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MANIFOLDS OF MAPPINGS BETWEEN OPEN MANIFOLDS

Jiirgen Eichhorn

1. Introduction

More then twenty years it is well known that the space of all
smooth mappings £:M23NT between closed smooth manifolds of finite
dimensions forms after suitable completion a Hilbert resp. Banach
manifold HS(M,N) resp. Ck(M,N) if one completes with respect to a
certain Sobolev space resp. Bamach space norm. The smooth struc-
ture of H%(M,N) or Ck(M,N), respectively, is constructed by use of
Riemannian metrics on M and N but it does not depend on the metrics.
The reason for this is that on a closed manifold all Riemannian me-
trics are quasi-isometric and the Sobolev spaces of order s are
equivalent. The latter follows from the fact that for two ellip-
tic operators P,P' of order m on M there exist constants 01,02

such that

Co(HR el + Well) eNPell + heh < c el + hell),

tecm), |l = L, norm. The latter is a consequence of the exi-
stence of a parametrix for an elliptic operator on a closed mani-
fold. The same holds for the Banach space norm = supremum norm of
covariant derivatives. A further essential step in defining

H®(M,N) is the Sobolev embedding theorem HS(M)‘—>Ck(M) continuous-
ly for sy»n/2 + k. All this breaks completely down for noncompect
manifolds. Arbitrary Riemannien metrics on an open manifold are far
from beiing quasi-isometric, there do not exist parametrices, dif-
ferent metrics and connections (in vector bundles) give in general
non-equivalent Sobolev spaces, these spaces depend on the differen-
tial operators generating them, and versions of the Sobolev embed-
ding theorem in general do not hold. Therefore, one has to work on
open manifolds much more carefully. On the other hand, as in the

This paper is in final form and no version of it will be submitted
for publication elsewhere.



136 JURGEN EICHHORN

case of closed manifolds, mepping spaces between open manifolds
are very important in mathematical physics on open manifolds, for
example in gauge theory for the description of the configuration
space ffg/ ¥+1, and for the study of Diff(M) in general relativi-
ty.
As a conclusion, one has to find out those cases in which one can
work and establish a reasonable theory. This paper is devoted to
this problem. More concretely, studying the-gauge group '%k§+1
acting on a principal fibre bundle P(M,G)—> M, M closed and G
compact, and establishing that k+l is a Hilbert Lie group, one
needs the fact that the space H E(?) of Hk+1-sections of T =
L@ X4 G)F %P is a Hilbert manifold (cf. [ 871 ). The same fact
is needed for Diffs(P). Since our final aim is a description of
C;, '%;"'1 and a stratification for fg/ §+1 for M° open, and we
succeeded considerably in this direction, we have to establish the
needed properties for some version of H3(®), pif£3(P) on open mani-
folds. Moreover, the study of the mapping spaces between open mani-

folds is of its own interest. Until now, no approach to this que-
stion is known to the author.

The peper is organized as follows. In'section 2 we recall Sobolev
spaces and those facts from their theory on open manifolds which

are needed later on. Section 3 is devoted to manifolds of c®-boun-
ded geometry. In section 4 we show that for complete manifolds (Mn,g),

(NT,h) with c®-bounded geometry of sufficiently high order and
sufficiently high bounded mappings we get in fact Banach or Hilbert

manifolds °f1%(m,N), PN%(u,N), 2N5(M,N), respectively. Section

5 is devoted to the diffeomorphism group which is in general not

an open subspace, but the restriction to diffeormorphisms whose dif-

ferential is bounded from below and above, has this property. Coun-

terexamples show that the restriction to igfldflx>0 is in fact neces-

sary. The bounded diffeomorphism group will be the main subject of
forthcoming papers.

2. Sobolev _spaces

Assume (Mn,g) being complete, (E,h) —> M a Riemannien vector bund-
le over M with metric connection h‘7 = V7E. Then the Levi-Civita
connection €V and the connection 11‘7 define metric connecti-
ons V in all tensor bundles TgQDE and, in particular, in



MANIFOLDS OF MAPPINGS 137

AN @E where J\ET*@EchoE. By J1%E) or ﬂo(Tg@E) we deno-
te the space of smooth g-forms or tensor fields of type (q,r) with
velues in E, respectively. ﬂg(E) or ﬂg(TgeE) shall denote the
subspace of forms or tensors with compact support. Then we define
for pE|R, 14p < °° and k a nonnegative integer

