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BІJATTNER-KOSTANT-STERNBĚRG PAIRING AND 

FOURIER TRANSFORM ON SYMMETRIC SPACES 

Wojciech Lisiecki 

Abstract We show that .Fourier transform on a symmetric space X = 

G/K with G complex semisimple coincides with the operator given 

"by geometric quantization that intertwines the quantizing Hilbert 

spaces associated v/ith the vertical polarization and some other 

G-invariant polarization of T X. 

0. Introduction 

Let X he a Riemannian symmetric space of the noncompact type, 
that is, a coset space X « G/K, where G is a connected semisimple 
Lie group with finite center and K a maximal compact subgroup. Then 
there is a natural unitary representation of G on L (X,dx) (dx being 
a G-invariant measure on X). Utilizing deep results of Harish-
Chandra, Helgason showed that this representation decomposes into a 
direct integral of representations belonging to the spherical prin­
cipal series (see [H] and [V/a]). This decomposition is obtained by 
means of a suitable .Fourier transform, which is a natural generaliz­
ation of the Fourier transform on Cln. This, transform maps a com­
pactly supported smooth function f on X to a function 1 on B x 01* , 
where B is the real flag manifold, and crt+is a dual Veyl chamber, 
given by 

(O.F) f(b, A) =. / x f(x)e
<-iA + S' A ( x' 1 ) ) >dx , b*B, Aeci* 

(see 1.A below for all unexplained notations used in this introduc­
tion). Helgason showed that f w ? extends to a unitary isomorphism 
of L2(X,dx) onto L2(B *ei*,dblc( *k )l ~2d A ), where db is a K-invari-
ant measure on B normalized such that the total measure is 1, dA 
is a suitably normalized Lebesgue measure on est.* and c(/\ ) is the so 
so called Harish-Chandra c-function. 

The aim of the present paper is to obtain the Fourier transform 
X i—> £ by means of geometric quantization. From the point of view 
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.<&£ that theory the representation of G on L (X,dx) "quantizes" the 
natural Hamiltonian action of G on the cotangent bundle T X. More 

p 
precisely, L (X,dx) is naturally Isomorphic to the quantising 
Hilbert space associated with the vertical polarization * :T X —» X. 
By analogy with the Fourier.transform on Hn, f v—» f should be the 

p 
operator which intertwines L (X,dx) with the quantizing Hilbert 
space associated with another G-invariant real polarization whose 
space of leaves should be B * «.+. A construction of this polariz­
ation is suggested by,looking at the symplectic analog of the 

p 
direct integral decomposition of L (X,dx). To be more precise, the 
momentum mapping.J: T X —»(g induces a 1-1 correspondence between 
maximal dimensional G-orbits in T*X and regular hyperbolic coad-
joint orbits in $*, which, correspond, via geometric quantization, 
to representations of the spherical principal series. These repre­
sentations are constructed using G-invariant real polarizations. 
We can fix on each of the orbits such polarization so that it "de­
pends smoothly on the orbit". Taking inverse images under J of the 
leaves of so fixed polarizations we obtain a G-invariant real polar­
ization *f of (T*X)' (the union of the maximal dimensional orbits), 
which has the desired properties* We carry out the construction of 
if in §3, having analyzed, in §2, the orbit structure of T X. More­
over, we show that (*,*): (T*X)' —» X * B * w-t is a diffeomorphism. In 
5 4 we show that ft has a generating function S of the form 
S(x,b,X) =-<A,A(x,b)>. 

Given a pair of polarizations, we can construct the so called 
Blattner-Kostant-Sternberg pairing, which in some cases leads to a 
unitary operator intertwining the quantizing Hilbert spaces associ­
ated with these polarizations. It turns out that applying this 
pairing construction to'(*,ff) gives correct result only for com­
plex G. §§5,6 and 7 are devoted to the computation of the BKS-
pairing under this additional assumption on G. More precisely, in 
§5 we compute the Liouville form on X^Bxeif, in § 6 we describe the 
quantizing Hilbert spaces associated, with T and TT , and finally in 
5.7 we obtain an explicit formula for the BKS pairing and conclude 
that the corresponding intertwining operator coincides with the 
Pourier transform f i—* ?. 

We only sketch the proofs of main results; detailed proofs will 
appear elsewhere. 
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1. Preliminaries 

1.A. Notation 

The following standard notation concerning semisimple Die groups 

will he used throughout the paper (with the exception of subsections 

1.C and 1.D). 

G denotes a (noncompact) connected semisimple Lie group with 

finite center. In §§5,6 and 7 we assume additionally that G is com­

plex. The identity of G is denoted by e. 

