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Polya's theorem for non-entire functions 

by Kunio Yoshino (*) 

Abstract 

Using transforms of analytic functionals with non-compact carrier, 

Polya's theorem concerning arithmetic entire functions is genera­

lized to arithmetic non-entire functions. 

1. Introduction 

In 1920 Polya (see [7])) proved the following 

Theorem. Suppose that the function f(z) satisfies the following 

conditions : 

(1 ) | f ( z ) | < C e a l z l (Ze<7) 

(2) fOlOcz. 

If a<log2, then f(z) is a polynomial with rational coefficients. 

Recently, this theorem has been generalized by several authors to 

the case of entire functions of several complex variables (see [21, 

[ 31 , [ 4] ) . 

In this paper , we investigate Polya's theorem for non-entire 

functions of several complex variables. 

The following theorem is our main result. 

Theorem 1 . Let f(z) be holomorphic in r = {zGCn:Pe z.j>n, 1<i<n} and 

satisfy the following conditions : 

(1) For any e>0, there exists a constant C >0 such that 

|f(z) |£C e a ( z ) (Pe zi>z> 1<i<n) 

where a(z) is a convex function of homogeneous degree 1. 

(2) f(tfn)cz. 

Furthermore let LcC be defined by 

L={r, G Cn:Re<r,,z><a(z) , Vzer} 

and suppose that the i-th projection L-=pr.(L) of L is contained 

in {r^eC: le^i-1 |<1} for all i (1<i£n). 

(*) This work is partly supported by the "Commissariaat-Generaal 

voor de Internationale Culturele Samenwerking" (Belgium) 
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Then f(z) is, a polynomial with rational coefficients. 

To prove Theorem 1 we use the Fourier-Borel and Avanissian -Gay 

transforms of analytic functionals with unbounded carrier and in 

the sections 2 and 3 we define the Fourier-Borel and Avanissian 

- Gay transforms of such functionals. In section 4 we recall the 

definition of the transfinite diameter and its properties while 

in section 5, we give the proof of Theorem 1. 

Acknowledgement 
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for valuable suggestions and aids. 

2. The Fourier-Borel transform of analytic functionals w i th unboun­

ded carrier 

In t h i s section we first recall t h e definition of t h e Fourier-Borel 

transform of analytic functionals w i t h unbounded carriers and also 

mention t h e E h r e n p r e i s - M a r t i n e a u type theorem due to J.V7. DE. Roever. 

Let L be a closed convex set wh ich is bounded in t h e imaginary di­

rection in Cn and put 
Hh(L:^) = {f(z)GO(L)nC(L):sup|f(z)e"^

(z)|<+c»} , 
D zeL 

o 

w h e r e </>(z) is a real valued function and 0(L) and C(L) denote 

respectively t h e spaces of holomorphic functions defined in t h e 

interior of L, and t h e space of continuous functions in L. 

Put 
Q(L:Kf)=lim ind PL (L : - h f (z) -e ' | z |) 

e+0 ef+0 G K 

where L £ stands for the e-neighbourhood of L and h„,(z) is the 

supporting function of t h e compact convex subset Kf of Cn. 

An element of t h e dual space Q f(L:K f) of Q(L:Kf) is called an 

analytic functional w i t h carrier L and of type h„f(z). Let us 

recall t h a t if L is a compact convex subset of Cn t h e n Q f(L:K f) 

concides w i t h t h e space of analytic functionals 0f(L) in t h e sense 

of A. Martineau, and t h a t if L=Rn and Kf={0} then Qf(L:Kf) coin­

cides w i t h t h e space of F o u r i e r - h y p e r f u n c t i o n s studied by M.Sato 

and T. Kawai. 
n 

When t h e exponential function exp( I r, .z .) =exp(r,z) belongs to 

Q(L:Kf), t h e Fourier-Borel transform T(z) of TeQf(L:Kf) is defined 

as follows : 

T(z)=<T^,exp(cz)>. 
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Now let r be an open convex cone in Cn, let a(z) be a convex function 

on r of homogeneous degree one and put 

ft(a;T)={t;ecn:Re<c,z><a(z) . Vzer} . 

Then the following generalized Ehrenpreis-Martineau type theorem is 

valid : 

Theorem 2 (J.W. DE Roever [9]) 

The Fourier-Borel transform is a linear topological isomorphism from 

Q' (ft(a:r) : {0}) onto Exp(T:a), where Exp(T:a)=lim proj Hb(r + e(z0); 

a(z)+e|z|) and Zo is a fixed complex vector contained in r with 

|z0|=1. 

Note that the space H, (r+e(z0):a^z)+£|z|) may be defined in a 

similar as HrfL:vO . 

We close this section by giving two examples of ft(a:T) in t h e case 

of n=1. 

Take 

r={z£C :Rez>0}. 