P_._E(E) ={)a€'ﬂ_q(E)l Pﬂj’ﬂp:é ( flvi)’]pdvol)l/p <°°}

and
PN%K(E) = completion of p.n,q(E) with respect to P "k’
p.ﬁ.q’k(E) = completion of .n.q(E) with respect to Pl uk

PN%Kkg) = {_‘fl ‘fmeasurable regular distribution with Il ‘fﬂ <°"}
In_the same manner we define pﬂg(Tg@E), p_n_O k(Tq@Eg_)

p_ﬁ_ k(’I.‘q®E) PN, (TQQE) Clearly, PNAsk(E) < .n.("5 k('.[‘q@E)
as a closed subspace with the induced norm, the same holds for the
other cases, but we treat JLUE) and .ﬂ.o(TqGE) separately since
during working with the Laplace operator as derivatlves we have to
do with two different operators, A = AVA VAN ? on NYE),
A=V*V on .D.O(TgQE). Furthermore, we define

x
04i€k

b_n_ka(E) ={Yl b4 c¥-form and bl ﬂk = suEpM !Virlx < oo }

and :
b_folq’k(E) = completion of ﬂ.g(E) with respect to P] [y

In the same manner we define b_ﬂ_o k(TQQE), ﬁo k(T “®E).

Proposition 2.1. A1l defined spaces pﬂq, (E), pﬂo KE), ...,

b.ﬁ.o k(Tg@E), bﬂo k(TgQE) are Banach spaces and there are in-

clusions »

pﬁq’k(E) c pﬁst(E) I3 Pﬂchk(E),‘
P A0:X(13gr) ¢ P10 X2l 0E) ¢ PO F(1lem),
(4
b forkee) ¢ PRI, PA% K rien) ¢ PN K(1ieE).

For the proof we refer to L 31 .p
If p=2 then 21 ¥(®),...., 2ﬂ°’k(Tq @E) ere Hilbert spaces
witi% respect to the us %1 scalar product (‘f Y)k =

- viy,viyy =3 IV Y|%avor.

In the case k=2m we have a second canonical variant of Sobolev
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spaces replacing VO,..., V2m by (1+A )", where A= dd+ dd =

= V¥Y7 + or A = V&V is the Laplace operator acting in
QUE) or ¢ TqﬁE), respectively, i.e. we replace P| - "k by
Pl l[' pu(1+A )m u Then we get corresponding spaces PSL'3+X(E),
mq, (E), O’k(TQGE),... . There arise several natural que-
stions concerning the coincidence between pfiq’k(E) p.ﬂ.q’k(E)
pJ\ﬂ’k(E), the coincidence between pJ%.'q’k(E), pjl'q’k(E),
le'q’k(E), the coincidence between p!iq’k(E) and P 'q’k(E),
pj{q,k(E) and pfi'q’k(E), p-ﬁ-q’k(E) and pfl'q’k(E). Finally, one
has to put the same questions for the corresponding subspaces of
PNO(rd@E) = PNOO(2deE).

To clear up the situation we consider the following conditions (I),
(3,(M)), (B (E)), (B (M,E)).

(I). The injectivity radius of M has a positive lower bound,
rin;j(M) = xseul‘lz rinj(X) = a»o0,

ipM
(B,(10)). e [VIRT, < o0 .
0£i€m

(B_(E)). sup |VIREI_ ¢ o |
X EM
O=i=m

(B_(M,E)). suplViQl < oo |
xeM
0£im

Here RM resp. RE resp. 9 denotes the curvature tensor of M resp.

of E resp. the curvature endomorphism in the Weitzenboeck formula
A=VHVY . § - By definition of @ imply two of the (B,)-
conditions the third.

We say that M resp. E resp. M and E have bounded geometry up to or-
der m if M satisfies (I) and M satisfies (Bm(M)) resp. E satisfies
(B (E)) resp. M and E satisfy (B (M,E)).

