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CONSTRAINED HAMILTONIANS: A HOMOLOGICAL APPROACH 

James Stasheff 

In recent years, there has been a tremendous revitalization 

of the historically crucial interaction between mathematics and 

physics. This is well symbolized by the list of topics at the 

Winter School at SRNI. 

I am very grateful to V. SouSek for encouraging me to present 

this paper for the proceedings of the 1987 Winter School and 

especially to rework [13] in a more bilingual version so as to 

increase its accessibility to physicists as well as to 

mathematicians. The recognition of physical "ghosts" as 

generators of the Koszul complex of commutative algebra will 

hopefully prove as fruitful as the recognition of gauge 

potentials as the connections of differential geometry. "Strong 

homotopy representations" are introduced as an interpretation of 

the terms of higher order of Fradkin, Batalin, Vilkovisky and 

others; these constructs appear to have physical applications 

beyond the present work. 

This revision of [13] has benefitted from conversations with 

Herbert Neuberger, but any failures of the following exposition 

to sound colloquial to physicists are entirely mine - physics was 

not the language the muse sang at my cradle. 

The mathematics which is my native tongue is that of 

algebraic topology and in particular "rational" homomotopy theory 

which describes the world in terms of the cohomology of 

differential forms, de Rham cohomology. A significant part of 

theoretical physics, especially gauge field theory, also 

describes the world in terms of differential forms, though the 

vocabulary of cohomology is less prominent. Thus the relevance 

of cohomology to physics is quite reasonable though unappreciated 

until recent years. It took some time to recognize the 

cohomological aspect of Dirac's treatment of the magnetic 

monopole - discovering, in physical theory, the Hopf fibration 
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S1 -> S3 -> S2 in 1931! 

With the development of gauge field theories such as 

Yang-Mills, de Rham cohomology and characteristic classes became 

of considerable interest as did other cohomologies, especially 

those for smooth groups and Lie algebras and representations. 

Today I'd like to tell you about some developments of the past 

decade in which the simplicity of Lie algebra representation has 

given way to a more subtle structure and added homological 

algebra to the list of physically relevant tools. The 

generalization which physical intuition forced on those doing 

certain calculations in gravity turned out to be the same 

generalization that occurred quite independently in the 

deformation theory of algeoras and rational homotopy theory, in 

particular, in my work with Mike Schlessinger. 

To begin on the physical side, where I speak as a tourist, 

first there was the work of Fradkin and his school, particularly 

Bataiin and Vilkovisky [6,1,2], An excellent report by Henneaux 

[10] called attention to the homological aspect of their 

technique which was further elucidated by McMullan [5,12] who 

recognized the Koszul complex and its crucial role therein. 
0 

The problem is posed in the setting of the Hamiltonian 

formalism, which includes the following crucial (for us) 

ingredients: 

A phase space W , e.g., the cotangent bundle T*M or more 

generally a symplectic manifold, i.e., a smooth manifoid with a 

closed 2-form of maximal rank (dp. A dq. in local coordinates). 
00 

This gives a Poisson algebra structure on C (W) , i.e., a 

Poisson bracket { , } : C°°(W) ® C° [Vi) —• C^fW) making C°°(W) a 

Lie algebra over R and, in addition, satisfying 

{f,gh} = {f,g}h + g{f,h} . 

Thus {f, } is a derivation of C (W) and so can be identified 

with a vector field denoted X,. . 

In field theory, W itself can be a space of functions or of 

sections of a bundle. 

The problem that led to the homological algebra considered 

here is the problem of "constraints", i.e., a family of functions 

{Y } such that the dynamics is constrained to stay in the 

submanifold V c W which is the common zero set of the Y 
a 
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Worse yet, the submanifold V does not reflect the true 

"physical degrees of freedom", but rather the constraints also 

act on V via their associated vector fields X and this action 

takes flows (solutions) to physically equivalent ones. The 

constraints have determined the foliation ^ of V and the 

quotient V/? is the "reduced phase space" which is the 

physically meaningful symplectic manifold. 

For example: 

* 
Gauge theory: Here W is T A where A is the space of 

connections for a fixed principal G-bundle G -> P --> X . The 
* 

reduced phase space is T (A/%) where <$ is the group of "gauge 

transformations", i.e., vertical automorphisms of P , that is, 

<« = Sec(Px G) . 

* 
Gravity: Here W is T Ji where M is the space of metrics on 

* 
a fixed manifold X . The reduced phase space is T (/tt/Diff X) . 