Example 1. If a ( z ) = a | z | wi th a>0, then n ( a : r ) = 

U<EC: | e | =a}u{r,ec: | Imc; |<a ,Ret;<0} (see Figure 1 ) . 

fì(а,Г) 

--> Reç 

Figure 1, 
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Example 2 ( see [ 8 ] ) I f a ( z ) = | z j {costflog (2cos^) +<psin<p} where 

z = | z | e 1 ^ (-TT/2<</>< T T / 2 ) , t h e n n ( a : r ) = {r,ec : | e 5 - 1 |<1 } . ( see F i g u r e 2) 

П(a,Г) 
^ Reç=ç 

Figure 2 

3. The Avanssian-Gay transform of analytic functionals with 

unbounded carrier 

In [ 3] , the Avanissian-Gay transform is introduced for analytic 

functionals with compact carrier, while in [6] and [ 10] it has been 

generalized to the case of analytic functionals with unbounded 

carrier. According to [ 3] , [6] and [ 10] . Let us first recall the 

definition of the Avanissian-Gay transform of analytic functionals 

with unbounded carrier. 

Assume that the closed convex set L is bounded in the imaginary 

direction and also bounded below in the real direction. More pre­

cisely, we assume there exist a^R (1<i<n) and compact sets K-

(1<i<n) having a width less than 2TT such that 

Lc т т ( a . + R + + / - 1 K . ) 
i=i

 x 

where R
+
=[ 0/°°) 

Furthermore let TeQ
f
(L:{0}); then the Avanissian-Gay transform 

G.
r
(w) of T is given by 
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GT(w)=<T TT 1 — - > 
g i=- , g i 1-w.e 

1 

Some properties of GT(w) are listed in 

Proposition 1 . (see [3], [6], [10]) 

n 
(1) GT(w)EO( TT te\exp(-L.)}) 

i=i 

where L- is i-th projection of L (1<i<n) 

(2) GT(w)=(-1)
n I T(-m)w:mi...w-mn (|w.|>e"

ai) 
mejv 

where m=(mi,...,mn)GNn . 

(3) Let K,=[k(l) ,k(l)3 with k(l)-k(i;)<2Tf, 1<i<n. 
v J i 1 ' 2 2 1 

Then for all £>0 and £'>0, there exists a constant C£ ei>0, such 

that 

|GT(W)|<Ce)eilw1l^'.lwnl"
£' 

(e~k|i:)<arg co.<2Tr + e- k2
(i;>-,V< i.< n) l^i^n) 

(4) 

<T9h>Hjk^ I GT(e^i,...,e"^
n)h(c)dC ,...cKn 

fix...xrn 

n 
for all h^Q( TT (a.+i?++/-iKi) :(0>) , hereby 1\=3 (a i+l? + + /-1Ki) 

i=i 

Moreover 
T(Z) = (27I

) П
Ѓ

1 X
...

X Г
 G

т
(e- Ç l,---e-Se Ç Zd Ç l...d Ç n 

= (2Лľ ) П
^

G
T

( l f l г
---

w
n

) w
Г

1 : 1 wñ Z n" 1 d^1"-dwn 

ЭЄxp(-Гi)x...x exp(-Г
n
) 
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v 
4. Transfinite diameter and the Martineau-Seinov theorem about 

Laurent series of several complex variables 

In this section we recall the definition of the transfinite diameter 

of a compact set K in the complex plane and the Martineau-Seinov 

theorem about Laurent series for functions of several complex 

variables. 

Let K be a compact set in the complex plane and put 

V = max TT | -ri-'-'j | 
z^K 1<i<j<n 

Then it is well knownthat T(K)=lim V ** ' exists for any compact 
n->°° 

KCC and it is called the transfinite diameter of K (see [ 1] and 

[12]). 

Some properties of the transfinite diameter of a compact set K are 

listed in 

Proposition 2. Let K- (i=1,2) be compact subsets of C. 

(D K 1 C K 2 = > T ( K 1 ) < T ( K 2 ) 

(2) T(K1)<™(length of dK, ) 

Some examples of transfinite diameters are now given (see [1] and 

[12]). 

Example 3. If K= {.zeC: | z | = r}, then T ( K ) = T . 

Example 4. If K= {zee: | z| =r , fargz|<:a}, then T( K ) = T sin^. 

Example 5. If K=[a,b], a , b ^ R , then T ( K ) = - ^ 

v 
Theorem 3. (Martineau [5] and Seinov [11]). Suppose that G(w) is 

n 
holomorphic in TT (C\F-), where F . is a polynomially convex compact 

j = i J J 

set and T(F-)<1 for all j (1<j<n). Suppose furthermore that G(w) 

has the following Laurent expansion at infinity 

G ( w ) = Z ^ fa e 7) 
VGN w 
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Then 

G(w) = 
A ( w . , . . . , w n ) 

where A f w ^ . . . , WR) G Z [ w.. , . . . , Wji ] , B.(w.) e Z [w. ] and B. (w . ) a r e 

monic polynomial. 

Remark 2. In theorem 3, the assumption T(F.)<1,1<i<n is crucial. 
For instance, if n = 1 and ^ 

r f . _ v f2k\rk r (2k) ! -k 

k = 1 ^ K 7 k=1 (k!)T 

= /-^- -1 Vw-4 '' 

then G(w) is holomorphic in the outside of the interval [0.4] In 

view of Example 5, T([0,4] )=1 and obviously G(w) is not a rational 
function. 