Theorem 2.2. Suppose (M%,g) being open, complete and of bounded ge-
ometry up to order m. Then there holds

pﬁq,k(E) = PAOK(E) = PN kg, (2.1)
A% K1) = PR K(1ieE) PO K(1d oE) (2.2)

for O¢k€ém+2.
A complete proof is contained in {33, [ 4] . Therefore we here
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indicate only the general line. From (I) and (B (M)) one gets the
existence of exhaustion functions h,€ Cm+2(M), hj — 1,

= C for all x and 04iém+2. Then one approilmates

%an’k(E) or YEPN°*(13@E) by ¥, = hy:¥ . The ¥

not necessarily smeoth and have to be regularlzed, ‘fij
Diagonal choice gives ‘fj j—)fwhich proves (2.1),(2.2
For p=2 we have the same result for the f'-spaces which are built
up by means of the powers of the Laplace operator,but without the

‘fj

3—)9@

assumption of bounded geometry.
Theorem 2.3. Suppose (M",g) being open, complete, k=2m. Then

° —
2n.q,k(E) = 2ﬂ'Q9k(E) = 2an9k(E) (2.3)

and o —_
20K 1dgE) = 2N K(r%gE) = 20K (1d0E).  (2.4)

Proof. (2.3) is just the essential self-adjointness of

(1+Z&)m| q(g) in °N9%E) for A acting on g-forms. But (2.3)
implies (2.4) setting q=0 and replacing the vector bundle E by

T2 @E. g

A connection between the f)_-spaces and the J)l'-spaces is esta-
blished until now only for the case p=2. .

Theorem 2.4. Suppose (M",g) being open, complete, (M™ ,g) and

(E,h) —> M satisfying (B, (M)) and (B, (E)). Then with =1, nn

2ﬂq’2m+2(E) - 2ﬂcQ12m+2(E) (2.5)
and .
200:2m2(19 @E) = 2n.0,2m+2(Tg@E) (2.6)

with equivalent norms.

The proof of (2.5) is contained in [ 3] and the proof of (2.6)
is still easier since in this case one has to work with A ==Y7*ﬁ7
instead of A =V*V o .o

Corollary 2.5. Suppose the hypotheses of 2.4. Then

2ﬁ_q,2m+2(E) = 2R %,2m2(py | 2a,2me2p)
(2.7)
= 2-n_.q,2m+2(E) = 2ﬁ.q,2m+2(E) = 2n,2m+2(E)

and the analogous assertion holds for tensor fields with values in E
Remark. Corollary 2.5 shows that for p=2 the assertions of theorem
2.2 are valid without assuming the condition (I).
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As in the case of compact manifolds, the Sobolev embedding theorepS
play a fundamental role for the definition of a manifold struc-
ture on mapping spaces between open manifolds.

Theorem 2.6. Assume (M%,g) being open, complete and of bounded &e-
ometry up to order O, i.e. satisfying (I) and (BO(M)). If s> % + K
then there are continuous embeddings

P 89:5(g) <P QDK(E), pﬁo,s(TgQE) v_)bfio,k(mg@m, (2.8)

PRI S(E) S Pn®EE), P05 (12eE) © PN K(12eE).  (2.9)

(2.8) was already proved in C2] , and the proof carries over to
that of (2.9) which is indicated in [31.q

Corollary 2.7. If (M",g) additionally satisfies (B, _,(M)), then
there are continuous embeddings

PNS(R) PN K(E), PNOS(1leE) SPNO K2l 0E). (2.10)

Corollary 2.8. Suppose the hypotheses of 2.7 with s even,
(Bg_5(E)) and p=2. Then there are continuous embeddings

Zn198(e) SPNLEE), 2N05(1lgE) PN K190 E). 0 (2.11)

3. Cs-bounded geometry and bounded mappings

The main purpose of this section consists in an explanation of cs-
bounded geometry and of implicatidns if this kind of geometry is
assumed to be given. The notion of ¢®-bounded geometry can always
be defined for classes of coordinates which map a neighborhood
U(x ) onto an open set C T, M. Although we in the next section
work with exponential coordigates, we start as an example with al-
most linear coordinates. At first we recall some facts on almost
linear coordinates. Let Be(x ) ¢ M® be a ball which ;s d18301nt to
the cut locus of Xg and suppose curvature bounds - K7 € K £ ng
|kKl€ C for the sectional curvature K and p<T/2 K,. This implies
the geodesic convexity of B . IfllGT M is a unit vector then
we extend u to a vector fleﬁd u(x) on B bg radial parallel trans-
lation. We set r(x):= d(xo,x), p(x):= exp, r(x)u, q(x):=

= exp, -r(x)u and 0

Y A(x):= (d(X,q(x))2- d(x,p(x))z)/4r2.
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From [67] we recall
Proposition 3.1. There holds

