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BLATTNER-KOSTANT-STERNBERG PAIRING AND
FOURIER TRANSFORM ON SYMMETRIC SPACES

Wojciech Lisiecki

Abstract We show that Fourier transform on a symmetric space X =
G/K with G complex semisimple coincides with the operator given
by geometric quantization that intertwines the quantizing Hilbert

spaces associated with the vertical polarization and some other
G-invariant polarization of 7*X.

0., Introduction

Let X be a Riemannian‘symmetric space of the noncompact type,
that is, a coset space X = G/K, where G is a connected sémisimple
Lie group with finite center and K a maximal compact subgroup. Then
there is a natural unitary representation of G on L2(X,dx) (dx being
a G-invariant measure on X). Utilizing deep results of Harish-
Chandra, Helgason showed that this representation decomposes into a
direct integral of representations belonging to the spherical prin-
cipal series (see [H] and [Wa]). This decomposition is obtained by
means of a suitable Fourier transform, which is a natural generaliz-
ation of the Fourier transform on R™. This transform maps a com-
pactly‘supportéd smooth function f on X to a function T on B:tmf,
whexre B is the real flag manifold, and ok is a dual Weyl chamber,
given by »

(0.F) Fiv, a) = fx £(x)e$ LA +8,8(0,0Dy,  peB, Aewk

(see 1.A below for all unexplained notations used in this introduc-
tlon;. Helgason showed that fl-4-? extends to a unitary isomorphism
of L2(X,dx) onto L2 (B xoetk,ablc(A)I"2dA ), where db is a K-invari-
ant measure on B normalized such that the total measure is 1, dA
is a suitably normalized Lebesgue measure on mﬁ and c(A) is the o
so called Harish-Chandra c-function.

The aim of the present paper is to obtain the Fourier tranaform
ft— T by means of geometric quantization. From the point of view
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of that theofy the representation of G on L2(X,dx) quantizes" the
natural Hamiltonian action of G on the cotangent bundle T*X. liore
precisely, LZ(X,dx) is naturally isomorphic to the quantizing
Hilbert space associated with the vertical polarization’t:T*X —> X.
By analogy with the TFourier. transform on Rn, f > T should be the
operator which intertwines LZ(X,dx) with the quantizing Hilbert
space associated with another G-invariant real polarization whose
space of leaves should be B x o}, 4 construction of -this polariz-
ation is suggested by.looking at the symplectic analog of the
direct integral decomposition of L2(X,dx); To be more precise, the
momentum mapping J: T*X.—+<§* induces a 1-1 correspondence between
maximal dimensional G-orbits in ™X and regular hyperbolic coad-
joint orbits in g*, which correspond, via geometric quantization,
to representations of the spherical principal series. These repre-
sentations are constructed using G-invariant real polarizations.

We can fix on each of the orbits such polarization so that it "de-
pends smoothly on the orbit". Taking inverse images under J of the
leaves of so fixed polarizations we obtain a G-invariant real polar-
ization © of (7*%)’ (the union of the maximal dimensional orbits),
which has the desired properties. We carry out the construction of
M in §3, having analyzed, in §2, the orbit structure of T¥X. More-
over, we show that (z,m): (T*X)'—eiXij* o} is a diffeomorphism, In
§4 we show that ™ has a generating function S of the form

S(x,b,A) =<A,A(x,b)>.

Given a pair of polarizations, we can construct the so called
Blattner-Kostant-Sternberg pairing, which in some cases leads to a
unitary operator intertwining the quantizing Hilbert spaces associ-
ated with these polarizations. It turns out that applying this
pairing construction to’(T,m) gives correct result only for com-
plex G, $85,6 and 7 are devoted to the computation of the BKS~-
pairing under this additional assumption on G. More precisely, in
§5 we compute the Liouville form on X xBxo¥, in §6 we describe the
guantizing Hilbert spaces associated with T and 7 , and finally in
$7 we obtain an explicit formula for the BKS pairing and conclude
that the corresponding intertwining operator coincides with the
Fourier transform f w3 'f.

Wle only sketch the proofs of main results; detailed proofs will
appear elsewhere,
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1, Preliminaries

1.A. Notation

The following standard notation concerning semisimple Lie .groups
will be used throughout the paper (witljx the exception of subsections
1.C and 1.D). . v

G denotes a (noncompact) connected semisimple Lie group with
finite center. In §85,6 and 7 we assume additionally that G is com-
plex. The identity of G is denoted by e.