5. Proof of Theorem 1 . 

In this section, we give the proof of Theorem 1, it is inspired by 

Avanissian and Gay [3]. 

Proof of Theorem 1. 

By means of Theorem 2, there exists an analytic functional T, which 

is carried by L and of type {0}, such that f(2:)=<Tc, exp(Cz)>=T (Z) . 

n C From the assumption, L is contained in II {r,.:le -11 <1 } . 
i = 1 X 

Now consider the analytic functional ¥ defined as follows 

v 
<f,h>=<T ,h(-rj>, h E Q ( - L : { 0 } ) . 

Obviously, T is carried by (-L) and of type {0}. 

From Proposition 1-(2), we get : 

v ~лL -m 
Gï(w)=(-1)n | nT(-m)w

 1...w n
n 

m^N 

-m- -m 
= (-DП I

 n
 T(m)w

 1
...w

 n 
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-m 

m^N 

Remark that by means of the second assumption in Theorem 1, all 

f(m), m^N , belong to Z. 

In virtue of Proposition 1-(1), G.Y is holomorphic in 

n 
II { C \ e x p ( L . ) } . From t h e as sumpt ion upon L, e x p ( L . ) i s c o n t a i n e d 

i=1 x 1 

i n { w ^ C H w i -1l < 1 } u { 0 } . 

So there exist a.>0 (1<i<n) such that exp(L.) 

c {w.eC:lw.-1K1}n{w.eC:Rew. <a.}.(see Figure 3). 
I i = I I = I

 v 6 J 

Iщw. 

^ Rew. 

Rew.=a. 
ì ì 

Call F.={w.:l w4-1l <1}n{w.:Rew.<a•}, 1<i<n. 1 1 x i i = i ' = = 

By virtue of Proposition 2-(2) T(F.)<1. Therefore T(exp(L.))<1 

Accordingly we can conclude that 

A(w1...,wn) 
GJf(w)-

'1^1 nv n' 

where A(w1 , ..., w ) e zj.w.. , . t . , w ] and B.(w.) are monic polyno­

mials with integral coefficients. 

The roots of B.(w.) are algebraic integers which are contained in 

{w:eC:l W>1!K1 }u{0} together with all their conjugate algebraic in­

tegers. But, in virtue of Proposition 1-(3), zero is not a root of 

B.(w.) so that by means of C.R. Buck's lemma (See 3.2.5) in [3] ), 

we can conclude that 

m. 
B.(w.)=(w.-1) x 
iЛ iJ к ì J (1<i<n) 
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Now, us ing the i n v e r s i o n formula o f P r o p o s i t i o n 1 - ( 4 ) , 

n 
f ( - - ) - ( f ) ( - ) - ( ^ L ) / G V ( i y . . . , w n ) w 

3 ( e x p ( L 1 ) ) x . . . 3 ( e x p ( L n ) ) 

-Z - 1 - Z . - ł 
., ' , . . .w n dw- . . .dw 
1 * n 1 n 

J-\ \ ( M* . , . . . , V -Z,-. -Z
n"1 

(w -1) \ . . ( w -1) x 

dw л . . . d w 
1 n 

3 ( e x p ( L 1 ) ) x . . . 3 ( e x p ( L n ) ) 

whence, by means of the residue theorem 

f (-z)=P(i
1
 , . . . , z

n
) , a polynomial in z..,..., z . 

But as A(w
1
,..., w

R
) belongs to Zlw-j,..., w 1, the coefficients of 

P(& ,..., z ) are rational numbers. 

Hence f(z) is a polynomial with rational coefficients. 

Finally, we give two examples. 

Example 6. Suppose that f(Zj is holomorphic in the right half plane 

{ZEC:Rez>0} and satisfies the following conditions : 

I f(z)l<C e
 a
t

z
l (Rez>0) (1) 

f(n)ez, nGN. (2) 

Since a(z)=alzl and r = {sec :Rez;>0}, L=^(a:T) is the same as in 

Example 1. 

Therefore, if a<log 2, f(£) is a polynomial with rational coeffi­

cients . 

E * a m P l e 7- P u t f ( 2 ) = Bt*7z7 = 7 ^ ' 

where B and r are respectively the Beta and Gamma functions. 

This function has the following properties : 

"2 (1) f(Z) is holomorphic in {3.:Re<>—-7}, and hence also in 

{z :Re*>0}. 

(2) By virtue of Stirling's formula, for any e>0, there exists 

a constant C >0, such that 
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L"£Cz)l<Cee (21og2)jf*-ely:i 

and t h i s for a l l £=:x>iyetz:Rez>0}. 

(3) f (n ) = ( n
n ) ^ 2 . 

In t h i s case r = {Z€EC :Re.£>0} and A(z.)=2 ( log2)*. . 

So n (a : r )={CeR:5<21og2} . 

Since L=ft(£.r) is not contained in (C-C:lê -1l <1} this function f(z) 

is not a polynomial. 
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