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MANIFOLDS OF MAPPINGS BETWEEN OPEN MANIFOLDS 

JUrgen Eichhorn 

1. Introduction 

More then twenty years it is well known that the space of all 

smooth mappings f:Mn—>Nr between closed smooth manifolds of finite 

dimensions forms after suitable completion a Hilbert resp. Banach 
s k 

manifold H (M,N) resp. C (M,N) if one completes with respect to a 

certain Sobolev space resp. Banach space norm. The smooth struc­

ture of HS(M,N) or C (M,N), respectively, is constructed by use of 

Riemannian metrics on M and N but it does not depend on the metrics. 

The reason for this is that on a closed manifold all Riemannian me­

trics are quasi-isometric and the Sobolev spaces of order s are 

equivalent. The latter follows from the fact that for two ellip­

tic operators P,P* of order m on M there exist constants C, ,C,-) 

such that 

C1(|lP»fll + llf II ) «flPf II + | | f 11 £ C2(||P ,fll + 11 f II ) , 

f £C°°(M), |[ ||-= Lp norm. The latter is a consequence of the exi­

stence of a parametrix for an elliptic operator on a closed mani­

fold. The same holds for the Banach space norm = supremum norm of 

covariant derivatives. A further essential step in defining 

HS(M,N) is the Sobolev embedding theorem HS(M)<-»Ck(M) continuous­

ly for s y n/2 + k. All this breaks completely down for noncompact 

manifolds. Arbitrary Riemannian metrics on an open manifold are far 

from beiing quasi-isometric, there do not exist parametrices, dif­

ferent metrics and connections (in vector bundles) give in general 

non-equivalent Sobolev spaces, these spaces depend on the differen­

tial operators generating them, and versions of the Sobolev embed­

ding theorem in general do not hold. Therefore, one has to work on 

open manifolds much more carefully. On the other hand, as in the 

This paper is in final form and no version of it. will be submitted 

for publication elsewhere. 
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case of closed manifolds, mapping spaces between open manifolds 

are very important in mathematical physics on open manifolds, for 

example in gauge theory for the description of the configuration 

space ^p/^frp+1> and for the study of Diff(M) in general relativi­

ty. 

As a conclusion, one has to find out those cases in which one can 

work and establish a reasonable theory. This paper is devoted to 

this problem. More concretely, studying the gauge group ~tp+ 

acting on a principal fibre bundle P(M,G)—> M, M closed and G 

compact, and establishing that *€LP
+ is a Hilbert Lie group, one 

needs the fact that the space H^-^P) of H -sections of P = 

-(TCP XAd G ) * <fp is a H i l b e r t manifold (cf. C 8 *] ). The same fact 

is needed for Diffs(P). Since our final aim is a description of 

£ s, "%p+1 an<* a stratification for C ^ M p * 1 for Mn open, and we 

succeeded considerably in this direction, we have to establish the 

needed properties for some version of HS(P), Diffs(P) on open mani­

folds. Moreover, the study of the mapping spaces between open mani­

folds is of its own interest. Until now, no approach to this que­

stion is known to the author. 

The paper is organized as follows. In section 2 we recall Sobolev 

spaces and those facts from their theory on open manifolds which 
s 

are needed later on. Section 3 is devoted to manifolds of C -boun­
ded geometry. In section 4 we show that for complete manifolds (M ,g), 
(Nr,h) with Cs-bounded geometry of sufficiently high order and 
sufficiently high bounded mappings we get in fact Banach or Hilbert 
manifolds bAs(M,N), p/lS(M,N), 2J1S(M,N), respectively. Section 
5 is devoted to the diffeomorphism group which is in general not 
an open subspace, but the restriction to diffeormorphisms whose dif­
ferential is bounded from below and above, has this property. Coun­
terexamples show that the restriction to inf|df| >0 is in fact neces-
sary. The bounded diffeomorphism group will be the main subject of 

forthcoming papers. 

2. Sobolev spaces 

Assume (Mn,g) being complete, (E,h)—>M a Riemarmian vector bund­

le over M with metric connection V = V • Then the Levi-Civita 

connection g V and the connection V define metric connecti­

ons V in all tensor bundles T^S&E and, in particular, in 
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A?T*M#E where A?T*®E c Tq ®E. By Jlq(E) or -fl°(Tq#E) we deno­