^ denotes the Lie algebra of G. 

ej, -= \ + *p is a fixed Cartan decomposition of ty . 
«t is a fixed maximal Abelian subspace of <fo"f L = dimci. 

w c centralizer of (ft in 4\ 
R = set of restricted roots of (cjfcft); for octR, oj^is the 

corresponding root apace, and m* « dime* (<& =>w+oi+ ^L ^ i s 

the root space decomposition of <£ )• 

W is the Weyl group of R; Iwl denotes its order. 

dj is a fixed Weyl chamber in the dual at* of £i . 

R+ » subset of positive roots corresponding totf.* 

oceR+ 

W ss ZZ1 ̂  , HI = dim*v ( = 2ZL m* ) 

+ + 

cj = ̂  + ot + w is the Iwasawa decomposition of <j. 

K is the analytic subgroup of G with Lie algebra \ (a maximal 

compact subgroup of G); ©is the Cartan involution of G (fixing the 

elements of K). 

A = exp oc , log: A —> c* is the inverse of exp; «. —> A. 

N = exp tv 
G « KAN is. the Iwasawa decomposition of G. 

H: G —> «. is the map given by H(kan) » log(a). 
K » centralizer of A in K 

MAN is a minimal parabolic subgroup of G (its Lie algebra equals 
4*V + 01 + W) . 

X « G/K (Riemannian symmetric space of the noncompact type), 

o « eK (the "origin" of X). 

B =- G/MAN « K/M (real flag manifold), bQ « eKAN « eM. 

Note that dim-X » m + L , dim B « m. 

(x,b) h-» A(x,b) is a crt-valued function on X * B defined by the. 

formula A(x,b) = -H(g"1k)f where x » g*o, g * G, b « k*bn,
 k €&« 
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1.B. Hyperbolic coadjoint orbits 

The dual space <g* of <£ is a G-module with respect to the coad-

joint action of G given by 

<Ad*(g)f,§> = <f,Ad(g"1)§>, 

where g * G, f € &}.* , § £ <# > and Ad denotes the adjoint representa­

tion of G in cj . 

(1.1) For each f £ cj*, we denote by Bf the skew symmetric bilinear 

form on ty * «J defined by Bf ( ̂  , *Z ) « -<f, [t$ , £1> . It gives rise to 

a G-invariant'symplectic form co^ on the orbit 0 through f, which 

will be called the Kirillov form of & . 

(1.2) The Killing form of <% induces a G-equivariant isomorph- orph 

ism eg,*—»g, , f »—» f#. An element f c <g*is called hyperbolic if f # 

is so (that is, ad(f*) is semisimple and has all real eigenvalues). 

Ve write t£h for the set of hyperbolic elements. A coadjoint orbit 
is called hyperbolic if one (and hence any) of its elements is hyper­

bolic. 
(1.2.1) Each hyperbolic orbit is a closed submanifold of oj* 

(see [V], Part I, §1). 

Let \ x be the annihilator of \ in cj*. Then we have the following. 

(1.2.2) ft c ej* iff O n V * <j> , 

and there is a bisection of orbit spaces 

(1.2.3) <£*/G -̂ -» V"/K, Ov^O(\^. 

(1 .3 ) Due to the roo t space decomposition of eg- we have a na tu ­
r a l imbedding Oft*—» \\ . Let Cl(&t+) denote the c losure of ot+ i n 
ot* and, fo r each A e C l ( o t + ) , put &x =. Ad*(G)A. Then the mapping 

( 1 . 3 . 1 ) C l (o i? ) > cj*/G, A M 6 ^ f 

is a bisection. The orbits 0* with A fe&t+wili be called regular. 

The union of the regular orbits will be denoted by (ty*) . The sta­

bilizer of each A ̂  <*+equals MA, so that each &ac(<3v)' is G-iso-

morphic to G/MA. Moreover, each tf^c (c^h) , being semisimple, has a 

G-invariant tubular neighborhood in crjr* ([V], Part I, §1). It fol­

lows that (ty*) is a submanifold of eg-* (of codimension dim i*v ) 

and the orbit space (<|J*)/G has a natural manifold structure. 

Since (SL% intersects each orbit in (<r̂ *) at a single point and 

transversely, the restriction of (1.331) to ot* induces a diffeo-

morphism 

(1.3.2) UL* ̂  (ty*)7G, 

and the map 

(1.3*3) G/MA * &t+ »(«frt)', (gMA, A) h-> Ad*(g)A , 
is a G-equivariant diffeomorphism (ot+ being considered as a tri-
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vial.G-space). 
sir / 

The. Kirillo.v form of &> c (e#h) will be denoted by . w* rather 

than cofo . 

1.C An outline of geometric quantization 

Let (P, co) be a symplectic manifold. 

