_{2}\right)(a)=1\right\}^{-}$ for elements $a \in L$ of the form

$$
\left.a=\hat{k} \alpha a_{1}, a_{2}^{k}\right), a_{1}^{k} \in L, \quad a_{2}^{k} \in L_{2}, k \in N,
$$

and

$$
a=\alpha\left(a_{1}, 1\right)^{\perp}, \text { resp. } a=\alpha\left(1, a_{2}\right)^{\perp}, a_{1} \in L, a_{2} \in L_{2} \text {, }
$$

$$
\text { (iii) } \alpha\left[L_{1} \times L_{2}\right] \text { generates } L \text {, }
$$

$$
\text { (iv) } \quad \beta\left(m_{1} x M_{2}\right]^{-}=M
$$

Theorem 1. Let ($L, M)_{\alpha_{1} B}$ be a tensor product of $\left(L_{1}, M,\right)$ and $\left(L_{2}, M_{2}\right)$. Let us put

$$
\begin{array}{ll}
u_{1}: & L_{1} \rightarrow L, u_{2}: \\
& a L_{2} \rightarrow \alpha(a, 1)
\end{array} \quad \begin{array}{ll}
L \mapsto \alpha(1, a) .
\end{array}
$$

Then $\left(L, u_{1}, u_{2}\right)$ is a free product of L_{1}, L_{2} by Def 1 .
Proof. By (i) of Def. 2 we have

$$
\beta\left(m_{1}, m_{2}\right)(\alpha(1,1))=m_{1}(1) \cdot m_{2}(1)=1
$$

for any $m_{i} \in M_{i}, i=1,2$. From this we get $m(\alpha(1,1))=1$ for all $m \in \beta\left(M_{1} \times M_{2}\right]^{-}$, and by (iv), $m(\alpha(1,1))=1$ for all $m \in M$,ie. $\alpha(1,1)=u_{1}(1)=u_{2}(1)=1$.

For any $a, L_{1}, \beta\left(m_{1}, m_{2}\right)\left(\alpha\left(a^{L}, 1\right)\right)=m_{1}\left(a^{1}\right) \cdot m_{2}(1)=1$
$=\left(1-m_{1}(a)\right) \cdot m_{2}(1)=1-m_{1}(a) \cdot m_{2}(1)=1-B\left(m_{1}, m_{2}\right)(\alpha(a, 1))=$
$=\beta\left(m_{1}, m_{2}\right)\left(\alpha(a, 1)^{2}\right)$ for all $m_{i} \in M_{i}, i=1,2$. From this we obtain

$$
\left\{\beta\left(m_{1}, m_{2}\right): \beta\left(m_{1}, m_{2}\right)\left(\alpha\left(a^{2}, 1\right)\right)=1\right\}_{-}^{-}=
$$

$$
\left\{\Delta\left(m_{1}, m_{2}\right): \beta\left(m_{1}, m_{2}\right)\left(\alpha(a, 1)^{\perp}\right)=1\right\}_{1},
$$

which implies by (ii) that $\alpha\left(a^{\perp}, 1\right)=\alpha(a, 1)^{\perp}$, ie.
$u_{1}\left(a^{L}\right)=u_{1}(a)^{L}$. Similarly, $u_{2}\left(a^{\perp}\right)=u_{2}(a)^{\perp}, a_{2} \epsilon_{2}$.
By the Jauch - Pirn property we have
$\beta\left(m_{1}, m_{2}\right)\left(\alpha\left(\hat{\imath} a_{1}^{k}, 1\right)\right)=1$ inf $m_{1}\left(\hat{\imath} \quad a_{1}\right)=1$ inf $B\left(m_{n}, m_{2}\right)\left(\hat{R}^{2} \alpha\left(a_{1}^{2}, 1\right)\right)=1$. From this we obtain
$\left\{s\left(\mathrm{~m}_{1}, \mathrm{~m}_{2}\right): \beta\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right)\left(\alpha\left(\hat{\Omega} \mathrm{a}_{1}^{k}, 1\right)\right)=1\right\}^{-}=$
$=\left\{\beta\left(m_{1}, m_{2}\right): \beta\left(m_{1}, m_{2}\right)\left(\hat{r}\left(\alpha a_{1}^{1}, 1\right)\right)=1\right\}^{-}$.
which implies by (ii) that $\left.\alpha\left(\hat{\Omega}_{1}^{1}, 1\right)=\hat{r}_{1}^{1} a_{1}^{k}, 1\right)$, ie.
$u_{1}\left(\hat{r} a_{1}^{2}\right)=\hat{\kappa} u_{1}\left(a_{1}^{2}\right)$. This shows that u_{1} and u_{2} are orthohomomorphisms.