‘ Vz)\[x = (8K, :iﬁh(zf;r Kk;rectgh( K r))r(x). (3.1)
This class of functions can be used to define the so called almost
linear coordinates. Choose ul,...,une'Tx M orthonormal and define
by means of the corresponding almost 1in8ar functions 7\1,..., /\n
the map n )

L:Bg(xo)—)TxoM, L(x):= — )\l(x)ui(xo). (3.2)

From 3.1 we immediately obtain

2 inh(2C: A
| Vo1l ¢ s K, g%%%%ﬁ:i%? KyT-ctgh( Kyr)r(x). (3.3)

It is a simple matter of fact that the Christoffel symbols are
given by the second covariant derivative of the coordinate functi-
ons., Then (3.1)-(3.3) imply

Proposition 3.2. In almost linear coordinates there holds for the
Christoffel symbols r;? '

]r{lj{(x)lxé const.(curvature)-d(xy,x). (3.4)

From [7] we cite
Proposition 3.3. In normal coordinates there holds for the Christof-
fel symbols

I r]f_é.{(x)[ x ¢ const,(curvature,V(curvature)). (3.5)

In this sense almost linear coordinates are “better" than normal
coordinates. On the other hand, normal coordinates are more geome.
trical and quite natural.

Assume that (M%,g),(NT,L) are open, complete manifolds of bounded
geometry up to order 0. This implies, in particular, the existence
of numbers ch,' JN’ 0< d\M<rinj(M)’ 0« €N<r'n (N), and uniformly
locally finite coverings 'U[M = {_Ud.M(xi)’] 30 Wy = {U'd\N(yj)Ej

by almost linear coordinate neighborhoods (U{M(xi),xl,,...,xn),

U'g (y ),yl,...,yr) such that the Christoffel symbols gl“g in
N 3 a
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Ud"M(xi) and the hrﬁr{l in U'd- (yj)vare bounded. The same is valid
for normal coordinates if we assume bounded geometry up to order 1.
Consider now £f€ C%(M,N). f induces the connection ¢ *#0y i the in-
duced bundle f*N which is locally given by

%h i 1
5 = V05 = o). (3.6)
A coordinate free description is given by
Ah h
(f V)X(Yf(x)’x) = ( Vf*XYf(X)’X)' (3-7)

Next we consider the condition

oL
$.#¥ bounded for IKI< mel, (3.8)
which makes sense if we refer to the coverings UtM’ UlN
of almost linear or normal coordinates. Then, assuming (3.4) resp.
(3.5) in almost linear resp. normal coordinates for hV , (3.8)
for m=0 implies the boundedness of the fah Vrk(x) A coordinate
free description of (3.8) form 1 ean be assured if we have
the boundedness of the partial derivatives of the Christoffel
symbols. Using the Jacobi field techniques of(6],[7], we can in
fact show that bounded geometry up to order m implies the bounded-
ness of the partial derivatives of the Christoffel symbols up to
order m in almost linear coordinates. The same holds for normal co-
ordinates if we assume bounded geometry up to order m+l. For the
reasons of place we can't present here the proofand refer to the
forthcoming paper [1] . Therefore we have to work here with
another notion of bounded geometry which immediately implies the
boundedness of the partial derivatives of the Christoffel symbols.
We say (M%,g) has c¥-vounded geometry with respect to a class of
coordinates q):U(XO)—’Tx M , provided it satisfies the condi-
tions (I) and -0
(Ck). There exists a radius J‘M’ 0¢ d‘M<ri} (M), for the chosen
class of coordinates such that with respec. to this class for eve-
Ty Xy €M the metric tensor g;4 on B{M(x ) pulled back to

J}SO) c TXOM is bounded in the C -topology, in particular the ma-
trices (gi ), (g 3) are bounded in the sup norm. We include the
case k=e0o with homogeneous Riemannian spaces as a class of exam-
ples. Then it is clear that (I) and (Ck) imply (Bk-2)' On the other
hand, (I) and (Bo) are for almost linear coordinates really stron-
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ger than (I) and (Co), they in fact imply (I) and (Cl) (cf.[6] ).
If we work with normal coordinates expx :B d(O)-——)Bd~(x ), this is
not true but (I) and (B ) imply (I) and® (C ). For k= &0 , assuming
the hypothesis (I), the conditions (Beg ) and (C°®) are equivalent,
both for almost linear and for normal coordinates. To guarantee the
boundedness of Dx* r}g we assume in the sequel Ck-bounded geometry
of sufficiently high order.