(1*4) A prequantization of (P, co) is a triple (L, <,>,V)f where 

Lis a complex line bundle over P, < , > is a Hermitian inner product 

on L and V is a metric connection on L whose curvature form is 

-ico. (P,co) admits a prequantization iff the deRham cohomology 

class of co is integral. If this is the case, the isomorphism 

classes of prequantizations of (P,co) are in 1-1 correspondence 

with the characters of the fundamental group of P. See TKo] for de­

tails. 

(1.5) Given a Hamiltonian action (see [AM]) of a connected Lie 

group G on (P, co), there is a natural infinitesimal action of the 

Lie algebra of G on (L,<,>,V) via infinitesimal-automorphisms 

([Ko], Th. 4*5.1). By a prequantization of the action of G on((P, co.) 

we mean its lift to an action on L inducing this infinitesima! .ac­

tion, . . . . 

(1.6) By a (real) polarization of (P, co) we mean, in this paper a 

Lagrangian fibration X : P —* X (i.e. X \ p —» X is a fiber bundle 
whose fibers (or leaves) are Lagrangian submanifolds of (P, (o)). 

Given a prequantization L and a polarization r , the restriction 
L|t*1(x) ̂ s a -̂La"t bundle ^nr any x*X. We say the leaf t*\x) is 

quantizable if the holonomy group of -^I^-VY) i s trivial. To any 

quantizable leaf t*1(x) there is naturally associated a complex line 

Lx consisting of covariant constant sections of ^l^-Vx)* ™
e will be 

assuming that all leaves of T are quantizable. Then the disjoint 

union 

* - u < 
X € X X 

has a natural structure of a Hermitian line bundle over X. The pull-

back X L is canonically isomorphic to L, and for any section s of 

of Lr its pull-back t*s is a covariant constant along < section of 

L, i.e., 

Conversely,- any covariant constant along X section of L is of the 

fnrm <r* R fnr a unicjue section s of L , form T*s for a unique section s of L 
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л 
(1.7) Let D

X
(X) be the bundle of complex half-densities on X and 

let C^L^e D*(X)) denote the space of compactly supported smooth 

sections of L
r
® D*(X). For s ^ S\ e CjCl** D*(X))

f
 i = 1,2, 

ss, ,s
2
><S\® £? i s ^ QQ̂ -pactly supported smooth density on X, so the 

following formula makes sense 

x 
oO rf A 

Since sections of the form s®£ generate CQ(IJ ®D*(X)), this for­

mula defines a Hermittan inner product on C?(Lr® D*(X)). The result-

ing pre-Hilbert space will be denoted by HQ. The completion II of HQ 

is the quantizing Hilbert space associated with X and L. The details 
of the above constructions can be found in [Bl], [GSl and [We] . We 

remark that in many cases half-densities should be replaced by half-

forms, but for our purposes the "half-density quantization" 

described above is sufficient, 

(1.8) A Hamiltonian action of a Lie group G on (P,w) which pre­

serves X and. pre quantizes to an action on (L,<,>,V) gives rise to a 
unitary representation of G on H . 

1.D. BKS pairing 

Remaining, in the setting of 1.C assume additionally that.it: P —» 

Y is another polarization of (P,ca) which is strongly transverse to 

X in the sense that the mapping P —»X*Y, p h-> (r(p), ir(p)), is a 

diffeomorphisra. Let $ be the inverse of (r, Tt). It is convenient to 

work on XxY rather than P. Thus we replace CA , L, X , Tt by $ w, 

§>*L, px, pY respectively, the latter two being the Cartesian pro­

jections. 

(1.9) Assume that X and Y admit volume elements /u x and /A Y re­

spectively. Let I/AXI
T and |/.A.YIT be the corresponding half-den­

sities (see TBI], $3). By a pairing of these we mean the unique 

function <l/uxl*, l/UYl*> on X*Y such that 

(1.9.1) (2<rr)dd! p*/^ A p*/xY = (<l/*xl*, \/Xj t*>)2 $*«A" 

where 2d = dim P, and where we assume that ̂ -^ and yti-r have been 

chosen such that the corresponding product orientation of X * Y co­

incides with that induced by $ coc. Now the BKS pairing (named so 

for Blattner, Kostant and Sternberg) of s 0 l/*xl*
 € HQ and t®l/A.Yl*

€ 

HQ is given by 
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( 1 . 9 . 2 ) <s*l/Axl
1,.t»|/tT|t>(irr -

- ( ( 2 « ) d d ! ) - 1 f <p*s, p*t><|/*xl-,.|/ATl->li*«
dl 

X * x 

."/ <PXS» pjt>«l/*x1
1.,..l/lTl*>)."1|pJ/lxA Py/l-d..». 