te the space of smooth q-forms or tensor fields of type (q,r) with 

values in E, respectively. -Q$(E) or .A°(Tq©E) shall denote the 

subspace of forms or tensors with compact support. Then we define 

for p£|R, -l-=p C °° and k a nonnegative integer 

P-^(E) -(feA^E)! pn:nik.=zz ( /|v iyjpavoD1/p<~} k 

and 

pJlq,k(E) -= completion of PJ7.£(E) with respect to P|J ||k, 
pA q , k(E) = completion of /Lq(E) with respect to P|I ||k and 
pJlq,k(E) = [f | y measurable regular distribution with Pll¥||k<~}. 
In the same manner we define pA°(Tq®E),_pA°»k(Tq®E). 
P . A ° ' k ( T q ® E ) , pJl°'k(Tq®E). Clearly, PAq'k(E) C p/lC'k(Tq«E) 
as a closed subspace with the induced norm, the same holds for the 
other cases, but we treat Jlq(E) and Jl (Tq®E) separately since 
during working with the Laplace operator as derivatives we have to 
do with two different operators, A * V * V + £ on ilq(E), 
A = V * V on .Jl°(Tq#E). Furthermore, we define 

bJTq'k(E) ={?|y Ck-form and b| ? |. = sup IV 1/!. < - } 
K x6M x 

'JLq'k(E) = completion of .fl^(E) with respect to b| | k . 
-_ ~ie same manner we define bJl°'k(T^®E), b A ° ' k ( T q ® E ) . 
Proposition 2 . 1 . All defined spaces pA Q' k(E), P .fL°' 'k(E),.. •, 
bA°'k(T^®E), b/l°'k(T^®E) are Banach spaces and there are in­

clusions 0  
P/lq'k(E) « PJlq'k(E) 6 pfLq'k(E), 

P A ° , k ( T > E ) « p j f ' k(T>E) * Pri0,k(Tq®E), 

bA q , k( E) f bA q , k( E)» bA° , k(T>E) | bJl°'k(Tq®E). 

For the proof we refer to [ 3 ] .Q 
If p=2 then 2A Q' k(E), , 2/l°,k(Tq ®E) are Hilbert spaces 
with respect to the usual scalar product ^f9 y y k -

-zzo^y.v 1 ^ =2=: f\v±yn2tooi. 
i=0 i-=0 

In the case k=2m we have a second canonical variant of Sobolev 
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spaces replacing V ,..., V m by (1+A)m> where A = dcT+ (fd * 

- V V + P or A = V * V is the Laplace operator acting in 

/lS(E) or -/l?(Tq©E), respectively, i.e. we replace p || • || k by 
Pll'lfk s P|((l+A)m# II -Then we get corresponding spaces p A , q ' k ( E ) , 

5(t,q,k(E), p A , 0 , k ( T q ® E ) , . . . . There arise several natural que­

stions concerning the coincidence between p J l q * (E), pJT q' (E), 
p A q ' k ( E ) , the coincidence between p . A q ' k ( E ) , p J V q , k ( E ) , 

Pjf q» k(E), the coincidence between pJlq'k(E) and p./i'q'k(E), 
pJtq'k(E) and p A ' q ' k ( E ) , pJlq>k(E) and pJT»q'k(E). Finally, one 

has to put the same questions for the corresponding subspaces of 
PJ1°(T^®E) = P-a°'°(T^®E). 

To clear up the situation we consider the following conditions (I), 

(Bm(M)), (B (E)), (B(M,E)). m m m 
(I). The inactivity radius of M has a positive lower bound, 

r, .(M) = sup r. .(x) = a*> 0. 
ln3 x€M i n 3 

(B(M)). sup I V V l < <*> . 
xfcM 
0-U-?m 

(BJE)). sup I V W ^ < 00 
xGM 
0-=i=m 

m xGЙ 

(B (M,E)). suplViyl < <*> . 
m
 x6M

 x 

0--i*m 

M "P 

Here R resp. R resp. O denotes the curvature tensor of M resp. 

of E resp. the curvature endomorphism in the Weitzenboeck formula 

A = V * V + p .By definition of O imply two of the (B
m
)-

conditions the third. 

We say that M resp. E resp. M and E have bounded geometry up to or­

der m if M satisfies (I) and M satisfies (B
m
(M)) resp. E satisfies 

(B
m
(E)) resp. M and E satisfy (B

m
(M,E)). 

Theorem 2.2. Suppose (M
n
,g) being open, complete and of bounded ge­

ometry up to order m. Then there holds 

P
ji

q , k
(E) =

 P
JI

q
'

k
(E) =

 p
Jl

q
'

k
(E), (2.1) 

P
jT°'

k
(T<J®E)

 =
 P/l0.k(T£®E) =pJl°'k(T^®E) (2.2) 

for 0=k=m+2. 