$$
\begin{aligned}
& \text { Now } u_{1}(a)=u_{1}\left(a^{\prime}\right), a^{\prime}, a \in L_{1} \text { implies that } \\
& \beta\left(m_{1}, m_{2}\right)(\alpha(a, 1))=\beta\left(m_{1}, m_{2}\right)\left(\alpha\left(a^{\prime}, l\right)\right) \text { for any }
\end{aligned}
$$

$$
m_{i} \in M_{i}, i=1,2 \text {, which implies that } m_{1}(a)=m_{1}\left(a^{\prime}\right) \text { for any }
$$

$m_{1} \in M_{1}$, i.e. $a=a^{\prime}$. Hence u_{1} and u_{2} are injections.
For any $m_{i} \in M_{i}, i=1,2$, we have by the Jauch - Pinon property,
$\beta\left(m_{1}, m_{2}\right)\left(u_{1}\left(a_{1}\right) \wedge u_{2}\left(a_{2}\right)\right)=\beta\left(m_{1}, m_{2}\right)\left(\alpha\left(a_{1}, 1\right) \cap \alpha\left(1, a_{2}\right)\right)=1$
iff $B\left(m_{1}, m_{2}\right)\left(u_{1}\left(a_{1}\right)\right)=1$ and $\beta\left(m_{1}, m_{2}\right)\left(u_{1}\left(a_{2}\right)\right)=1 \quad$ iff
$m_{1}\left(a_{1}\right)=1$ and $m_{2}\left(a_{2}\right)=1$ iff $\beta\left(m_{1}, m_{2}\right)\left(\alpha\left(a_{1}, a_{2}\right)\right)=1$, ie.
$\left\{\beta\left(m_{1}, m_{2}\right): \quad \beta\left(m_{1}, m_{2}\right)\left(\alpha\left(a_{1}, 1\right) \wedge \alpha\left(a_{1} a_{2}\right)\right)=1\right\}^{-}-$
$=\left\{\beta\left(m_{1}, m_{2}\right): \beta\left(m_{1}, m_{2}\right)\left(\alpha\left(a_{1}, a_{2}\right)\right)=1\right\}^{-}$,
hence by (ii) $u_{1}\left(a_{1}\right) \wedge u_{2}\left(a_{2}\right)=\alpha\left(a_{1}, a_{2}\right)$. This shows (ii) of Def. 1. Now let $a_{1} \in L_{1}, a_{1} \neq 0$ and $u_{1}\left(a_{1}\right) \wedge u_{2}\left(a_{2}\right)=0, a_{2} \in L_{2}$. Let $m_{1}^{0} \in M_{4}$ be such that $m_{1}^{0}\left(a_{1}\right)=1$ (the existence of m_{1}^{0} follows from the fact that M_{1} is strong for L_{1}). Then
$\beta\left(m_{1}^{0}, m_{2}\right)\left(u_{1}\left(a_{1}\right) \wedge u_{2}\left(a_{2}\right)\right)=\beta\left(m_{1}^{0}, m_{2}\right)\left(\alpha\left(a_{1}, a_{2}\right)\right)=$
$=m_{1}^{0}\left(a_{1}\right) m_{2}\left(a_{2}\right)=0$ iff $m_{2}\left(a_{2}\right)=0$. Thus $u_{1}\left(a_{1}\right) \wedge u_{2}\left(a_{2}\right)=0$ implies
$m_{2}\left(a_{2}\right)=0$. for any $m_{2} \in M$, i.e. $a_{2}=0$.
Finally, for any $a_{i} \in L_{i}, i=1,2$, we have
$\beta\left(m_{1}, m_{2}\right)\left(u_{1}\left(a_{1}\right) \wedge u_{2}\left(a_{2}\right)\right)=\beta\left(m_{1}, m_{2}\right)\left(\alpha\left(a_{1}, a_{2}\right)\right)=$
$=m_{1}\left(a_{1}\right) m_{2}\left(a_{2}\right)=\beta\left(m_{1}, m_{2}\right)\left(u_{1}\left(a_{1}\right)\right) \beta\left(m_{1}, m_{2}\right)\left(u_{2}\left(a_{2}\right)\right)$ for any $m_{i} \in M_{i}$ $i=1,2$. This implies that $u_{1}\left(a_{1}\right)$ and $u_{2}\left(a_{2}\right)$ are independent (in the probabilistic sense), and by [2] they have joint probability distributions in all states of $B\left[M_{1} \times M_{2}\right]^{-}=M$, hence they are compotible. This completes the proof.