X ̂  X 

where we write |^| for the density corresponding to a volume element 

yCL • T h i s formula defines a sesquilinear. form on H Q * H Q # which we 

will call the BKS pairing between H r and Ii£. See [Bl] and [GSj for 

a definition of this pairing in more general situation. 

(1.10) We say X and rr are unitarily related if there is a unitary 

isomorphism U^r : H r — > H* such that <Uirch, -£>«
 s <h, k > w r f °

r a^Y 
h € H Q and any k € H Q # The problem of characterizing pairs of unitari­
ly related polarizations remains open. 

(1.11) If we are in the situation of (1.8), and TT is also G-in-

variant, the BKS pairing is G-invariant* Thus if * and TT are uni­

tarily .-related, U,tr is a (unitary) intertwining- operator for the 

representations of G on H r and Hff«. 

2. Orbit structure of T*X 

(2.1} Let T X be the., cotangent bundle to. X, © y. the. .canonical one-

form on T X- and cox = d.0x the canonical syrapleotic structure. The ac­

tion of G on X lifts to an action by vector bundle automorphisms on 

T X, This lifted action preserves 0 Y hence it is Hamiltonian, .with 

momentum mapping J: T X —» c^*being the composition T X —> cjT* X 

—> ty* of the vector bundle morphism dual to the infinitesimal ac­

tion of (j- on X and the Cartesian projection onto the first factor. 

In particular, J J T*x is the natural isomorphism TQX ^ \*- . Since 

J is G-invariant, ° its image J(T X) is a G-invariant subset of cj*. 

It is clear from the above that a coadjoint orbit is contained in 

J(T X) iff it has a nonempty intersection with ^ x . Together with 

(1.2.2) and (1.2.3) this yields the following. 

(2.2) Proposition, (i) J(T*X) = cj,*. 

(ii) J induces a bisection of orbit spaces T x/G -£--» ty*/G. Hence 

G-orbits in T*X are of the form J ~ 1 ( & ) , where © is a coadjoint 

orbit in &v*. 

Prom (ii) above, and (1.2.1) we get 

(2.3) Pro 

submanifold. 

(2.3) Proposition. Each G-orbit in T X is a closed coisotropic 
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(2.4) Lst us put 
(T*X)' -= J"1 ((<»*)') 

(see (1.3) for the definition of (c#*) ). This is a G-invariant con­
nected open and dense subset of T*X. It inherits the structure of a 
Hamiltonian G-space and we shall continue to write J for its mommen-
turn mapping, as well as for the induced mapping (T X) — > (oj>h) . 
All G-orbits in (T X) have the same type G/M and they are the 
maximal dimensional orbits in T X. 

Noting that (J| T* x)
r 1 ( w.*) intersects each orbit in (T*X) at a 

single point and ° transversely we can easily prove the following. 
(2.5) Proposition, (i) J: (T*X)' —•> (<£* )' is a G-equivariant 

fibration. 
(ii) The orbit space (T X) / G has a natural manifold structure 

and the map (T*X)/G — » (^KJ'/G induced by J is a diffeomorphism. 

In what follows , we shall identify both (T*X)'/G and ( < £ * ) 7 G 
with Gt* (cf. (1.3.2)) and we shall write #* for the G-orbit corre­
sponding to ftcot*, that is, 5>A = J (fy). 

3. Horizontal polarization 
(3.1) For each A€ot+, the map 
(3.1.1) 0* ->B, Ad*(g)A »->,g-b0, 

is a G-invariant real polarization of 0% (cf. [OW]). Since 6*is 
closed in (£* (1.2.1), this polarization satisfies Pukanszky condi­
tion, i.e., each of its leaves A ^ is an affine subspace of oj5, in 
particular 

(3.1.2) A ^ = A + (*n, + at + ̂ ) 

(see [Bel, Chap. IV, S3) ° 
(3.2) ajhe maps 0A—» B can be pieced together to give a smooth 

G-equivariant fibration 

<*:> ' B * «*. 

More precisely, this fibration is defined as the map corresponding 
to G/MA*c*£ > G/MANxot*, (gMA, *) »-* (gMAN, A) under the isomorph­
ism (1.3.3). Define 

tr : (T*X)' » B 
as the composition (T*X)' — » C^*)' — » B * ot* . This is a G-equi­
variant fibration. The fiber A, over (b, A) is 

A = tr-^b, A ) -, j" 1(A b). 
Since each C?ais coisotropic and since J: © * — » 0* is its symplec-
tic reduction, the fibers A, are Lagrangian submanifolds of (T X) , 
This proves part of the following. 
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* / J* 

(3.3) Proposition, it : (T X) — » B <oi+isa G-invariant real po­

larization of (T*X)' with the following properties: 

(a) for each p e (T*X)', the leaf of TT through p is contained in 

the G-orbit through p, 

(b) TT is strongly transverse to the vertical polarization 

X : (T*X)' — > X (cf. 1.D). 