For £ @C*®*(M,N) induce €v and f*hV connections V in all tensor
bundles Tg(M)Of*‘T‘;(N). The differential df = f, can be considered
as a section of T* M@f* TN. Therefore is V™df well defined.

If (Mn,g), (Nr,h) have bounded geometry up to order O then the con-
dition df bounded, in local coordinates

lazl? = Btr(£*n) = & hlabafiabfj (3.9)
bounded, and éafi bounded are equivalent (since (Bo),(I) imply the
boundedness of the g, hij’(cf‘ L5373 ). But (3.9) can be under-
stood as a coordinate free description.

The assertions 3.4 - 3.6 are valid as well for almost linear as for
exponential coordinates.

Proposition 3.4, Assume (™, g), (NT,h) being open, complete, of

¢™ € _bounded geometry, f €C “(M,N), hldfl < % , Then the following
condltlons are equivalent.

a. A1l -&* £¥ are bounded, IX|€ m+l, k=1,...,r, (3.10)

where the derivatives are taken with respect to some uniformly lo-

cally flnlte atlas for M resp. N.

b. All -5—* (s (x) are bounded, \&l¢ m, a=1l,...,n (3.11)
i,j=1,...,1.

c. A11 VMaf are bounded, 04Mm <m. (3.12)

Proof. a. implies b.: We perform induction. For m=0 the assertion
coincides with (3.6). If we assume the assertion for /M-l & m

then it follows for by the assumption a. and the Leibniz rule.

b. implies c.: V here denotes the product connection of &V ang
bd hV . Then in local coordinates

V,ag =V 3 ¢ =3 d ¢F - e d £ + l_'kc) 119,23, (.13)

For/u.= 0 the assertion is just the assumpfion bld.f|<°0 . For
M= 1 the assertion follows from the equation (3.13) end the as-
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sumptions. If we assume the assertion for M4-1<4 m then the vali-
dity for/u\ follows from this, the /u.—l times derived equation
(3.13) and the boundedness of the Christoffel symbols of gV ,

t¥* P and their partial derivatives (for £ Py thig is just the
assumption b.). ¢ implies a.: For m=0 there is nothing to show.

For m=1 (3.13), the boundedness of the & ab, [;k, 3 £, 3,£9 ena
of Vaf implies the boundedness of the Bdf for IO(l‘ 2. From the
validity of the assertion for M-14m, [V/“‘dfl <o , the bounded-
ness of Tﬁr‘ab’ -ﬁd(é £K Pi(f(x)) x| £ end the M -1 times
derived equation (3.13) we obtaln the assertion for /Uf m.Qq
Corollary 3.5. Assume 1€p L oo , (Mn'g), (Nr,h) being open, complete
of C™°_bounded geometry, s>% + m and d4f Ep.ﬂ_o’s('l"'MQf*TN). Then
f satisfies a.,b.,c. of 3.4.n

Proof. From the assumptions and theorem 2.6 we obtain V’“df boun-
ded, O é/u £m. Q ‘

Corollary 3.6. Assume (Mn,g), (Nr,h-) being open, complete, of cS-
bounded geometry, s >§ +m and af €20L'0sS(1* M@ s® TN). Then £
satisfies a.,b.,c. of 34.0

4. Manifolds of mappings between open manifolds of ¢®-bounded
geometry

For complete manifolds (M%,g), (N¥,h) of CS-bounded geometry with
respect to normal coordinates we denote by C°°’S(M,N ) the set of
all f €C°°(M,N) which satisfy

sup lV/“dfl <9 0% s, (4.1)
xeM

where V equals to the tensor product of gV and f*hv . Suppose
now 0¢< d < Iy <ry j(I\I) z;s in section 3 and YEC®(£*1N) =

ﬂo(f"’TN) w1th b, f%h Y‘ = sup hly | < d . Then the

£(x)
xXEeEM
&y

mapping x — expf(x) Yt(x)’ i.e. 8y = exprof, defines an ele-
ment of C°°(M,N).