A complete proof is contained in r_3~ » £ 4~( • Therefore we here 



MANIFOLDS OP MAPPINGS 139 

indicate only the general line. Prom (I) and (Bm(M)) one gets the 

existence of exhaustion functions h. 6 C*?+2(M), h. > 1, 
. i JO J -j _* oo 

(7 h. | « C for all x and O-̂ î m+2. Then one approximates 

? 6 P H q ' k ( E ) or T£P/l°»k(Tq®E) by ^ = h^.y^The ?., are 

not necessarily smooth and have to be regularized, 7. . » f-t • 

Diagonal choice gives *f* «—>? which proves (2.1),(2.2^. "° 
For p=-2 we have the same result for the SV -spaces which are built 
up by means of the powers of the Laplace operator,but without the 

assumption of bounded geometry. 

Theorem 2.3. Suppose (Mn,g) being open, complete, k-=2m. Then 

2A,q,k(E) -= 2A'q'k(E) = 2JVq'k(E) (2.3) 
and 0 _ 

2n,0'k(Tq<3E) = 2A'°'k(TqOE) = 2/L'°'k(Tq©E). (2.4) 

Proof. (2.3) is just the essential self-adjointness of 

(1+ A ) m I fV|(E) in
 2ilq(E) for A acting on q-forms. But (2.3) 

implies (2?4) setting q=0 and replacing the vector bundle E by 

T q#E. a 

A connection between the /I-spaces and the SV -spaces is esta­
blished until now only for the case p=2. 

Theorem 2.4. Suppose (M ,g) being open, complete, (Mn,g) and^ 

(E,h) *M satisfying (B2m(
M)) a n d (B2m(E))# T h e n W i t h A^A-A,.!! 

2^q,2m+2(E) m 2J^.q,2m+2(E) ( 2 # 5 ) 

and ^ ^ 
2jl0,2m+2(Tq^E) = 2^f0,2m+2(Tq^ E ) ( 2 # 6 ) 

with equivalent norms. 

The proof of (2.5) is contained in £3 ] and the proof of (2.6) 
is still easier since in this case one has to work with A = V * V 
instead of A -= V * V + D .a 
Corollary 2.5. Suppose the hypotheses of 2.4. Then 

2Дq,2m+2
(Б)
 „ 2дq,2m+2

(E) =
 2

л
q,2m+2

( E ) 

ш
 2Д,q,2m+2

(E) =
 2д,q,2m+2

(E) =
 2

л
,2m+2

( E ) 

(2.7) 

and the analogous assertion holds for tensor fields with values in E 

Remark. Corollary 2.5 shows that for p=2 the assertions of theorem 

2.2 are valid without assuming the condition (I). 
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As in the case of compact manifolds, the Sobolev embedding theoretfis 

play a fundamental role for the definition of a manifold struc­

ture on mapping spaces between open manifolds. 

Theorem 2.6. Assume (M ,g) being open, complete and of bounded ge-*-

ometry up to order 0, i.e. satisfying (I) and (BQ(M)). If
 s > ^ + K' 

then there are continuous embeddings 

PAq'S(E) <->bAq'k(E), PA°'S(Tq0E) ̂ bA°' k(T q®E), (2.8) 

PAq,S(E) ̂ ->bilq'k(E), P/T°'S(Tq®E) <-> bA°'k(Tq®E). (2.9) 

(2.8) was already proved in C2_ , and the proof carries over to 

that of (2.9) which is indicated in C 3 1 • a 

Corollary 2.7. If (Mn,g) additionally satisfies (B 2(M)),
 t h e n 

there are continuous embeddings 

PAq'S(E) <—>bAq'k(E), p/l0's(Tq©E)<^b/l°'k(Tq®E). (2.10) 

Corollary 2.8. Suppose the hypotheses of 2.7 with s even, 

(Bg_2(E)) and p=2. Then there are continuous embeddings 

2A' q' S(E)^ bA q' k(E), 2/l'0'S(Tq©E)^b/l°'k(T>E).o (2.11) 

3. C -bounded geometry and bounded mappings 

The main purpose of this section consists in an explanation of Cs-

bounded geometry and of implications if this kind of geometry is 

assumed to be given. The notion of C -bounded geometry can always 

be defined for classes of coordinates which map a neighborhood 

IKXQ) onto an open set C T M. Although we in the next section 

work with exponential coordinates, we start as an example with al­

most linear coordinates. At first we recall some facts on almost 

linear coordinates. Let BD(x ) c M
n be a ball which is disjoint to 

» 2 2 

the cut locus of xQ and suppose curvature bounds - K-, =" K =" K2» 
lKl=* C for the sectional curvature K and f<1T/2 K?. This implies 
the geodesic convexity of B-(xQ). If uGT_ M is a unit vector then 
we extend u to a vector field u(x) on Bo by radial parallel trans­
lation. We set r(x):= d(xn,x), p(x):= exp_ r(x)u, q(x):= 