¢ denotes the Lie algebra of G.

% =4 + 4 is a fixed Cartan decomposition of ¢ .

st is a fixed maximal Abelian subspace of 4, L = dima.

#w = centralizer of <t in 4

R = set of restricted roots of (&y,et); for ®KER, ¢, is the
corresponding root space, and my = dimeg, (g = M +ot+ Z, tg‘ is
the root space decomposition of & ).

W is the Weyl group of R; |Wl denotes its order.

a¥ is a fixed Weyl chamber in the dual o of o,

R, = subset of positive roots corresponding to. ok
S = 2 . m‘&

o(eR
" = Z.%L , m = dim® ( = Z.m‘)

«Lr-R +

4 =%+ o +m is the Iwasawa decomposition of ¢.

K is the analytic subgroup of G with Lie algebra 4 (a maximal
compact subgroup of G); © is the Cartan involution of G (fixing the
elements of K).

A =expo , log: A —> ot is the inverse of exp: oL — A,
N = expm
G KAN is the Iwasawa decomposition of G.

H: G ™ ot is the map given by H(kan) log(a).
li = centralizer of A in K
MAN is a minimal parabolic subgroup of G (its Lie algebra equals
m+ o+ M),
X = G/K (Riemannian symmetric space of the noncompact type).
o = ek (the "origin" of X).
B = G/MAN = K/M (real flag manifold), by = eMAN = el
Note that dim'X = m +Ll, dim B = :
{(x,b) ¥ A(x,b) is a 6l-valued function on X ¥ B defined by the
formula A(x,b) = -H(g"1k), where x = g+0, g€G, b = keby, k€K,
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1.B. Hyperbolic coadjoint orbits

The dual space 03" of ¢ is a G-module with respect to the coad-
joint action of G given by

<aa*(e)t, 5> = <£,0a(g7 )5,
where geG, fe cg-* , €6, ‘and Ad denotes the adjoint representa-
tion of G in ¢ . ’

(1.1) For each fe€ tg*, we denote by Bf the skew sygnmetric bilinear
form on ¢ *% defined by Bo(§,%) = -<f, [}, 11> . It gives rise to
a2 G-invariant'symplectic form w¢g on the orbit @ through f, which
will be called the Kirillov form of O .

(1. 2) The Killing form of ¢ J.nduces a G-equivariant 1somorph- oxph i
ism g* —g, - £¥*. An element f € g*is called hyperbolic if £¥% |
is so (that is, ad(f#) is semisimple and has all real eigenvalues).

Wwe write %: for the set of hyperbolic elements., A coadjoint orbit
is called hyperbolic if one (and hence any) of its elements is hyper-
bolic,

(1.2.1) Each hyperbolic orbit is a closed submanifold of tg

(see [V], Part I, §1).

Let 4* be the annihilator of 41 in 03 Then we have the following.

(1.2.2) G c g, ift Onk* 3 @,
and there is a bijection of orbit spaces

(1.2.3) ¢ /c =5 K'/K, 0+36nH™,

(1.3) Due to the root space decomposition of g we have a natu-
ral imbedding of— 41 . Let cl(ou¥) dnnote the closure of ot% in
o* and, for each A ecl(ok), put O, = Ad ¥(G)A . Then the mapping

(1.3.1) Cl(o}) — o, /6, A+—0,,
is a bijection. The orbits O, with A e «whwill be called regular.
The union of the regular orbits will be denoted by (qh . The sta-
bilizer of each Ae oty eguals MA, so that each 0, c ((gf is G-iso-
morphic to G/MA. Morecover, cach 0O,¢c (‘?'n) , being semisimple, has a
G-invariant tubular neighborhood in e* ([V], Part I, §1). It fol-
lows that (6},‘) is a .;ubmanifold of 03,* (of codimension dim w )
and the orbit space (G}h) /G has a natural manifold structure.

Since 0§ intersects each orbit in (cg(,‘) at a single point and
transversely, the restriction of (1.3i1) to % induces a diffeo-
morphism

(1.3.2) a¥ =5 (%) /6,
and the map

(1.3.3)  o/ma x af —> (o), (g, A) =3 ad*(e)A
is a G-equivariant diffeomorphism (0% being considered as a tri-
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vial G-space), , -
_The Kirillovy form of ©ac( %’t) will be denoted by . W, rather
than w"a'

1.C. An outline of geometric guantization

Let (P, @) be a symplectic manifold.