String theory: Here W is the cotangent bundle to the space of 

imbeddings or immersions of a Riemannian surface S into a 

Riemannian manifold M . 

Non-linear sigma models: Here W is the cotangent bundle to the 

space of maps Map(M,T) of one manifold to another. 

Now, for a mathematician, there's a tendency to think that we 

have a perfectly adequate description of the reduced phase space, 

but to a physicist, since the original data are on W or even A 

and M , there is a need for handling computations in terms of W 

directly - without passing to the quotient. The method 

physicists have developed is to add ghost fields to the situation 

- you can't see ghosts experimentally, but they account 

computationally for what you do see - and implementing a BRS(T) 

transformation. 

What is a BRS(T) operator? First, BRS refers to 

Becchi-Rouet- Stora [3], while the T refers to Tyutin, whose 

preprint has never been published, nor have I been able to locate 

a copy. At first, the BRS operator appeared to be a formal 

construct corresponding to a symmetry of certain Lagrangians. 

Later, it was interpreted in terms of the coboundary operator & 
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of the Cartain-Chevelley-Eilenberg complex which defines Lie 

algebra cohomology. We will review this in a moment after 

explaining why it is relevant to the constraint problem. 

We can diagram our situation as V c W 

i 

V/7 , 

where V is the set of common zeroes of the constraints P , 

a 
i.e., V = {v e WjP (v) = 0 , ail a }. In terms of C°°(W) , the 

a 
algebra of functions on W , the algebra of functions on V can 

be described as C (W)/I where I is the ideal generated by the 

constraints, the ideal of functions which vanish on V , i.e., 

a a *** 
I = { f Tr°,f e C (V)} where the sum is understood to be finite, 

a 
00 

If ? were given by a group action, C (V/?) would be given by 

the G-invariant functions on V , i.e., those h e C (V) such 

that h(gv) = h(v) . For a connected Lie group G , it would be 

sufficient to demand infinitesimal invariance, i.e., invariance 

under the action of the Lie algebra n of G . This is 

precisely what Lie algebra cohomology computes: 

{n-invariant h e C (V)} « HZ. (p,C (V)) 
Lie

(
Г< 

« Hj
ie
(r^,c

09
(W)/i) . 

In general, however, the real (or complex) linear span of the 

constraints do NOT form a Lie algebra under Poisson bracket. 

Throughout this paper, I will restrict myself to the physically 

difficult case of FIRST CLASS constraints, meaning 

{TP ,P } = C Y> . If the C „ were constants, this would 
a p a/3 i a/3 

describe a Lie algebra, but in general they also are functions on 

W . One says in physics that the algebra of constraints does not 

close - th/is is the trouble we wish to confront. 

The ideal I does close under Poisson bracket since C *? 
a/3 i 

is again in I and 

(*) {? ,frJ » {? ,f)vn + f{r ,rJ 
a p a ' p a p' 

is also. Thus H
r
. (I,C (W)/I) can be defined, as we are about 
Lie 

to do, and H
r
 . (I,C°°(W)/I) will give the desired description of 
Lie 



CONSTRAINED HAMILTONIANS: A HOMOLOGICAL APPROACH 243 

c (v/?) . 

We now recall the formal definition of Cartan-Chevalley-

Eilenberg cohomology of a Lie algebra D with coefficients in a 

D-module M . This latter means M is a vector space together 

with a linear map e : q -> Aut M which is a representation: 

e[X,Y] = 0(X)e(Y) - e(Y)6(X) for X,Y e n . 

The Cartan-Chevalley-Eilenberg complex Alt(q,M) consists of 

the alternating multilinear functions from Q to M , with 

coboundary 6 = 6 + 6„ . For an alternating linear function 1
 g 6 

h : p8...®g -> M , define : 08. . .80 

(в
g
Һ)(X

Q
, X

p
) = Г(-l)

1+
-h([X

i
,X

J
],..i...j...) 

where i denotes omission of X. and define 

(5h)(X ,...,X) = Z(-1)
1
0(X.)h(..-i...) . & o . p .x 

o 

Note that (6 ) = 0 if and only if [ , ] satisfies the Jacobi 

2 2 

identity, while if (5 ) = 0 , then (6 +s ) = 0 iff $ is a 

g 9 * 

representation: 

0([X,Y]) = 9(X)9(Y) - 9(Y)9(X) . 