F - -]
More general, if sup | V™l - blYls<d\ , then gy €C *S(M,N).
x&M
o€
This follows from the following facts:

1. the Leibniz product rule for gy = eprcho
2, for /u-=1 there holds in By
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sinh(k, |V]) -
ldexp - P.ly # (2~ 1),

v

where - K2 €K & K2 and Pr denotes ‘the radial parallel transla-
tion (cf C.6] R E?] )s

. 1V2 expl=lVa expl =IPl ¢ const(rR, ¥R),
4. the higher covariant derivatives of exp are bounded since the
partial derivatives of the Christoffel symbols are bounded by the
assumption of ¢®-bounded geometry.
Remark. ln € const. already holds for Cl-bounded geometry.
We define

Py o (£) = {g€C 5(M,X) | There exists an ¥ €°0%'%(£¥ 1N)
’
such that g = gy = exp,Ye f and blYl <d

and set blf gl = blYls.

Lemma 4.1. The system of all Ud‘ s(f) Ocd‘é&<r ;j(M)’
£EC®°S(M,N) forms a base of neighborhood filters for a locally
metrizable topology on C°°*%(M,N).

Proof. The only nontrivial fact that remains to show is the follo-
wing: For each bUi (f) there exists an bU (f) such that UE s(i‘)
is a neighborhood for each geb (f), i. e. there exists a ' =
= T'(g)< § such that bu.c. s(g) cbui (£). Suppose g—gYebUg S0,
f*TN and g*TN are for ¢ sufflciently small canonically isomorphic
since f-fo and g-fl are canonicelly homotopic by the smooth and
end up to order s+l bounded homotopy f,, ft(x) = expf(x)t-Y, i.e.

f, satisfies (4.1). Therefore there exist positive constants

t
C C such that

1’
C, sup IV/“‘Y'If £ supr""Y'\g € C, sup | VM Y'l , (4.2)
0fm €5 O=pm =8 -/u =s
where ‘ |f indicates that intoVand the pointwise norm enter-

tABY sxy  The same holds for L . [g
Now we set t-— -Z% Then Ug/4c (g) C Uis(f)
If g' = gy € Ug_/4c (&), thdn
bls - s'\ﬁ < Plg - g|§ + Plg -g'\g < -§+ b|Y'|_£ <

ot £
fFrom -2 <t o

Let PALS(M,N) be the completion of C*’S(M N). The neighborhoods
in PALS(M,N) shall be denoted by U (£).
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Proposition 4.2. Suppose (M%,g), (NI;!h-) being open, complete and
of C%-bounded g_gometry, s>]1, Then b.n.s(M,N) is a Banach manifold.
Proof. Set T,°L°(M,N):= PO 9(£® IN). Then Y —sgy, gy(x) =

= efo(x)Yf(x) -—-(expro £)(x) is for 0 ¢ d‘-‘-b“N a homeomorphism
vetween Bg(0) & °NO*5(£*1n) ana PUZ(£), i.e. & chert. Thet the
transition mappings are C *° (in the Banach category) can be esta-
blished in the same manner as for M,N closed.©o

In similar menner we can work with b.ﬂ.o’s(f'TN) and obtain a Banach
menifold °NL3(m,N).

The next case is given by 1€p ¢ e , We start again with
c=*5(M,N), M and N of C%-bounded geometry, s21. We set for
t€c™S(u,N), cedy,

p = {p=p. = | pH 0 *
Ug,o(f) = {e=gy = exp,Yo £\ YE _{)_s+[%]+2(f TN) and

plYls+[%]+2 < i-‘l ’

where p(Ylk = i' (I(V/“‘Ylpdvol)l/p, V- Vl -t*hy for

M2 = composﬁi n of f*hv and of the tensor product of gV

and £*0yg,

Lemme 4.3. The system of all pUg,s(f)’ ch<d‘N, £ EC%°S(M,N),

forms a base of neighborhood filters for a locally metrizable to-

pology on ¢ S(u,N).

Proof. Assume at first s*2. C®-bounded geometry for s22 implies

(I) and (Bo) for M, the Sobolev embedding theorem 2.6 is applica-

ble and Yep.l’lg+[__r_1_]+2(f"'TN) implies Y €PNC*3(£* IN). Therefore
p

Pui 5(£)¢ €™ *3(M,N). The compatibility condition with respect to

p[ ,| again follows from (4.2). If sX1 then (Bo) is not guaranted.

But C -bounded geometry still implies the boundedness of the Jaco-

bian dexp, and this fact, which is part of the Rauch comparison

theorem, is needed during the proof of 2.6 (cf. C2 3] )e u

Let PfY%(M,N) be the completion of C®°*5(M,N) and puz(f) the com-

pleted neighborhoods.