(1.4) A prequantization of (P, w) is a triple (IL,<,>, V), where
L is a complex line bundle over P, {,? is a Hermitian inner product
on L and V is a metric connection on L whose curvature form is
-iw. (P, w) admits a prequantization iff the deRham cohomology
class of @ is integral. If this is the case, the isomorphism
classes of prequantizations of (P, w) are in 1-1 correspondence
with the characters of the fundamental group of P, See [Ko] for de-
tails. .

(1.5) Given a Hamiltonian action (see [Ali]l) of a connected Lie
group G on (P, W), there is a natural infinitesimal action of the.
Lie algebra of G on (1,¢,?,V) via infinitesimal-automorphisms
([Kol, Th. 4,5.1). By a prequantization of the action of G on! (P, w.)
we mean its 1ift to an action on L inducing this infinitesimal .ac-
tion, . . . . .

(1.6) By a (real) polarization of (P, w) we mean in this paper a
Lagrangian fibration T: P — X (i.,e. T : P — X is a fiber bundle
whose fibers (or leaves) are Lagrangian submanifolds of (P, w)).
Given a prequantization I and a polarization ¢ , the restriction
LI‘C"(X) is a flat bundle for any x € X. We say the leaf t-(x) is
quantizable if the holonomy group of I’|'t"(x) is trivial. To any
quantizable leaf 'C"(x) there is naturally associated a complex line
L7 consisting of covariant constant sections of I‘I'f"(x)' Ve will be

X .
assuming that all leaves of T 'are quantizable, Then the disjoint

union .
i
xeX

has a natural structure of a Hermitian line bundle over X. The puli-
back ©*L¥ is canonically isomorphic to L, and for any section s of
of IV its pull-back T¥s is a covariant constant along T section of
L, i.ec,
¥ =

Vs Ker TT ~ 0.
Converselyy any co'varia.nt constant along T section of L is of the
form ©¥s for a unique section s of v
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(1.7) Let D}(z() be the bundle of complex half-densities on X and
let C°°(L eDT(X)) denote the space of compactly supported smooth
sections of I%® pi(x). For s;@ 6, € C5(z" e p¥(x)), i = 1,2,
<s?,sz><§‘ 08 is a compactly suppo:cted smooth density on X, so the
following formula makes sense

(s08,, 5,08, = f (84,8, 8106‘2 .

Since sections of the form se& generate o® (L OD’(X)), this for-
mula defines a Hermitian inner product on C°°(Lt® DI(X)) The result-
ing pre-Hilbert space will be denoted by HO. The completion HT of H
is the guantizing Hilbert space associated with T and L. The detalls
of the above constructions can be found in [Bl1l, [GS] and [wel. ve
remark that in many cases half-densities should be replaced by half-

forms, but for our purposes the "half-density quantization”
described above is sufficient.

(1.8) A Hamiltonian action of a ILie group G on (P,w) which pre-
serves T and. prequantizes to an action on (L,¢,>,V) gives rise to a
unitary representation of G on Hf.

1.D. BKS pairing
Remaining in the setting of 1.C assume additionally thatm: P —

Y is another polarization of (P,w) which is strongly transverse to
7 in the sense that the mapping P — XxY, p > (T(p), ™(p)), is a
diffeomorphism, Let ® be the inverse of (t, 7). It is convenient to
work on XxY rather than P. Thus we replace w , L, T , 7t by §*m,
§'L, Pys Py respgctively, the latter two being the Cartesian pro-
jections.

(1.9) Assume .that X and Y admit volume elements My and My Te-
spectively. Let |/u.xl and |/“3{'! be the corresponding half-den-
sities (see [Bl], §3). By a pairing of these we mean the unique
function {|myl¥, Luyi¥> on XxY such that

. a x
(1.9.1) (Zﬁ)dd! P;(/“X A p§/“Y = ((l,u.Xli, l,qui))zéw-d,

where 2d = dim P, and where we assume that My and My have been
chosen such that the corresponding product orientation of X xY co-
incides with that induced by Q‘wd. Now the BKS pairing (named so
for Blattner, Kostant and Sternberg) of s @lm XIi € HY and te@lm e

Hg is given by
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(1.9.2) Cselmylt, teluylty =

(enfan™ [ <o, wpedlugtt, Luyt g%l
X

n

. . : ,
‘}CXY <p§s., p?t)((l,uxl%.,..l/u.YI’)).'..“.lp’;c,u.xA p?ﬂyl,.,
where we write I,u.l for the density corresponding to a volume element
M- This formula defines a sesquilinear form on I-ng Hg, which we
will call the BKS pairing between HT and HJ. See [Bl] and [GS] for
a definition of this pairing in more general situation.