Property (a) follows directly from the definition ofTt# As for 

(b), since both polarizations are G-invariant and since the restric­

tion of J to T*X is an isomorphism onto >KX, it suffices to note 

that, in virtue of (3.1.2) and Iwasawa decomposition of eg,, 

A b n V"- tM and T^Ab n V = {0} . 

TT will be called the horizontal polarization of (T X) . 

(3.4) Remark. It can be shown that (T*X)' has exactly Iv/I G-in-

variant real polarizations satisfying (a) of (3.3). They are con­

structed in the same way as ir was, but with (3.3.1) replaced by any 

other of the IWI G-invariant real polarizations of &*. Hence they 

satisfy also (b). All the following statements concerning TT hold 

equally well for any of these polarizations. 

4. Generating function of the horizontal polarization 

(4.1) It follows from (3*3) (b) that each leaf fib of TT projects 

diffeomorphically onto X. Therefore there is a unique closed 1-form 

A, on X such that ?\, » A (X) (we consider A^ as a mapping X — > 

T*X). Since each closed 1-form on X is exact, there exists a func­

tion S^ ̂ : X —>1R such that A-̂  =- dS-̂  ̂ . It is clear that these S^ ̂  

can be chosen such that the function S: X * B * ot*—> R given by 
S(x,b,A) » s^ x(x) is smooth. Such S is called a generating function 

of tt (cf. [V/oJ , 4.6). It is determined by TT up to the addition of an 

arbitrary function of (b,A). In what follows, S will denote the 

unique generating function of Tf which vanishes on { O } X B * O L * . 

(4.2) Theorem. S is given by 

S(x,b,A) s=<A,A(x,b)>, 

where, for x « g*o, g«-G, and b « k»bQf k€K, A(x,b) = -H(g k). 

We sketch the proof. It is clear that 

S(x,b,A) = J Ab , 
o 
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where the integral is along any path from o to x. li% x an(^ ^^ e "b ~ 
bQ. The group AN acts transitively on X and leaves Aj, invariant.-
Prom this one can easily deduce that JL vanishes on each orbit 
of N. Since the action of AN on X is ° also free, there is a 
unique a€A such that A-onN-x = {a*o>. Take a path from o to x con­
sisting of two pieces: [0, 1] > A*o, t H-» (exp(tlog(a)))*O, from o 
to a»o and an arbitrary path from a-o to x in N-x. The integral of 
5L over this path reduces to the integral over the first piece, 
0 —1 
which is easily seqn to be equal <A,-H(g~ )>. Now to conclude 

the proof, it suffices to note that S is K-invariant. 

(4.3) Prom G-invariance of tr we obtain the following transform­
ation rule of A under the action of G-

A(g.x,g.b) = A(x,b) - A(g"1. o,b). 

(4.4) Let $ : X * B * ot* — » (T*X)' be the inverse of (r,ir) (cf. 
(3.3) (b))t It is clear that 

$(x,b,A) « Ab(x) = dSb x(x). 
We can use $ to transfer the structure of a Hamiltonian G-space to 
X x B x oi* . The pull-backs of the canonical forms 0 X and c*>x can be 
expressed in terms of derivatives of S, which will prove useful 
later on. Write Y for B*otJ # Then the exterior derivative on X * Y 
decomposes as d - d^ + dyf where dx (resp. dy) is the exterior de­
rivative in the direction of X (resp. Y). Now it follows directly 
from the definitions of 9X> U ) x and $ that 

$ 9 X = dxS and $ a>x = ddxS# 

V/hen transferred to X^Y, the polarizations r and rf become the 
Cartesian projections p x and py, respectively. 

5. Liouville form on X * 33 * &t* 
A-\decisive step in finding the BKS pairing consists in a computa­

tion of the Liouville form on X * B * ot * . V/e will do it now under the 
additional assumption that G is complex. In the first subsection, 
however, we work still without this assumption. 