0 = exp -r(x)u and 
0 X(x):= (d(x,q(x))2- d(x,p(x))2)/4r2. 
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Prom C6"3 w e recal l 
Proposition 3 .1 . There holds 

t V2A|X - (8 K2 f i f ^ J K.r.ctghC K . D M x ) . (3 -D 

This class of functions can be used to define the so called almost 

linear coordinates. Choose u-,...,u gT M orthonormal and define 

by means of the corresponding almost linear functions A ,..., A 

the map 

L:Bt?(xn)—>T M, L(x):=2_ A±(x)u.(xn). (3.2) 
* u x0 i=l 1 u 

Prom 3.1 we immediately obtain 

I V2L|X * 8flP K2 f f ^ - g r r K^-ctghC K ^ - r U ) . (3.3) 

It is a simple matter of fact that the Christoffel symbols are 

given by the second covariant derivative of the coordinate functi­

ons. Then (3.1)-(3.3) imply 

Proposition 3.2. In almost linear coordinates there holds for the 

Christoffel symbols P^ 
--tj 

|l"7.(x)| =" const. ( curvature )«d(xQ,x). (3.4) 

Prom C73 w e cite 

Proposition 3.3. In normal coordinates there holds for the Christof­

fel symbols 
)n.(x)f -- const#( curvature,V( curvature)). (3-5) 1 j x 

In this sense almost linear coordinates are "better" than normal 

coordinates. On the other hand, normal coordinates are more geome. 

trical and oxuite natural. 

Assume that (Mn,g),(Nr,h) are open, complete manifolds of bounded 

geometry up to order 0. This implies, in particular, the existence 

of numbers rj^., cf̂-, 0 < ̂ M<
r
in-j(

M)> ° < °°N<rinj^N^ a n d u n i f o r m l v 

locally finite coverings TJtM = (u« (*±)\ ±» T-XN « [u^p C y. ) ̂J -3 

by almost linear coordinate neighborhoods (UA(X. ),x ,...,xn), 
dM 1 

U V ^ y i^» y , . . . , y r ) such that the Christoffel symbols s Q£ in 
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Һr-iГП 
U ^ (x±) and the Q k in U V (y. ) are bounded. The same is valid 

for normal coordinates if we assume bounded geometry up to order 1. 

Consider now f£C°°(M,N). f induces the connection f * V in the in­

duced bundle f*TN which is locally given by 

rs - £*hXi - vk«-^c-(x». (3.6) 
A coordinate free description is given by 

(f*hV)x(Yf(x),x) = (
hV*%X

Yf(x)'x). (3-7) 

Next we consider the condition 

V* , 
^ f bounded for |<*1*- m+1, (3.8) 

which makes sense if we refer to the coverings Ut-* ^lj-

of almost linear or normal coordinates. Then, assuming (3.4) resp. 

(3.5) in almost linear resp. normal coordinates for V » (3.8) 

for m-=0 implies the boundedness of the ^GL1^ X^ # A coordinate 

free description of (3.8) for m 1 ean be assured if we have 

the boundedness of the partial derivatives of the Christoffel 

symbols. Using the Jacobi field techniques ofC6],C7l, w e can in 

fact show that bounded geometry up to order m implies the bounded­

ness of the partial derivatives of the Christoffel symbols up to 

order m in almost linear coordinates. The same holds for normal co­

ordinates if we assume bounded geometry up to order m+1. For the 

reasons of place we can't present here the proofand refer to the 

forthcoming paper C--3 • Therefore we have to work here with 

another notion of bounded geometry which immediately implies the 

boundedness of the partial derivatives of the Christoffel symbols. 

We say (Mn,g) has C -bounded geometry with respect to a class of 

coordinates (l):U(xn) >T M , provided it satisfies the condi-

tions (I) and 

(C ). There exists a radius <TM, 0< tf\- <r. (M), for the chosen 

class of coordinates such that with respeco to this class for eve­

ry x 0 £ M the metric tensor g., on B ^ (xn) pulled back to 
/ \ l j k M 

B „ r ( 0 ) t T M is bounded in the C -topology, in particular the ma-
« M X Q 4 4 

trices (gj.*)* (g J) are bounded in the sup norm. We include the 

case k= ©o with homogeneous Riemannian spaces as a class of exam­

ples. Then it is clear that (I) and (C ) imply (BTC_2^
# 0 n "the o^^1* 

hand, (I) and (BQ) are for almost linear coordinates really stron-
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ger than (I) and (C°), they in fact imply (I) and (C1) (cf.[6} ). 

If we work with normal coordinates exp :B ̂ 0 ) — > B ^ (xQ), - this is 

not true but (I) and (B-.) imply (I) and (C ). For k= <*> , assuming 

the hypothesis (I), the conditions (B^) and (C°°) are equivalent, 

both for almost linear and for normal coordinates. To guarantee the 

boundedness of *j-<* P. . we assume in the sequel C -bounded geometry 

of sufficiently high order. 