(1.10) We say T and 1t are unitarily related if there is a unltary
isomorphism Uge ¢ HY—> H” such that {Umeh, k Dy = {h, k Yye for any

he Hg and any ke Hg. The problem of characterizing pairs of unitari-
ly related polarizations remains open.

(1.11) If we are in the situation of (1.8), and ar is also G-in-
variant, the BKS pairing is G-invarianti Thus if ¥ and 1 are uni-

tarily :related, Uge is a (unitary) intertwining operator for the
representations of G on HY and H".

2. Orbit stmcture of %

(2,1) Let 7*X be the cotangent bundle to. X, 6y the canonical ane-
form on T*X. and Wy = dG the canonical symplectic structure. The ac-
tlon of G on X 1lifts to an action by vector bundle automorphisms on
¥ X. This lifted actJ.on preserves 9 hence it is Hamiltonian, with
momentum mapping J: ’.E X — q belng the composition T X — q x X
- q of the vector bundle morphism dual to the infinitesimal ac-
tion of ¢y on X and the Cartesian projection onto the first factor.
In particular, -JlT*‘{ is the natural isomorphism T X = 41"' . Since
J is G-invariant, % its image J(T X) is a G-invarlant subset of %
It is clear from the above that a coadjoint orbit is contained in
J(T*X) iff it has a nonempty intersection with 41*. Together with
(1.242) and (1.2,3) this yields the following.

(2.,2) Proposition., (i) J(1*3) = ‘9:. .

(i1) g induces a bijection of orbit spaces T K/G (%/G Hence
G-orbits in T*X are of the form J~ ((9 ), where O is a coadjoint
orbit in ey’:

From (ii) above and (1.2.1) we get

(2.3) Proposition. Each G-orbit in 1%% 18 a closed coisotropic
‘submanifold,
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(2.4) Let us put
(#*0)" = ()"

(see (1.3) for the definition of (qh) ). This is a G-invariant con-
nected open and dense subset of 7*X. It inherits the structure of a
Hamiltonian G-space and we shall continue to write J for its mommen-
tum mapping, as well as for the induced mapping (T*X)l —_ (O)t)' .
All G-orbits in (7¥X)’ have the same type G/M and .they are the
maximal dimensional orbits in T'X. ‘ '

Noting that (JlT*X)-'1( vtf.) intersects each orbit in (T*X)I at a
single point and ° transversely we can easily prove the following.
(2.5) Proposition. (i) J: (T%X) — («qf.)' is a G-equivariant

fibration.
(ii) The orbit space (T*X)'/G has a natural manifold structure
and the map (T*X)/ ¢ —» (g-:)'/G induced by J is a diffeomorphism.

In what follows , we shall identify both (1*X)'/¢ and (g})/ ¢
with ot% (cf. (1. 3 2)) and we shall write 0, for the G-orbit corre-
sponding to Aeot), that is, 6,=1" ((9,)

3. Horizontal polarization

(3.1) For each A€}, the map

(3.1.1) 0r— B, ad® (8)A ¥ g-Dy,
is a G-invariant real polarization of O, (cf. [0W]). Since 0,is
closed in (g.‘ (1.2.1), this polarization satisfies Pukanszky condi-
tion, i.e., each of its leaves /\b is an affine subspace of (2,*, in
particular 4

(3.1.2) AL =2+ (m o+ o+ n)t
(see [Bel, Chap. IV, §3) 0

(3.2) The maps 0,— B can be pieced together to give a smooth
G-equivariant fibration

L Y x

(%h) '—§ B x U(Qo
More precisely, this fibration is defined as the map corresponding
to G/MA* o —> G/MAN x o}, (gMA, A) > (gMAN, A) under the isomorph-
ism (1.3.3). Define

%\

m: (I'X) — B
as the composition (*x)) — (tg.’:‘)l —> Bxaf, This is a G-equi~
variant fibration. The fiber 7\b over (b, A) is

x - -

Ay = 71, 2) = 37 (AL).
Since each (‘), is coisotropic and since J: (7;-—) 0, is its symplec-
tic reduction, the fibers /\ are Lagrangian submanifolds of (T X)

This proves part of the following.
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(3.3) Progosition. 3 (T'X)' — Bxo} is.a G-invariant real po-
larization of (T*X)’ with the following properties:

(a) for each p € (r*x)’ , the leaf of m through p is contained in
the G-orbit through p,

(b) m is strongly transverse to the vertical polarization

: (T%x) —> X (cf. 1.D).