(5.1) Let (e.j,... ,et) be a basis in ot and let (e f ...fe
L) be the 

dual basis in «.*. The imbedding (*t* * \ L allows us to treat the e 
as elements of frtr. If A (x,b) (resp. A^) are the coordinates of 
A(x,b) (resp. A) with respect to those bases, the formula for S (cf. 
(4.2)) reads L 

S(x,b,A) m 5IlA.Ai(x,b). 
i«1 x • 
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Hence the canonical forms on X * B * (rtl are given by (cf. (4.4)) 
i . w 

dd^-S » Z Z dA, A dvA
x + Z L A,ddvA . 

x i-1 X X i«1 1 x 

I t i s easy to see t h a t , for each G-orbit X*BxlA$=- § ~ ( 6 ^ ) f 

( 5 , 1 . 1 ) ( 2 Z M d X A l ) | x x B x U J = d d X S j x x B x U i * C * ' 

where S Ais the pull-back of the Kirillov form coxby the mapping 

X*B*(A)—» 0^ induced by the momentum mapping. It follows that the 

rank of ZZ. A^dd^A1 equals..2m. (* dim C?A). Thus the Liouville form-
1*1 

( 5 . 1 . 2 ) ( d d x S ) m + t = ř +
L

L ) ( Z l d A 1 A ( i x A Í ) A W 
i«1 

:m 
л 

= ( _ l ) - ( L + 1 ) / 2 L ! ( r a | L ) ( d x A 1 A . . .Ad x A L )Ac3$ l A(dA 1 A . . . A d A L ) 

(with a s l i g h t abuse of n o t a t i o n ) . Put 

( 5 . 1 . 3 ) &x = ( - l ) L t l + 1 ) / 2 t l f { l ) ( d x A 1 A . . . A d x A l ) A l 3 A

B . 

This i s a ( r- invar iant (2m+l)-form, which may be cons idered as a form 

on X * B depending on the parameter A „ Let r / -u \: Gf — » X * B, g »—* 

(g # Ofg # k 0 ) ^ G ^ e ox^^a^ mapping a t (o,bQ). A simple c a l c u l a ­

t i o n y i e l d s 

( 5 . 1 . 4 ) ( r ( o f b ( ) ) ^ ) e - ( • l ) t ( t + 1 ) / 2 l l ( " J t ) ( e 1 * . . . . A e l ) * B " 

(5.2) From now on we assume that G- is (the underlying real group 

of) a complex (connected semisimple) Lie group. Under this assump­

tion 4y « 4*v + di is a Cartan subalgebra of the complex Lie algebra ty 

and the restiction map 4y —L> «** estabishes a bisection of the set 

of roots of {,*%9\y) onto R. Put n = lR
+
U so that m = 2n. Let 

(XB^©<£R b e a Glxevalle7 system of ( fij-, 4y) (see [Bo1], Chap. VIII, 

§3) and let H^ = -[X,<,XwK]. The vectors u^ = X^ + X^, v^ = 

i(X^ - X_^), •( € R , together with 4t* span a compact real form of vy 

(cf. [Bo2], Chap. IX, $3). We assume, as we may, that this coincides 

with 4-t . Then Ĥ fefrt and y = i4^ . The vectors u^, v^ and sK • iuK, 

t^ » iv^, tx€R+, form a basis of the orthogonal complement (with re­

spect to the Killing form) of 4y . Let u*, v*, s*, t*, ̂ €R + f form 

the dual basis. Extend these to functions on the whole fry putting 0 

on Ay . A straightforward calculation using the commutation relations 

satisfied by the X^ yields 

B x = 2.ZZ <A,H*>(v*A s* - u*A t*). 
«C€ R 

+ 
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It follows that 
(5.2.1) B 2 n » 2 2 n(2n)in a ^ ( S ^ A t"1 A ... A / n A t"n)A 

cC€R+ 

/ <*1 *i *n *ri\ 
A (V fA U A ... A V " A U X 1 ) , 

where we have chosen some ordering of the positive roots. 
(5.3) It is not hard to see that there exist a unique G-invariant 

volume element w on X and a unique K-invariant volume element v on 
B such that 

(5.3-D (rjyu)e - (-1)
L(l + i)/2cxe

1A...AetA s*1A t*1A...A s*nA t*n, 

(5.3.2) ((*£ f v ) e . C ^ A u ^ A ...AT^Au*11 , 

K where rQ; G —> X and r^ ; K — > B denote the orbital mappings at o 
and bQ respectively, and Cy and c-n are some positive real con­
stants, which will he determined below. It is a standard result that 
v transforms under the action of G according to 

(5.3.3) ' s^=e<2sM^-o,')>^ V g e Q > 

where g^ denotes the diffeomorphism of B corresponding to g. Using 
this, the transformation rule of A (see (4.3)) and formulae (5.1.4) 
and (5.2.1) we get 2 

(5.3-4) £* = (2n+l)!22n(cxcBr
1( H <*,!!«>) e<2*'A>p*/A A p*i> , 

where p x and p B stand for the Cartesian projections of X*B onto X 
and B respectively. 