For f £C**(M,N) induce g V and f*hV connections V in all tensor 

bundles T^(M)$f* T^(N). The differential df = f* can be considered 

as a section of T*M0f*TN. Therefore is Vmdf well defined. 

If (Mn,g), (Nr,h) have bounded geometry up to order 0 then the con­

dition df bounded, in local coordinates 

Idfl2 = gtr(f*h) = g a\^ af
i3 bf

; ! C3.9) 

bounded, and S f1 bounded are equivalent (since (BQ),(I) imply the 

boundedness of the gab, h^^cf. L5 3 ). But (3.9) can be under­

stood as a coordinate free description. 

The assertions 3.4 - 3.6 are valid as well for almost linear as for 

exponential coordinates. 

Proposition 3.4. Assume (Mn,g),(Nr,h) being open, complete, of 

Cm+ -bounded geometry, f fcC °°(M,N), b|df I < <*> . Then the following 

conditions are equivalent. 

a. All ̂  f* are bounded, l<X|=* m+l, k=l,...,r, (3.10) 

where the derivatives are taken with respect to some uniformly lo­

cally finite atlas for M resp. N. 

b. All -T^< r^^Cx) are bounded, \*\£ m, a=l,...,n (3.11) 

-- > J = - - » • • • * **• 

c. All V^clf are bounded, 0=yu ̂m. (3.12) 

Proof, a. implies b.: We perform induction. For m=0 the assertion 

coincides with (3.6). If we assume the assertion for AX-1 < m 

then it follows for AK by the assumption a. and the Leibniz rule. 
b. implies c: V here denotes the product connection of &V and 
f V • Then in local coordinates 

Va« = VaV
k - >aV

k - S rab V* + X?**\*' . (.13) 

For >U= 0 the assertion is just the assumption I elf I < °o . For 
AA. = 1 the assertion follows from the equation (3.13) and the as-
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sumptions. If we assume the assertion for yU.-l £ m then the vali­

dity for ŷA. follows from this, the yv̂ -l times derived equation 

(3.13) and the boundedness of the Chris toff el symbols of g V , 

f̂  V a n d their partial derivatives (for f* nV this is just the 

assumption b.). c implies a.: For m=0 there is nothing to show. 

For m=l (3.13), the boundedness of the g P £ , h P ^ , o f1, o\ f3 and 
* \ k 'lj a b 

of Ydf implies the boundedness of the ô f for \U\^ 2. From the 
validity of the assertion for /U-l < m, iV^df | < oo , the bounded­

ness of ̂ ["av & ( ^ a f k Hjk(f(x))* lOCl V* a n d t h e A1"1 t i m e S 

derived equation (3.13) we obtain the assertion for M --* m. Q 

Corollary 3.5. Assume l̂ p <©© , (Mn,g), (Nr,h) being open, complete 

of Cm+2-bounded geometry, s >^ + m and df £PJ10,S(T*M® f * TN). Then 

f satisfies a.,b.,c. of 3.4. D 

Proof. Prom the assumptions and theorem 2.6 we obtain V^df boun­

ded, 0 -Ux -*m. a 

Corollary 3.6. Assume (Mn,g), (Nr,h) being open, complete, of Cs-

bounded geometry, s > | + m and df &2il|0,s(T3K M® f * TN). Then f 

satisfies a.,b.,c. of 3.4.a 

4. Manifolds of mappings between open manifolds of Cs-bounded 

geometry 

For complete manifolds (M n ,g) , (N r , h ) of Cs-bounded geometry with 
respec t to normal coordinates we denote by C ^ ' (M,N ji the s e t of 
a l l f 6C°°(M,N) which s a t i s f y 

sup I V ^ d f l <oC , 0 * A ^ S , ( 4 . 1 ) 
xfeM x ' 

where ^7 equals to the t ensor product of g V a n d f \7 • Suppose 
now 0< cf--"cTN< r i n . ( N ) as i n s e c t i o n 3 and Y 6 C c o ( f * T N ) = 
= J l ° ( f * T N ) with 3 b > f * n | Y | = sup h | Y . , A±<T . Then the 

xeM i v x ; 

gY 

mapping x > exPf(x) Yf(x)' i'e# gY = e xPf Y o f' defines an ele­
ment of C°°(M,N). 
More general, if sup I V ^ Y I = blYl < cf , then gvG C °°'

S(M,N). 
x£M s 

This follows from the following facts: 
1. the Leibniz product rule for gy = exp„Ycrf, 

2. for /A =1 there holds in B̂ -. 
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. sinh(K,|Vl). 
(dexp - P I „ # ( -i 1), 

2 ' " 2 1*1 

where - ̂  * K & |< 2 and Pr denotes the radial parallel transla­

tion (cf. L63 , C7 J ), 
3 . I V 2 e x p U l V d expl = i r l . £ const(R, 7 R ) , 
4. the higher covariant derivatives of exp are bounded since the 
partial derivatives of the Christoffel symbols are bounded by the 
assumption of Cs-bounded geometry. 