Proposition 4.4. Assume (M%,g),(NY,L) being open, complete and of

c%-bounded geometry, s*1. Then p_ﬁ_s(M,N) is a Banach manifold.

Proof. If fepﬁs(M.N) then by construction f Gb_ﬂ.s(M,N). Set

7 PR (M, N):= PTL0:8+/PI+2( e py) € PN 0+8(£# IN) continuously.

The map Y—>g, = exp,Y ©f defines a homeomorphism of some open ball

Bg(0) € P_ﬁ_o'g*f-n/mh(f* TN) =T; onto some PUE(£). The smoothness

of the transition maps follows as in the case M,N closed, since

according to our_assumption the Sobolev embedding theorem is valid.g
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Working with PAOS+ER/21+2( ok qyyy instead of RNOSHN/2142(saqy),
we obtain Banach manifolds HJ{S(M,N) ¢PN5(M,N). Theorem 2.2 then
immediately implies

Corollery 4.5. If (M%,g),(N",h) have cS+In/2342_p o inded geometry
then RAL2(M,N) = PSY(, ). '

Proof. The assumption implies (I) and (B
- pa 0,s:+tn/2]+2(fa&,l,N).°

Corollary 4.6. Assume p=2 and the hypotheses of 4.4. Then

s(M,N) is a Hilbert manifold. If we additionally assume the hy-
pothesis of 4.5, then 2N°(M,N) = 205(x,N).q
Working with the powers of 1+ A instead with the powers of v ,
we obtein Hilbert manifolds 2.01'5(M,N) end 241'(M,N).
Theorem 4.7. Suppose all hypotheses of 4.6. Then

S(,N) = 2SN = 20150 = 2A5, ).

Proof. Corollary 2.5.0Q
Instead of starting with C°°’S(M,N), we could start with

PA0,s+ln/23+2, #pps

Pelss+Ln/23+2(y vy - (¢ € clu, M) larePnl s +0n/ 212 (mygr¥on

1f (M?,g),(NT,k) have C5-bounded geometry then £ E&C*°(M,N). The
seme procedure as above then yields manifolds PsP )S(M,N), i.e. we
introduce manifolds of p-integrable meppings (i.e. the differenti-
als and their derivatives are p-integrable) which are completed
with respect to the p-norm.

All the concepts above are applicable to sections of fibre bundles
E-—E+ M if we assume that M,E and the vertical bundle TvE have C°-
bounded geometry and the fibres are totally geodesic. The case of °
the product bundle M XF—>M just corresponds to the case above:

A section can be identified with a map (£,id):M—> MX F. For an
arbitrary fibre bundle which satisfies the above geometric assump-
tions we consider the set C°°’S(E3 of smooth bounded sections, de-
fine metrizable neighborhoods by composition with the exponential
map in the vertical bundle and the fibres and perform completion
as_ebove. Thus we get Banach manifolds bZiS(E),bjis(E),pjiF(E),
piﬂ?(E), in particular Hilbert manifolds %fis(E) 22 S(E). We
conclude this section with the assertion which was the main motiva-
tion for the whole paper. '
Proposition 4.8. Assume (M®,g) being open, complete, P(M,G)—> M

a principal fibre bundle, T = P’XdG' If M,P,TVP have Cs—bggnded
geometry and the fibres of P are totally geodesic,® then %fls(f)

is a Hilbert manifold.
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. gfis ~ e s
Remark. Keep in mind that (P) by definition above consists of
mappings of Sobolev class s+cp/2]+2. Furthermore, for f homotopic g

in PSUS(M,N) there holds f£™INZg*TN end T,2T .
f g

5. Groups of diffeomorphisms

As we have seen until now, the assumption of sufficiently high
bounded geometry allowed to establish the manifold property for the
space of smooth bounded mappings between open, complete manifolds
(M*,g),(NT,h}. If we restrict to bounded diffeomorphisms, there
arise additidnal difficulties. This subset is not longer an open
subset. But, if we restrict to diffeomorphisms which are bounded
from below tdo, then we again get an open subset and a manifold
structure. ‘

Suppose (Mn,g) being open, oriented, complete, of ¢%-bounded geo-
metry, s >n/p +2. Then we set

PO (m) ={f61&iS(M,M)[f'is one-one, orientation preserving and
£71€ PSS (a0
and

S
prb(M?,={f€pvos(M)'Xjénli"I lazl_ > of.