(5.4) In order to determine the constants ĉ . and cB we must 
choose a normalization of invariant measures on G- and some of its 
subgroups. We adopt the normalisation used by Helgason (see [il], pp. 
5-6). That is, the Haar measures on K and II are normalized such that 
the total measure is 1. This implies that 

(5.4.1) f v -= 1. 
JB 

The Haar measures on N and S « 9(N) are normalized such that 
(5.4.2) 0(dn) = dn, / e<-2j'H(!i)>dn = 1. 

I 
The Haar measure on A is the one corresponding under the exponential 
mapping to the Euclidean Lebesgue measure on ot (the Euclidean struc­
ture on 01 being that induced by the Killing form) multiplied by the 
factor (2if)~ . The Haar measure dg on G is normalized such that 

(5.4.3) / f(g)dg « / f(kan)e<2*'log(a)>dk da dn . 
G K*A*N 
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These conditions determine a G-invariant measure on X. 

Noting that B is K-isomorphic to the coadjoint K-orbit & . ,^ in 
* ^ a n d that 

•ІJ/2 

C7
-il?/2 

which is a very special case of the Kirillov's character formula 

(see [ K i l ] , § 3 ) , we can show that in order to have (5.4.1) we should 
take 

(5.4.4) a,, . (2ir)"
n
n < S , H . > . 

In order to have also (5.4.2) we must assume that the basis 

(e.,...,e
L
) is orthonormal (with respect to the Euclidean structure 

induced by the Killing form) and take 

(5.4.5) cT - ( 2 < r r < n + L / 2 > 2 2 n n <$ ,H*>. 
X
 oCCR

+ 

The normalized volume elements /A and V and the normalized Haar 

measure on M determine a Haar measure on G fof which (5.4.3) holds. 

(5.5) It follows from the explicit formula for the Harish-Chandra 

c-function (see for instance [v/a], p. 326) that, in the case of com­

plex G, 2 

(note that since H^ is the co-root associated with ec , < X »H^> =• 
2 (A, (*)(*»*)" , where bracket denotes the scalar product on «rt*in­

duced by that on en). It is clear from (5.3.4), (5.4.4) and (5.4.5) 

that I c(A) 1 ""̂  will appear as a multiplicative factor in the final 

expression for the Liouville form. It is convenient to include this 

factor in the definition of a volume element on cst̂ . More precisely, 

we take this volume element as 

(5.5.1) (2tr)"
L/2
lc(X)r

2
dA

1
 A ...A dA

L
. 

The following proposition, which is a direct consequence of 

(5.1.2), (5.1.3) and (5.3.4), summarizes the foregoing discussion. 

(5.6) Proposition. Let /x and v be the volume elements on X and B 
determined by (5.3.1), (5.4.5) and (5.3.2), (5.4.4) respectively and 

let the volume element on ca* be as in (5.5.1). Then the Liouville 

form on X x B x <** is given by 

(dd
x
S)

2 n + t
 - (2tr)

2 n +
Ҷ2n

+
L)!e

< 2
?'

A
>p

x /
лЛp*VЛ 

л(2tfГL / 2lc(л)Г2dл1л ...л dЛL, 
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where px and pB denote now the Cartesian projections of X *B * <*** 

onto X and B respectively. 

6. Quantizing Hilbert spaces associated with ** and tr 

Pvesults of this section hold without the assumption that G- is com­

plex. (As a matter of fact, we use below the volume elements on X, B 

and 01* defined in the preceding section, but it is easy to see that 

such volume elements exist in the case of arbitrary C.) 

(6.1) A natural prequantization of T X is the trivial line bundle 

L ~ T*X * <c with the obvious inner product < , > and with a connection 

V given by 

VF « dP - iF0 v, 

where we identify sections of L with functions on T X. Since X is 

simply connected, any other prequantization of T*X is isomorphic to 

this one (cf. (1.4))« It follows from the G~invariance of©-, that if 

we let G act trivially on <D, we get an action of G- on L which pre-

quantizes its action on T X. Restricting (L,<,>, V ) to (T X) and 

pulling back by §> we obtain a prequantization of X * B x et*, which vie 

vail denote by the same symbol. In the remainder of this section we 

will work on X * B * en* rather than (T*X)' (cf. (4.4)). 

(6.2) Since d^S vanishes on the leaves of p,r (which now plays the 

role oft), the covariant constant along px sections of L can be 

naturally identified with functions on X (in other words, Lr is nat­

urally isomorphic to X*<D). Take the G-invariant volume element /x 
on X defined in §5. Let dx be the corresponding G~invariant measure 

and I Ml* the corresponding G-invariant half-density. Then we have a 

G-e qui variant isomorphism 

16.2.1) C£(X) > C£(L*<5> Di(X)), fi >f®l/il*, 

which extends to a G-invariant unitary isomorphism 

L2(X,dx) -^-»Hr . 