Given all of this, 
Ker 5+5 

H
L
.

e
(g,M) means

 l m
 /

+ g
 • 

g * 

In the setting of first class constraints, we then have 

defined 

HLie(I,C (W)/I). 

Henceforth we will simplify notation by denoting the algebra 

CMW) by A . 

Now instead of considering all alternating multilinear 

functions of I , Fradkin et al want to use just the complex 
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linear span 4> = (c ? ,c € C} of the constraints. An 

alternating multilinear function 

h : $8. . .8* -> A/I 

can be extended to 10...81 by requiring A-muItilinearity, i.e., 

h(x1f.*. .,x ) = ) f . ..f ph(y> *> ) 
1 p Z.1 P a,..., a 

if x. = f .Y> . Thus interpreted, these functions do form a 

sub-complex of Alt(I,A/I) (though this is not true for a general 

I-module) and give the same H . One of our new insights into 

the FBV formalisms is the relevance of this subcomplex. 

But more is desired, namely, a mechanism for dealing with 

functions f e A rather than equivalence classes in A/I (in 

physical terms, working "off-shell" rather than just "on-shell", 

V being the shell). To do this, Fradkin et ai introduced ghosts. 

What are ghosts? They are generators p of a Grassmann 

algebra over A in one-to-one correspondence with the constraints 

TP . In this context of FIRST CLASS constraints, I will refer to a 

them as KOSZUL GHOSTS for the ideal I , for indeed the Koszul 

complex K(I) 

K(I) = A 8 Лp a 

is just this Grassmann algebra over A generated by the p with 

dv : K(I) —• K(I) being the A-deriyation defined by 

In more detail, elements of this Grassmann algebra are 

represented by polynomials 

aл . . .a 
f i q p Л . . .Лp 

aл a 
i q 

where a <...<a , (the a having been ordered arbitrarily) and 

a. . . .a 

- - ч 
6 A . Multiplication is determined by p A p « 
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-p A p . The ghost degree of p is one, that of the monomial 

above is q and d„ is a graded A-derivation with respect to 
K 

ghost degree so that d of the above monomial is 
K 

a . . .oc 

yi-i)1"1*- f a q
P A . . . P . . . A P . 

A word about notation: In the physics literature, with the 

exception of Browning and McMuilan, the derivation d^ is 

written r n where n is interpreted as dual to p , i.e., 

< n ,PQ > = 6 . The Koszul complex appears as A 0 zip 

Fradkin et al, Henneaux and Browning and McMuilan also 

consider the possibility of starting with fermions as well as 

bosons, i.e., starting with a graded commutative algebra A with 

homogeneous constraints IP . The ghost p then has the 

opposite parity to P , in fact ghost degree p = degree P +1 . 

The point of the Koszul complex (as introduced by Koszul) is 

that if I is a regular ideal (in our situation, this is implied 

N by 0 being a regular value of W —-> (R where the components 

of T are the constraints ? ), then the homology of K(I) is 
a 

A/I in ghost degree zero and is 0 otherwise (d -closed => 
K 

d -exact for ghost degree > 0 and in ghost degree 0 , the 

image of d„ is precisely I.) 
K 

There is in fact a contracting; homotopy s„ : K( I) -> K( I) of 
IV 

ghost degree -1 so that 

dKSK + SKdK = XK ~ U 

where 1 is the identity on K(I) and n : K(I) ----U A/I -> 

A c K(I) sends all p to zero, sends A -> A/I by the quotient 

map and then maps A/I -> A as a complement to I . Formulas for 

s can be given in a quite explicit but complicated way. Having 
K 
introduced K(I), we can now substitute it for A/I and consider 

Alt(*,K(I)) 

the alternating multilinear functions from 4> into K(I) or, to 

stay closer to the FBV notation, 
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Ana
 ® A ® Ap . a 

Here the n are called anti-ghosts, have degree -1 and, for our 

purposes, need be interpreted only as the linear duals of the r . 

Thus an alternating function h : 4> 0. . .8 <t> -> K( I) of 

p-variables and of ghost degree q can be denoted 

a
l " -

a
p "l'"

a
p 

n% fp ...p PP ...PP ' 
pl p

q
 p

l
 p

q 

(When there are infinitely many ghosts, h may have infinitely 

many such terms as the notation Alt helps remind us.) 

Now to define a Cartan-Chevalley-Eilenberg differential. 