Remark. I PI =* const, already holds for C -bounded geometry. 

We define 
bU(f.s(f) = {g6C°°'

s(M,N) I There exists an Y GbJl°,S(f* TN) 

such that g = gy = exp»Yo f and lYls < & 

and set bU-gls:=
 b|Y|g. 

Lemma 4.1. The system of all bU(pjg(f), O'C cT*<^ <rin.(M)f 

f£C°*,S(M,N) forms a base of neighborhood filters for a locally 

metrizable topology on C°** (M,N). 

Proof. The only nontrivial fact that remains to show is the follo­
wing: For each bU c (f) there exists an bU. (f) such that bUc (f) 

t»s , t,s X.»a 

is a neighborhood for each g fc U T s(
;-')- i.e. there exists a -£• = 

= Tf(g)< t such that bU x,^ s(g)' C
bU£>s(f). Suppose g=gY^

u
t>s( f). 

f*TN and g*TN are for £ sufficiently small canonically isomorphic 

since f=fQ and g-f-= are canonically homotopic by the smooth and 

and up to order s+1 bounded homotopy f., f+(x) = expf(x)^,Y' i.e. 

f. satisfies (4.1). Therefore there exist positive constants 

C-. ,Cp such that 

C. sup IV^Y'l.!** suplV^Y'lf £ C2 sup lV^Y'|£, (4.2) x
 0-S/VA.*S

 x 0=ywc = s x * 0=yu=s x 

where | 1 indicates that into\7and the pointwise norm enter 

f* hV ,f*h. The same holds for L, If. 

Now we se t T = f. Then bUfc /4C (g) C b U ^ s ( f ) : 

I f g ' » gy. £ b U t / 4 C , s ( g ) ' t h ^ n 

b l f - g ' l j = b U - g | J + b l g - g M s < £ + V ' l * < 

t i l 
4 + C l * 4 C 7 = 2 < t - o 

Let b J l s (M,N) be the completion of C°° , S(M,N). The neighborhoods 
in b A S (M,N) s h a l l be denoted by b U s ( f ) . 
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Proposition 4*2. Suppose (M n,g), (N^,h) being open, complete and 

of Cs-bounded geometry, s-*l. Then /LS(M,N) is a Banach manifold. 

Proof. Set T f
bA S(M,N):= bJL 0 , S(f * TN). Then Y - > g y , gy(x) * 

* exPf(x)
Yf(x) =( e xPf Y° f)( x) is for 0 ^ cf -* cPN a homeomorphism 

between Bj(0) C bJl°,8(f*TN). and bu|(f), i.e. a chart. That the 

transition mappings are C °° (in the Banach category) can be esta­

blished in the same manner as for M,N closed.o 

In similar manner we can work with -A. ,s(f*TN) and obtain a Banach 

manifold bil s(M,N). 

The next case is given by l-£p < <*> . W e start again with 

C ^ , S ( M , N ) , M and N of Cs-bounded geometry, s-i-l. We set for 

f € C ~ ' S ( M , N ) , t<^T N, 

P U £ , s ( f ) s t«-«Y = e x P f Y o f \ Y G P A g + [ n ] + 2 ( f * T N ) and 

where p(Yl k =- ZZ (/| 7 ^ Yl pdvol) 1 / p, V = V 1 - f* h V , for 

yu -*2 = composition of f 7 and of the tensor product of g V 

and f * h V . 

Lemma 4.3. The system of all PU fl(f), 0 4 fc<<TN. f & C
0 0 , S(M,N), 

forms a base of neighborhood filters for a locally metrizable to­

pology on C°° , S(M,N). 

Proof. Assume at first s-*2. Cs-bounded geometry for s-*2 implies 
(I) and (BQ) for M, the Sobolev embedding theorem 2.6 is applica­
ble and Y & P J 1 ° rn., 0(f * T N ) implies Y £

bJl°'s(f * TN). Therefore 
s+i—'j+-^ 

Pu^ a(f )C C°*
, S(M,N). The compatibility condition with respect to 

r. £ • 

I la a & a i n follows from (4.2). If s--l then (B Q) is not guaranted. 

But C -bounded geometry still implies the boundedness of the Jaco-

bian dexp, and this fact, which is part of the Rauch comparison 

theorem, is needed during the proof of 2.6 (cf. C2 1 )• o 

Let PJHS(M,N) be the completion of C°°,S(M,N) and PU S(f) the com­

pleted neighborhoods. 