Property (a) follows directly from the definition oft. As for
(b), since both polarizations are G-invariant and since the restric-
tion of J to T*X is an isomorphism onto oh“, it suffices to nate
that, in virtue of (3.1.2) a.nd Iwasawa decomposition of ¢,
/\bonﬂq {3} and T,\/\b nh = {o}

 will be called the horizontal polarization of (2*x)’.

(3.4) Remark. It can be shown that (7*X)’ has exactly Iwl G-in-
variant real polarizations satisfying (a) of (3.3). They are con-
structed in the same way as T was, but with (3.1.1) replaced by any
other of the |Wl G-invariant real polarizations of @j. Hence they
satisfy also (b). All the following statements concerning # hold
equally well for any of these polarizations.

4. Generating function of the horizontal polarization

(4.1) It follows from (3.3) (b) that each leaf A, of m projects
dlffeomorphically onto X. Therefore there is a unique closed 1-form
;\b on X such that /\ =2 (X) (we consider Ab as a mapping X —>
T X) Since each closed 1-form on X is exact, there exists a func-
tion ub af X — R such that 7\ = dSb ar It is clear that these bb A
can be chosen such that the functlon S XxBx uv.+-—-) R given by
S(x,b,A) = Sy ;\(x) is smooth, Such S is called a generating function
of 1 (cf. [Wof, 4,6). It is determined by ar up to the addition of an
arbitrary function of (b,A)., In what follows, S will denote the
unique generating function of m which vanishes on {o} x B x m.’f..

(4.2) Theorem. S is given by
S(x’bla) = (A,A(X,b)),
where, for x = g.o, g€G, and b = k+by, kek, A(x,b) = -H(g'11<).

We sketch the proof. It is clear that

X o
s(x,0,4) = [ Ay,
(o)
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" where the integral is along any path from o to x. Fix X and take b =
by. The group AN acts transitively on X and leaves Rb invariant.:
FProm this one can easily deduce that Ab vanishes on  each orbit
of N. Since the action of AN on X is O also free, there is a
unique a €A such that A.onl.x = {a.0}. Take a path from o to x con-
sisting of two pieces: [0, 1] — A.0, t +> (exp(tlog(a)))-o, from o
to a.o and an arbitrary path from a.o to x in N.x, The integral of
‘;'\'bo,over this path reduces to the integral ov&13r the first piece,

which is easily seen to be equal {A,-H(g~ ')>. Now to conclude
the proof, it suffices to note that S is K-invariant.

(4.3) From G-invariance of m we obtain the faollowing transform-
ation rule of A under the action of G

Alg-x,g+b) = A(x,b) - A(g™ " 0,D).

(4.4) Let §: X xBx ol — (t*x)’ be the inverse of (r,m) (cf.

(3.3) (b)), It is clear that
8(x,0,2) = 'ib(x) = dSy a(x).
We can use ¢ to transfer the structure of a Hamiltonian G-space to
XxBxu.,. . The pull-backs of the canonical forms GX and Wy can be
expressed in terms of derivatives of S, which will prove useful
later on, Vrite Y for Bx vl-i . Then the exterior derivative on X xY
decomposes as d = dX + dy, where dX (resp. dY) is the exterioxr de-
rivative in the direction of X (resp. Y). Now it follows directly
from the definitions of 9‘ y Wy and ® that
§9 = d;S  and §o = ddyS.

When transferred to X"Y the polarlzations ¥ and 1 become the
Cartesian projections Py and Py» respectively.

5. Iiouville form on X x B % et¥

A'decisive step in finding the BKS pairing consists in a computa-
tion of the Liouville form on X xB x mf . We will do it now undexr the
additional assumption that G is compléx. In the first subsection,
however, we work still without this assumption.

(5.1) Let (e1,...,e‘_) be a basis in ot and let (e1,...,e") be the
dual basis in «*. The imbedding «¥ — #“allows us to treat the ol
as elements of «J,*. If Ai(x,b) (resp. Ai) are the coordinates of
A(x,b) (resp. A) with respect to those bases, the formula for S (cf.
(4.2)) reads '

L
S(x,b,A) = iZ‘T AiAi(x’b).