Here, we have two problems: <t> is NOT closed under { , } (in 

physics it is called an open algebra) unless the structure 

functions C „ are constants. We can still define 6, using ap <t»
 a 

A-linearity; in other words, for h : * -> A , for example, 

(6ji) (Y> ,y> J = - C
7 h(r ) . 

<t> a p a/3 7 

2 
However, 6 . 9 - 0 . Even worse, the obvious representation of 

I on A c K(I) will not do because it does not commute with d^: 

< V f > ® P« = < V f > 8 Pa 

\{rfi.f Pa) = < V ' > ' « 

but < V V f e pa)} = irfi.tra) = irfi.t}ra + f < V V ' 
This suggests we define e (v> ) by 

oc 

*(ra){f 0 Pfi) = <
V
f> 9

 P/} +
 f c ^ 8 p^ 

and extend e (P ) to all of K(I) -= A ® zip as a graded 
oc a 

derivation. However 9 : 4> -> Aut K(I) is not a representation 

and even d.. + 5. + 6 does not have square zero. What to do? 

Fradkin, Batalin, Vilkovisky and Henneaux get around these 

problems by adding terms of higher order. In their notation: 

dк — V đ 
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dA + ci «—> - i c \ nanPP + {v , )na , 
$ e 2 a/3 *? * a 

since d
K(P«) = -*,, =

 r
a°«

 = ^a^^p^ ' e t c # T n eY a n d Henneaux 
prove: 

Theorem. There exist polynomials 

a . ..a. 
U 1 in Ana ® A such that 

a . . . a . 
U p . . .p has ghost degree plus anti-ghost degree equal 

al ai 
to -1 and 

n = ran
a * ira, )n« + } u % i~<i «2 ... < « 

I 
satisfies 

{fi,a) = 0 . 

Browning and McMullan have translated this into differential 

notation: 

Theorem: There exist derivations 5. which increase the number 

of ghosts by i-1 and the number of anti-ghosts by i such 

that D- = 0 for D = dK + 5^ + 5Q + &2 + &3 + ... . 

The precise correspondence is given as follows (compare 

Browning and McMullan): Since An 8 A ® Apa is freely 

generated over A by n and p , it is enough to describe 

6,f7a , G.p and 6.f for l l a l 
f e A : 

v« - ' a 

y 1 n̂  a |8 

V = " ? C«ß П П 

У ß 
õ p = C n P ^a aø п p t 
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Similarly 

V - l*a.t>na 

ô.f = Л o ; , ř » p -

_ a . . i + 1 . — „aa O.n = (-1) 1 n vß pa 

S.pß = (i + 1, „- U ^ p-

where a = a ...a. j = i-1, i-1 or i , 

respectively, £ = /°1»«»>
3
k. k = i, i+1 or i+1 . 

(The signs and integer factors are an artifact of the Grassmann 

algebra.) 

Fradkin et al find these terms of higher order in succession 

by setting up and solving a system of ODE's. Henneaux makes use 

aI of the resolution property of K(I) : each U exists 

essentially because the obstruction to its existence can be 

computed to be a cycle which in K(I) is automatically a 

boundary. The computations are quite complex and, at each stage, 

choices must be made. Looking at Browning and McMullan's 

exposition inspired me to apply the techniques of homological 

perturbation theory, and thus to see that only one choice is 

necessary (a contracting homotopy for K(I)) and the existence of 

terms of higher order is guaranteed by the general results of 

homological perturbation theory. 

The word perturbation is due to one of the originators, V. K. 

A. M. Gugenheim [7], inspired by the term as used in physics, but 

not in his wildest dreams did he believe his theory would apply 

to physics! 

Homological perturbation theory has developed gradually in a 

series of papers. Essential points in its development are in the 

papers of Gugenheim [7] and in his papers with May [8] and 

Stasheff [9]. Hopefully, Gugenheim, Lambe and Stasheff will soon 

have a summary and exposition of the fully developed theory. 
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In essence, the theory involves strong deformation retraction 

(SDR) data for comparison of two complexes with additional 

structure. In our case, An ® A/I with zero differential and 

Ana ® A ® Ap with respect to d have the same homology and we a K. 

wish to find 6. as in the Theorem so that D = d-_ + 5. + 5„ l K 4> 9 

+ 61 + ... will calculate the 6 + 6 cohomology of 

Ana ® A/I. 

Remember that, although $ is an open algebra, it closes in 

its representation on A/I (the deviation from closure in A is 

at least in I ). The problem therefore is really one of lifting 

the representation * --> Aut(A/I) to Aut(K(I) or, if not to a 

representation, to something which will suffice homologically. 