Note that quantization of the whole T X would have given the same H . 

(6.J) -F€C°°(L) is covariant constant along p Y iff 

dYP - iPdYS = 0 . 
. o A A 

It is obvious that e satisfies this equation. Let s be the section 

of L corresponding to e10 (so that PyS = e )• Take the volume el­

ements v and (2ir)""u/2 Ic(^)| " d^. A ...A dAt on B and ot* respectively 

as in §5. These give rise to a K-invariant measure on B * otj, which 

we will denote by dblc(fc)l~ &K , and a nowhere vanishing K-invariant 
half-density | V A (2rr)~t/2 |c(*)l "2d\. A . ..AdAJ*. As s is a nowhere 

vanishing K-invariant section of L"", we get a IC-e qui variant iso­

morphism 
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(6.3.1.) c£(B**c*) --> (%&*!)*& **$)), 

cp ,—» <f «)IVA(2ir)""L/2lc(A)r2dA1 A ...A dAtl
r, 

which extends to a K-equivariant unitary isomorphism 

L2(BxotJ,dblc(A)l-2dA) -Z-> H*. 

7. BKS pairing between H^ and II* 

In this section we assume that G is complex. We fix the volume el­

ements on X, B and at* as in §5 and we write dx db|c(A)l~ dA for the 

corresponding product measure on X X B X at*. 

(7.1) Take the half-densities on X and B * <** induced by the vol­

ume elements we fixed above. It follows from (5.6) that the pairing 

of these half-densities (see '(1.9.1)) is given by 

<!/ul
t,|vA(2tt)-

L/2lc(A)r2dA1 A...AdAtl*> « e
< 9' A >. 

Now if feC^(X), cf €CQ(BXOI*) and p*f, p* cf s are the corresponding 

sections of L (see (6.2) and (6.3)), then 

<p*f, p*cfs>=- ffe" i S = f^e<-"»A>. 

*e are ready to compute the BKS pairing (1.9) between HQ and HJ. Due 

to the isomorphisms (6.2.1) and (6.3.1) we may view this pairing as 

a sesquilinear form on C?(X) x C)?(B x «*). -As a direct consequence of' 

the two above formulae we obtain our main result, namely . . 

(7.2) Theorem. The BKS pairing of f * C*(X) and cp *C^(B * ct*) is 

given by -
<f,<P> „ J f(x)^f(b,A)e<-iA + ^' A ( x' b ) >dx db!c(A)r2dA. 

<trT X*Bxot* 

Noting that <f, <p } ^ r = <f, <p >^ , where f" denotes the Pourier trans­

form of f (see (O.P)) and <, >* stands for the inner product on 

GQ(Bx at*) (transferred from HQ by means of the isomorphism (6.3.1)), 

and using a theorem of Helgason ([H], Th. 5.8 of Chap. Ill), which 

asserts that f H f extends to a unitary isomorphism of L (X,dx) 

onto L2(Bxei*,db|c(A)r2dA), we get the following. 

(7.3) Corollary, fand ir are unitarily related (1.10) and the 

intertwining isomorphism IV^ coincides with the Pourier transform 

(7.4) Remarks, (a) The reason why, in the case of complex G-, the 

BKS pairing leads to the Pourier transform is that the function of A 

which appears in the formula for the Liouville form on X x B * en* co­

incides with |e(A)l~ (see §5). Now it is clear from (5.1.2) and.' 

(5.1.1) that, in the case of arbitrary G, this function is a poly-
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nomial. On the other hand, lc(A)l~ is a polynomial iff M, has but 

one conjugacy class of Cartan subalgebras (see [Wa], p. 327). A case 

by case inspection shoY/s that complex groups are the only ones among 

the groups with this property for which the corresponding polynomial 

coincides with |c(A)l~ . This seems to be related to the fact that 

Kirillov's formula for the Plancherel measure of G. leads to a cor­

rect result only when G is complex (cf. [Ki2], 15.6). 

(b) The horizontal polarization gives rise to another G-.invariant 

real polarization of
>v
(T*X) , whose space of leaves coincides with the 

space of horocycles in Z (when transferred to X * B * «-+, It sends 

(x,b,X) to the horocycle determined by (x,b)). It is reasonable to 

think that, at least for complex G, the BKS pairing corresponding to 

this polarization and the vertical one should lead to the Radon 

transform on X (in the sense of [H]). 

A deeper analysis of these questions should help to understand 

why the geometric quantization scheme works well only in the complex 

case. \le shall deal with these matters in a later article. 
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