BKS PAIRING AND FOURIER TRANSFORM 183

Hence the canonical form on XxB x o are given by (cf. (4.4))
XV = : Ai XA ’

ddSzZ dlAdA +Z.AddA
X i i
i=1 i=1
It is easy to see that, for each G-orbit X ¥ B x 11}= §'1(6A),

. i e
(e11) (2o Agd9A )|y y pxaay = S|y xpxqay = Bar

where 'c3,\ is the pull-back of the Kirillov form w, by the mapping

IxBx H!—) 0, induced by the momentum mapping. It follows that the

rank of Z:. A, ; ddxA At equals 2m (= dim 0,). Thus the ILiouville.form. .
i=1

L L ‘L s L. ~
(5.1.2) (das)™* = (™ )(ET aa Adgat) A G
= (-t@trn)/2 L (™) CagatA oo on aat )ABTA (aA A L ady)

(with a slight abuse of notation). Put

(5.1.3) 8§y = (- 1)L("+”/2L!(m+‘)(dA Aooohdgat)A DT,
This is a G-invariant (2m+l)-form, which may be considered as a form
on X ¥ B depending on the parameter A . Let r(o, )i G —2X*B, g
(geo,g -b, ) be the orbital mapping at (o, bO" %o A simple calcula-

tion yields
(5.1.4) (r(’;,bo)é‘l) - (- 1)L(L+1)/2L'(m+t)(e A.o.net)a Bl

(5.2) From now on we assume that G is (the underlying real group
of) a complex (connected semisimple) Lie group. Under this assump-
tion ‘vy =M + 6t is a Cartan subalg,ebra of the complex Lie algebra %
-and the restiction map ‘ry —> ¥ estabishes a bijection of the set
of roots of (ty,iy) onto R. Put n = lR+l. so that m = 2n. Let
(Xy), ¢ g be @ Chevalley system of (¢, 4y) (sce [Bo1], Chap. VIII,
§3) and let Hy = -[Xy,7_yl. The vectors u, = X, + X_,, vy =
i(X“ - X_*), « €R_, together with m» span a compact real form of o)
(cf. [Bo2], Chap. IX, §3). Ve assume, as we may, that this coincides
with 44 . Then Hye« and 4 = ifq . The vectors u,, v, and s, = iuy,
Ty = 1ivy, a&€R_, form a basis of the orthogonal complement (with re-
spect to the Killing form) of 4y . Let u%, v%, s%, t%, ®€R,, form
the dual basis. Extend these to functions on the whole (ry putting O
on 4y A straightforward calculation using the commutation relations

satisfied by the X, yields
B, = 22: O EI (VA 8% = u%a t%).
+
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It follows that o o x
I
(5.2.1) 20 - 2200om [ 1 ¢a,my (s¥a t%1a o as™at 0)A
LE€R

+

1 1

AGEIA T A LA v RA D),
where we have chosen some ordering of the positive roots.

(5.3) It is not hard to see that there exist a unique G-invariant
volume element M on X and a unique K-invariant volume element v on
B such that

(5.3.1) (X, X

= (-)te1)72, 1

o o [ 3
cye AeeaneAs™ At Muwons BAE B,

X o o o« o
(5.3.2) ((ry Y V) = cgv 'Auw 'ALaviau®,

where T3 G — X and r%oz K —> B denote the orbital mappings at o
and bO respectively, and Cy and cp are some positive real con-
stants, which will be determined below. It is a standard result that
Vv transforms under the action of G according to

(5.343) g]';v=e<23’A(g-1'°"))v Vgea,
where & denotes the diffeomorphism of B corresponding to g. Using
this, the transformation rule of A (see (4.3)) and formulae (5.1.4)
and (5.2.1) we get 0

(5.3.4) &, = (2n+L)!22n(cXcB)"1(I:1{<A,Hu)) e<23’A>p;;AA p;ﬂ ,

+

where Py and Py stand for the Cartesian projections of ZX B onto X
and B respectively.

(5.4) In order to determine the constants Cx and ey we must
choose a normalization of invariant measures on G and some of its
subgroups. We adopt the normalization used by Helgason (sce [H], PP.
5-6). That is, the Haar measures on K and M arec normalized such that
the total measure is 1. This implies that

(5.4.1) ij = 1.