Let H be a real or complex separable Hilbert space, $\operatorname{dim} H \geq 3$. If we put $M=\left\{m_{\varphi}: \varphi \in H,\|\varphi\|=1\right\}$, where $m \boldsymbol{\varphi}$ is the vector state corresponding to the vector φ by the Gleason theorem $[9]$, then ($L(H), M$) is a quantum logic. Let ($\left.\left.L\left(H_{1}\right), M, 1\right),\left(H_{2}\right), M_{2}\right)$, ($\left.L\left(H_{1} \otimes H_{2}\right), M\right)$ and $L\left(\bar{H}_{1} \otimes H_{2}, \bar{M}\right)$ be quantum logics of the corresponding Hilbert spaces. If we put

$$
\left.\begin{array}{rl}
\text { (i) } \alpha:\left(p_{1}, P_{2}\right) & \longrightarrow p_{1} \otimes P_{2}, p_{i} L\left(H_{i}\right), i=1,2, \\
\beta: & \left({ }^{m} \varphi_{1},{ }^{m} \varphi_{2}\right)
\end{array}\right){ }^{m} \varphi_{1} \otimes \varphi_{2} \quad \varphi_{i} \in H_{i}, i=1,2,
$$

or

$$
\left.\begin{array}{cl}
\text { (ii) } \bar{\alpha}:\left(P_{1}, P_{2}\right) \\
\bar{\beta}: ~ & \left(m \varphi_{1}, m \varphi_{2}\right)
\end{array}\right) \bar{P}_{1} \otimes P_{2}, P_{i} \in L\left(H_{i}\right), i=1,2, ~ m \bar{\varphi}_{1} \otimes \varphi_{2} \varphi_{i} \in H i, i=1,2,
$$

then it can be easily checked that $\left(L\left(H_{1},\left(H_{2}\right), M\right)_{\alpha_{1} \beta}\right.$ and ($\left.L\left(\bar{H}_{1} \& H_{2}\right), \bar{M}\right)_{\Sigma_{1} \bar{B}}$ are the products of $\left(L(H i) M_{i}, i=1,2\right.$. More details on the products of quantum logic are in [7] and [8].

REFERENCES

[1] D. Aerts - I. Daubechies : Physical justification for using the tensor product, Helv.Phys.Acta 51 (1978)661-675.
[2] A. Dvurečenskij - S. Pulmannová : On joint distributions of obser-
vables, Math. Slovaca 32 (1982) 155-166.
[3] R. Greechie : Orthomodular lattices admitting no states, Journ. Comb.Theory 10 (1971) 119-132.
[4] S.P. Gudder : A superposition principle in physics, J.Math. Phys. 11 (1970) 1037-1040.
[5] T. Matolcsi : Tensor product of Hilbert lattices and free orthodistributive product of orthomodrlar lattices, Acta Sci.Math. 37 (1975) 263-272.
[6] C. Piron : Foundations of Quantum Physics.W.A. Benjamin Inc., Reading, Mass. 1976.
[7] S.Pulmannova : On the coupling of quantum logics, Int. J. Theor. Phys., in print.
[8] S. Pulmannová : Tensor products of quantum logics, in preparation.
[9] V.S. Varadarajan : Geometry of Quantum Theory, Van Nostrand, Princeton, N.J. 1968.

```
Mathematical Institute
Slovak Academy of Sciences
Obrancov mieru 49
814 73 Bratislava
CSSR
```