"bb" means the norm of the differential is positively bounded
from below. The situation will be cleared up by

n PDS. ; pfis
Theorem 5.1. If s>n/p +2, then bp 1S open in (M,M).
Corollary 5.2. POF, (M) is a menifold.a
The proof of 5.1 will be prepared by
Lemma 5.3. Suppose (Mn,g) being open, complete, connected, of cS-
-bounded geometry, s>n/P +2, f:M —M a Cl—diffeomorphism and

g:M—M a local Cl-diffeomorphism which can be connected with f by
en arc in PN%(M,M) of local C -diffeomorphisms. Then g(M) = M.

Proof. Fix some point z€M and consider the open metric balls
B, = B(2) = {x€M|a(x,2){k) . Then BjCB,C*+ ana UB, = u.
Moreover,f(Bl) Cf(Bz)C"' and

VY ot = (5.1)

2

since f is a diffeomorphism. Consider an arc {g£30=t=1 of local
Cl-diffeomorphisms between f and g, f=go, g=8 - By the Sobolev em-
bedding theorem we have PN10S(1m) “PNC:1(1M) continuousiy,

Plyly = c-Pllyl . Pix o < ¢ J'Mcr.nj(M) end after that 0 < {§<d,
such that C-. JB <€ <r0‘ The arc {g£§t can be covered by a finite
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number of neighborhoods pu.sd-.(gt }, i=0,...,T, t5=0, t. = 1. We
set g, = g . According to th® detinition of local neighborhoods,
this i%iplies the ‘existence of Cl-vector fields Yi’ i=0,y ..., 7-1,
b‘Yill < J\O’ such that the mapping x —g(x) is given by

x"’f(x#gO(X)_’engo(x)YO_’engl(x)Yl_) eve _)engr_l(x)Yr-l’ (5.2)

where gg(x) = exp, Yo _3» §=1,...,T. Suppose now yoeM\ g(M),
d(yo,z) = €. Then we~3hoose k such that k- £> 2r d‘o and m >k such
that £(B_)>B,. (5.2) implies

d(£(x),g(x))< r-J‘o. (5.3)

A1l gt(Bm) are open manifolds. (5.3) now yields -

g1(Bp)=e(B )3 By (ro: Besr o

which contradicts y°¢ g(M).

Proof of theorem 5.1. Since s> n/p +2 we can represent all

g €PN%(M,M) by bounded Cl-maps. Suppose fE& p.O.ib(M), infldf[x> 0.
According to the continuity of inf |df|_ as a functioh of ¢,
there is a contractible neighbo?heo%ld Uu(f£) ¢ PAS(M,M) such that
inf ldglx>o. According to the inverse function th_eorem, consists
ﬁeo¥ local diffeomorpisms. Lemma 5.3 now yields that each g€U is
a surjective local Cl-difi’eomorphism g:M—M, i.e. a covering map.
f has the leave number 1, by continuity the same holds for g, g
has to be a diffeomorphism. a

Remarks. 1. Lemma 5.3 becomes false if we do not observe the spe-
cial topology in p.ﬁ.s(M,M). Consider, for example, M =R, f = id:
R—R and the"arc" {gt}oétfl’ gt(x) = t.arctgx + (1-t)x. f=gy=1idg
is surjective, each 8¢ is a local diffeomorphism, but gl(x) =

= arctgx G]-TI‘/2, 1!'/2[ is not surjective. The reason is evident.
The above"arc" is not an arc in our topology, since during a t-in-
terval of length d a point x moves through an interval of length
éltr-xl— M/2 which becomes arbitrary large for Ix| sufficiently
large. In our topology, & point x moves during a d-interval
along a way of bounded length, independently of x.

2. Theorem 5.1 becomes definitely false if one replaces pon.ib(M)
by PDS(M) (for closed menifolds they coincide). Let ¥,

0€t £ 00 , be a geodesic ray in M, Tzc Tl tubes of ‘radius e"ztc e
around h" and f a Cl—diffeomorphism which is outside some neigh-

/t
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borhood of Tl the identit{ and maps Tl onto T2. Then every neigh-
borhood of £ contains a C -map which maps Tl onto T2 and additio-
nally T2 onto Y for t®a sufficiently large. One has to choose the
latter map in a Cl-manner; i.e. by some radial contraction and along
some vector field which touches ¥ (t) at least of first order. We
omit the simple and more or less standard details.

Many further questions concerning manifolds of mappings between
manifolds are still open and under investigation. We devote them
forthcoming papers.
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