The Haar measures on N and § = Q(l) are normalized such that
(5.4.2) O(dn) = da, fT oS8, H(A)> 4 4.
I

The Haar measure on A is the one corresponding under the exponential
mapping to the Zuclidean Lebesgue measure on @ (the suclidean struc-
ture on ot being that induced by the Killing form) multiplied by the

factor (Zﬂ?-le. The Haar measure dg on G is normalized such that
(5.4.3) [ fledag= |  f(xan)e$?®r208(a04 4a an |
e’ KxAxN



BKS PAIRING AND FOURIER TRANSFORM . 185

These conditions determine a G-invariant measure on X.
Hoting that B is K-isomorphic to the coadjoint K-orbit (0]
#¥and that f

~igle ®
n_
(oo-iglz) =1

O-igl2 -
which is a very special case of the Kirillov’s character formula
(see [Ki1],83), we can show that in order to have (5.4.1) we should
take

(5.4.4) oy = ()™ 1 ¢g,m,.

B
A€ R+

In order to have also (5.4.2) we must assume that the basis
(e1,...,eL) is orthonormal (with respect to the Euclidean structure
induced by the Killing form) and take

(5.4.5) op = (2m) (0 L2)2n[ ] ¢g ,m,.

&€R+

The normalized volume elements s and v and the normalized Haar
measure on M determine a Haar measure on G fof which (5.4.3) holds.

(5.5) It follows from the explicit formula for the Harish-Chandra
c-function (see for instance [wal], p. 326) that, in the case of com-

lea1-2 - ( I_I‘Q.LTA.H’)Z
¢ ila)

» {
xaR+ ’

plex G,

{note that since H, is the co-root associated witha, {(A,H )=
E(A,m)(u,a)'1, where bracket denotes the scalar product on o¥in-
duced by that on «). It is clear from (5.3.4), (5.4.4) and (5.4.5)
that lc(?.)l"2 will appear as a multiplicative factor in the final
expression for the Liouville form. It is convenient to include this
factor in the definition of a volume element on mf. liore precisely,
ve take this volume element as

(5.5.1) (2m)"H2 [ "2an, A .o n aA .

The followiné proposition, which is a direct consequence of
(5.1.2), (5.1.3) and (5.3.4), summarizes the foregoing discussion. -

(5.6) Proposition. Let s and v be the volume elements on X and B
determined by (5.%.1), (5.4.5) and (5.3.2), (5.4.4) respectively and
let the volume element on @} be as in (5.5.1). Then the Liouville
form on X x mef. is given by ¢ : o

2 2n+l 2¢,A) % - ¥
(44, 5)7*t = (2m)2* (204 1) 1428 ’pEp A pEv A

A(2m)~ 42 le(M)]=2aA,A ..on dAy,
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where Py and Pg denote now the Cartesian projections of X XB X “:
onto X and B respectively.

6. Quantizing Hilbert spaces associated with T and 4

Results of this section hold without the assumption that G is com-
plex. (As a matter of fact, we use below the volume clements on X, B
and m:_defined in the preceding section, but it is easy to see that
such volume elements exist in the case of arbitrary G.) '

(6.1) A natural prequantization of ™% is the trivial line bundle

L = T¥X x € with the obvious inner product ¢(, > and with a connection
V given by

VF = dF - iF GX’
where we identify sections of L with functions on T*X. Since X is
simply connected, any other prequantization of ™X is isomorphic to
this one (cf. (1.4)). It follows from the G-invariance of 8y that if
we let G act trivially on €, we get an action of G on L which pre-
quantizes its action on 1*X. Restricting (L, <,>, V) to (T*X)/ and
pulling back by & we obtain a prequantization of X xBx m’f,, which we
will denote by the same symbol. In the remainder of this section we
will work on X x B x &% rather than (T*X)" (cf. (4.4)).