Proposition 4.4. Assume (Mn,g),(Nr,h) being open, complete and of 

Cs-bounded geometry, s--l. Then pfLS(M,N) is a Banach manifold. 

Proof. If f & P A S ( M . N ) then by construction f £ bJl s(M,N). Set 

Tf
pJLs(M,N):= PjL°' S + C n / p l + 2(f*TN) C bJ\°'s( f * TN) continuously. 

The map Y—>gy = exp-Y © f defines a homeomorphism of some open ball 

B t(0) C Pj^°'
s+--n/Pl*2(f^TN) =T f onto some

 pu|(f). The smoothness 

of the transition maps follows as in the case M,N closed, since 

according to our^assumption the Sobolev embedding theorem is valid.Q 
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Working with PA0'S+Cn/21+2(f*TN) instead of pA°'s+ln/23+2(f*TN), 

we obtain Banach manifolds P.AS(M,N) c.P/ls(M,N). Theorem 2.2 then 

immediately implies 

Corollary 4.5. If (Mn,g),(Nr,h) have Cs+Cn/2l+2-bounded geometry 

then pAs(M,N) = PAS(M,N). _ 
Proof. The assumption implies (I) and (B O J - / Q n ) , PfL0,s+tn/21+2(f*TN; 
7T?[0,s+Cn/21+2(^TN)#0

 S+Cn/21 

Corollary 4.6. Assume p=2 and the hypotheses of 4.4. Then 

-HS(M,N) is a Hilbert manifold. If we additionally assume the hy­

pothesis of 4.5, then 2AS(M,N) = 2As(M,N).a 

Working with the powers of 1+ A instead with the powers of V , 

we obtain Hilbert manifolds 2J\,S(M,N) and 2A , S(M,N). 

Theorem 4.7. Suppose all hypotheses of 4.6. Then 
2A,S(M,N) = 2JTllS(M,N) -= 2ilS(M,N) = 2AS(M,N). 

Proof. Corollary 2.5.Q 

Instead of starting with C°°*S(M,N), we could start with 

Pcl,s+Ln/21+2(M>N) = (f eclcM^jIdfgPjf .sHn/q+2 ( T M^ T N )y 

If (Mn,g),(Nr,h) have Cs-bounded geometry then f eC°*,S(M,N). The 

same procedure as above then yields manifolds P,PJXS(M,N), i.e. we 

introduce manifolds of p-integrable mappings (i.e. the differenti­

als and their derivatives are p-integrable) which are completed 

with respect to the p-norm. 
All the concepts above are applicable to sections of fibre bundles 

P s 

E • M if we assume that M,E and the vertical bundle T E have C -
bounded geometry and the fibres are totally geodesic. The case of 
the product bundle M x P — > M just corresponds to the case above: 
A section can be identified with a map (f,id):M—> Mxp, Por an 
arbitrary fibre bundle which satisfies the above geometric assump­
tions we consider the set C°°,S(E) of smooth bounded sections, de­
fine metrizable neighborhoods by composition with the exponential 
map in the vertical bundle and the fibres and perform completion 
as above. Thus we get Banach manifolds bJls_(E),bAs(E),P-?is(E), 
PA S(E), in particular Hilbert manifolds 2JTS(E) 2 2A S(E). We 
conclude this section with the assertion which was the main motiva­
tion for the whole paper. 
Proposition -}.8. Assume (Mn,g) being open, complete, P(M,G)—> M 
a principal fibre bundle, P* = -?^dG. If M,P,TvP have C

s-bounded 
geometry and the fibres of P are totally geodesic,*then jfLS(?) 
is a Hilbert manifold. 
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Remark. Keep in mind that iis(P) by definition above consists of 
mappings of Sobolev class s+£1/23+2. Furthermore, for f homotopic g 
in p-fLs(M,N) there holds f*TN£g*TN and Tf=T . 

5. Groups of diffeomorphisms 

As we have seen until now, the assumption of sufficiently high 

bounded geometry allowed to establish the manifold property for the 

space of smooth bounded mappings between open, complete manifolds 

(Mn,g),(Nr,h). If we restrict to bounded diffeomorphisms, there 

arise additional difficulties. This subset is not longer an open 

subset. But, if we restrict to diffeomorphisms which are bounded 

from below too, then we again get an open subset and a manifold 

structure. 

Suppose (Mn,g) being open, oriented, complete, of Cs-bounded geo­

metry, s>n/p +2. Then we set 

P#0S(M) =|f €pJTs(M,M)lf is one-one, orientation preserving and 

f-1€ P.]T8(M,M)) 
and 

PZ)L(M) 4f GP/)S(M)I inf |dfl > 0 ) . 
DD C x£M x 

"bb" means the norm of the differential is positively bounded 

from below. The situation will be cleared up by 

Theorem 5.1. If s > n/p +2, then P C ^ b is open in
 pils(M,M). 