Here the general philosophy of homotopy theory is relevant: 

recall that we lifted 9 to e : $ -> K(I) as a derivation 

defined by 

9(v ){f ® p > = {r ,f} ® p„ + fC7„ ® p 
a p a p ap i 

but that 6 is not a representation: 9 ({¥ ,?„}) is not even 
a p 

defined and, if we do define it by 

i) -<<vv = °IP M v 
this is not the same as 

2) e(?a)9(rp) - e(rp)o(ra) . 

However 1) and 2) are both derivations of K(I) and the 

difference anti-commutes with d . Thus we can use s applied 

2 
to the difference to define 9 (Y> ,Y» ) of ghost degree 1 so that 

«--. • » 2 < v V + •^'в '%' ° 'Sc 

= *{{*„.*-)) - 9(Y> )9(1P ) + 9(Yn)9(?^) . 
a p a p p a 

2 
Now 9 can be added to form d-̂  + 6. + 6 „ + 6

r t
 which may 

K <p 9 2 

still not have square zero, but is at least zero to one higher 

order, meaning ghost degree. One is tempted to iterate. 

This is what homological perturbation theory is all about. 

The method is inductive, indeed algorithmic, involving only one 

choice - that of the contracting homotopy s
K
 . The result is 

what is known as a "strong-homotopy-representation" (shr), i.e., 
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a family {e } of alternating maps 

.: Ф 0 ... 0 Ф —* Der(K(I)) 

such that 

91 (Y 

V 

is a graded derivation of ghost degree i-1 , that is, 9 

increases ghost degree by i-1 and 

9X( . . . )(XAY) = e1
(...)(X)AY + (-1)

 ( l
" "

1 ) a e
9

x
 XAe

2
(...)Y . 

The total differential D = d
v
 + 6̂  + o„ + &„ + ... can then 
K, v 9 2 

p 
be expressed more explicitly for h e Alt ($,K(I)) by 

(*> 

( 6 . Һ ) ( I P Л 

1 a . 
-* 

( p + i ) 
) 

) ( - l ) x вa(V> /* ) h( 

- i 
o . ai< 

wnere a i = ( a j . 

permutation which puts a. < 
J
l 

remaining indices. 

and a(a ) denotes the 

< a in order in front of the 

Since 6 . is a derivation, it is enough to consider h = f 

or p ; the formulas of Browning and McMullan given or n 

above then express (*). 

But what of the physical interpretation! First, does this 

choice imply the theory is ambiguous? No, if we regard 

An ® A 0 Ap as an extended phase space, then the choices 

correspond precisely to a "canonical" change of coordinates: 

(p,q) —• (p',q') . Here the original (p,q) «= W are augmented 

by regarding (p ,n ) as a canonical pair - momentum and 

position, respectively. Indeed, the commutation rules are given 

by the duality if we set 

infi.pa) = n
fiiPa) = flf . 

a a a 
So far, I've talked entirely in terms of constraints. The 

Hamiltonian formalism refers to a dynamics given by the 
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differential equation 

A physical problem begins with H e A = C (W) such that {H,V ) 
a 

e I for all constraints Y . To treat An 0 A 0 Ap as an 
a a 

extended phase space, we need to extend H to H of total ghost 

degree zero with DH = 0 . Again, this is precisely what is 

guaranteed by homological perturbation theory, or more simply, by 

its end result that K(An 0 A/I)) is the same as the D-homology 

of Ana 0 A 0 zip a 
What about quantization? Everything seems to start smoothly. 

Observables are identified with elements of the homology in total 

ghost degree zero (i.e., the number of ghosts p = the number of 

anti-ghosts n )• States are more of a problem. They should be 

(equivalence classes of) functions of the n but not the p 

The ghosts p and antighosts n are then implemented as 

operators on (representatives of) states: 

n = multiplication by n 

p = -ið/дr/a 

a 

Physical states should be represented by D cycles: DITP >= 0 

a_. 
(The operator D is obtained from D - T n + U p by 

n -> n iP -> P •) Two representatives *!'*? a r e
 P

n
Y

s i c a i i
Y 

equivalent if n> - f = Dx . There remain significant 

subtleties with regard to the approprite inner product and/or 

completion. 

As elsewhere in contemporary physics, it is time to treat 

seriously the category of differential graded Hilbert spaces. 
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