(6.2) since dyS vanishes on the leaves of py (which now plays the
role of ¥), the covariant constant along Py sections of L can be
naturally identified with functions on X (in other words, 1% is nat-
urally isomorphic to X x€)., Take the G-invariant volume element M
on X defined in 85. Let dx be the corresponding G-invariant measure
andl/Ali'the corresponding G-invariant half-density. Then we have a
G-equivariant isomorphism

(6.2.1) C‘S’(X) —_ CS’(L"@ D*(x)), f—f @l,ulqi,
which extends to a G-invariant unitary isomorphism

12(X,dx) = 0¥ ,
Hote that quantization of the whole 7*X would have given the same i

(6.3) FeC®(L) is covariant constant along py iff

~ dyF - iFdyS = O.
It is obvious that eib satisfies this equation. Let s be the scction
of L corresponding to eiS (so that p§s = eis). Take the volume el-
ements vV and (2«)'L/2|c(2)l-2dA1A «esAdA, on B and mﬁfrespectively
as in §5, These give rise to a K-invariant measure on B xtnf, which
we will denote by dblc(%)l'ZdA , and a nowhere vanishing K-invariant
half-density |v A(ZrO'lelc(Z)l'sz Ao dALIi. As s is a nowhere

1
vanishing K-invariant section of ﬁ", we get a l-esquivariant iso-

morphism
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(6.3.1) CBx«}) — ("o pt(Bxel)),

9 — g va(zm)2lc(A)1 %A 4 ... aa lf,
which extends to a K-equivariant unitary isomorphism
L2 (Bxet* ,dblc(A)17%dA) =3 1™,

T. BKS pairing between Hg and H{f

In this section we assume that G is complex. We fix the volume el-
ements on X, B and otfas in §5 and we write dx dblc(?«)l'zd’r\ for the
corresponding product measure on X xB x ov.f..

(7.1) Take the half-densities on X and B * oy induced by the vol-
ume elements we fixed above., It follows from (5.6) that the pairing
of these half-densities (see *(1.9.1)) is given by

<imtt, v A (2m)~ b2 lc(1)|'2d21 Aco.ndagldy = <818,
Now if feCT(X), ¢ GCS’(B""‘:) and pyf, p§q>s are the corresponding .
sections of L (see (6.2) and (6.3)), then
(p’;(f, p§¢s) = f?e-is = f??e(-ia’A). o

e are ready to compute the BKS pairing (1.9) bstween Hg and H’Or Due
%o the isomorphisms (6.2.1) and (6.3.1) we may view this pairing as -
a sesquilinear form on C'S(X) "CS’(B x 0t}). -As a direct consequence of "
the two above formulae we obtain our main result, namely

(7.2) Theorem. The BKS pairing of fecg(x) and <f€C‘6°(B" o) is

given by f

<t 9, = L2 P, WeCEA SR D gy avle(a)]~2an .
oty

Noting that {f, ¢ dyy = <%, P2y s where ¥ denotes the Fourier trans-
form of f (see (0.F)) and <, )¢ stands for the inner product on
CS(B*M";) (transferred from Hg by means of the isomorphism (6.3.1)),
and using a theorem of Helgason ([H], Th. 5.8 of Chap. III), which
asserts that f +—> ¥ extends to a unitary isomorphism of L2 (X,dx)
onto L2(Bxu:,dblc(7\)l'2d;\), we get the following.

(7.3) Corollary. T and 9 are unitarily related (1.10) and the
intertwining isomorphism Uge coincides with the Fourier transform

T+ f,

(7.4) Remarks. (a) The reason why, in the case of complex G, the
BKS pairing leads to the Fourier transform is that the function of A
which appears in the formula for the Liouville form on Xx B x tnf. co-
incides with lc(?\)l'2 (see §5). low it is clear from (5.1.2) and’
(5.1,1) that, in the case of arbitrary G, this function is a poly-
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nomial. On the other hand, [c(A)1™2 is a polynomial iff ¢ has but
one conjugacy class of Cartan subalgebras (see [Wal, p. 327). A case
by case inspection shows that complex groups are the only ones among
the groups with this property for which the corresponding polynomial
coincides with lc(a)l'z. This seems to be related to the fact that
Kirillov’s formula for the Plancherel measure of G. leads to a cor-
rect result only when G is complex (cf. [XKi2], 15.6).

(b) The horizontal polarization gives rise to another G-invariant
real polarization of“(T‘X)I,whose space of leaves coincides with the
space of horocycles in X (when transferred to X xB ¥ n: it sends
(x,b,A) to the horocycle determined by (x,b)). It is reasonable to
think that, at least for complex G, the BKS pairing corresponding to
this polarization and the vertical one should lead to the Radon
transform on X (in the sense of [H]).

A deeper analysis of these questions should help to understand
why the geometric quantization scheme works well only in the complex
case. ile shall deal with these matters in a later article,
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