Corollary 5.2. P ^ b ( M ) is a manifold, a 

The proof of 5.1 will be prepared by 

Lemma 5.3. Suppose (Mn,g) being open, complete, connected, of Cs-

-bounded geometry, s > n/P +2, f:M—>M a C -diffeomorphism and 

g:M—>M a local C -diffeomorphism which can be connected with f by 
an arc in pilS(M,M) of local ^-diffeomorphisms. Then g(M) = M. 
Proof. Fix some point z 6 M and consider the open metric balls 
B k = Bk(z) = ( x 6 l I d(x,z)< k*i . Then B-̂ C B2C'-* and U B ^ = M. 
Moreover ̂ ( B ^ Cf(B2) C--« and 

y f(Bk) = M (5.1) 

since f is a dif feomorphism. Consider an arc {St3o--t--l of local 

C -diffeomorphisms between f and g, f=gr)' S-g-i • By "the Sobolev em­

bedding theorem we have pil0,s(TM) ̂ > bA°» 1(TM) continuously, 
blYl1 = C-

pIlYllg. Fix 0 < <fQ< (TM <r..(M) and after that 0 < (f£
<c^)» 

such that C- tf* < o* T n e a r c ^£+Tt c a n b e covere<* by a finite 
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number of neighborhoods P^%»(g+ )t i=0,...,r, tQ=0, tr = 1. We 

set g. = g.. According to the definition of local neighborhoods, 

this implies the existence of C -vector fields Y. , i=0,...,r-l, 

J Y.| ̂  < cTQ, such that the mapping x--->g(x) is given by 

x_>f(X)=g0(x)_+exPgo(x)Y0_>expgi(x)Y1-^ >ex-'gr_1(x)
Yr-l' (5'2) 

where g*(x) «. exp Y* _^9 y =l,...,r. Suppose now y0£M\g(M), 
d(y0>

z) s €• Then we choose k such that k- £ > 2r cfQ and m>k such 

that f(B )->B.. (5.2) implies m YL 

d(f(x),g(x))< r.<T0. (5.3) 

All g+(B ) are open manifolds. (5.3) now yields 

Sl^V^WrcTo'^^cro 
which contradicts y(tg(M). 

Proof of theorem 5.1. Since s > n/p +2 we can represent all 

g6PAS(M,M) by bounded C1-maps. Suppose fGpJO£b(M), inf|dflx> 0. 

According to the continuity of inf [ df \ as a function ox f, 

there is a contractible neighbo?.rK>od U(f) C P/LS(M,M) such that 
inf ldg| >0. According to the inverse function theorem, consists 

5 ox local diffeomorpisms. Lemma 5.3 now yields that each g£U is 

a surjective local C -diffeomorphism g:M—>M, i.e. a covering map. 

f has the leave number 1, by continuity the same holds for g, g 

has to be a diffeomorphism.a 

Remarks. 1. Lemma 5.3 becomes false if we do not observe the spe­

cial topology in PTLS(M,M). Consider, for example, M = IR, f = id: 

IR—»ER and the"arc" ig^orft^l' gt^x^ ~ t.arctgx + (l-t)x. f-go*1^ 
is surjective, each g. is a local diffeomorphism, but g-,(x) = 

= arctgx Gl-TT/2, IT/2( is not surjective. The reason is evident. 

The above"arc" is not an arc in our topology, since during a t-in-

terval of length (f a point x moves through an interval of length 

= J(f.x|-TI72 which becomes arbitrary large for Ixl sufficiently 

large. In our topology, a point x moves during a <T-interval 
along a way of bounded length, independently of x. 

2. Theorem 5.1 becomes definitely false if one replaces ^^^(M) 
by PJDS(M) (for closed manifolds they coincide). Let )T(t), 

—?+ t 
Ô t <- °° , be a geodesic ray in M, T2^ T-, tubes of *radius e~ *• e-" 
around )T and f a C -diffeomorphism which is outside some neigh*-
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borhood of T-, the identity and maps T-̂  onto T
2
. Then every neigh­

borhood of f contains a C -map which maps T, onto T
2
 and additio­

nally T
2
 onto y* for t3?a sufficiently large. One has to choose the 

latter map in a C -manner, i.e. by some radial contraction and along 

some vector field which touches y*(t) at least of first order. We 

omit the simple and more or less standard details. 

Many further questions concerning manifolds of mappings between 

manifolds are still open and under investigation. We devote them 

forthcoming papers. 
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