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ORNSTEIN-UHLENBECK PROCESS IN QUANTUM MECHANICS 

AND THE SUB-QUANTUM COHERENCE EFFECT 

Jiří Souček 

1. Introduction 

In this paper we propose the more refined version of Quantum Mechanics (QM), 

which contains QM as a limiting case. After claryfying the mathematical and physi

cal basis of this version we discuse the possible observational differences from 

QM, mainly the so-called subquantum coherence effect. 

From equivalent formulations of QM the Feynman's formulation [1] serves best 

for our goal. By this we mean the following. At first, to each possible trajectory 

of a particle there corresponds its amplitude exp iS . At second, it is supposed 

that each trajectory contributes with the equal weight to the total amplitude of 

the transition (of a particle from one space-time point to a n o t h e r ) . Then the pro

bability of a transition is calculated as a squered modulus of the total amplitude 

of the transition. In fact, we shall take the first part of the principle (plus 

the rule P = |<J>| ) as valid but we shall change the second part of the principle. 

We shall propose a physical mechanism for the explanation of the fact that 

the quantum particle can follow different paths. The mechanism is based on the use 

of a concept of a random force acting on the particle; mainly we shall construct 

a quantum analog of the Ornstein-Uhlenbeck process (which itself is the more rea

listic description of the Brownian motion than the usual Wiener p r o c e s s ) . 

At the second part of the paper we shall propose the physical origine of this 

random force using the idea of a medium composed of tachyons inside which a par

ticle moves. As a consequence we obtain as a typical phenomenon the subquantum 

coherence effect. It says that the time-correlated group of particles (for example 

a very short lazer puis) can behave, in certain circumstances, as a unique quantum 

particle. It means that in the diffraction-like experiment all the group (ideally 

-practically only the main part of the group) enters in the same scattering chan

nel. 

All this can be seen differently. We divide QM into two parts. We take as a 

granted the Feynman's rules for the probability amplitudes. After this there is 

This paper is in final form and will not be submitted for publication else

where. 



326
 J1^ SOUCEK 

still the
 f
second mystery of QM

f
 - the non-deterministic ( d i f f u s i o n - l i k e ) behavior 

of the evolution of the probability amplitude (Schroedinger e q u a t i o n ). We con

struct the appropriate origin of this
 f
diffusion

1
 (in terms of the probability 

amplitude, of course) and make hypotheses on the corresponding medium. 

From the third point of view we introduce a new sort of hidden parameters 

with statistical properties governed by the distribution of a probability ampli

tude. We obtain that this sort of hidden parameters is quite possible (there are 

no Bell i n e q u a l i t i e s ) showing that our theory may be arbitrarily close to QM. 

In our theory particles are point-like objects with wave-like behavior attri

buted completely to the fact that their statistics is governed by the Feynman
f
s 

laws for probability amplitudes instead of the usual Kolmogorov
f
s axioms for pro

bability. This is in an agreement with the trivial observation that the particle 

-like properties of a quantum particle can be found in the experiment with the 

single particle (for example the observation of its trace on a screen) while the 

wave-like properties can be found only in the experiment with the ansamble of par

ticles (for example the interference p a t t e r n ). This shows that the wave-like pro

perties can be attributed correctly to the statistical properties of an ansamble 

(in the sence of Feynman
f
s rules for ampl i tudes ). In our theory there is no wave 

packet reduction during the measurement. 

In the second chapter we give the description of the Ornstein-Uhlenbeck pro

cess using the path integral and in the third chapter we give its quantum version. 

In the next chapter we discuse the possible tachyonic background in QM. Then we 

introduce the subquantum coherence effect and propose its possible observation. 

At the end we sum up our interpretation of QM. 

2. Ornstein-Uhlenbeck process and path integral 

The Brownian motion can be conveniently described using the path integral. 

Let x ( t ) be a trajectory of a Brownian particle determined by the Newton equation 

( 2 . 1 ) mx" +
 Y
x - F ( t ) 

where Y
X
 is the friction term and F ( t ) denotes the random forse executed by 

the medium on the Brownian particle. In the Wiener process we neglect the inertial 

term mx and ( 2 . 1 ) reduces to the Langevin equation 

(2 .2 )
 Y

x = F ( t ) . 

The probability K(x. | x
n
; t ) of the transition from the point x into x. 

during the time-interval t can be calculated knowing the distribution of the 

random force. The white-noise distribution is usually used 

f 
(2.3) e ° flF 

§ I F ( т ) 2 d т 
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where 

0F = n dF(x) 
T € ( 0 , t ) 

is the fFeynman measure1 on the space of paths. Only trajectories obbeying the 

boundary conditions 
x(0) = x 

(2 .4 ) BC : 

x ( t ) = xx 

contribute to the transition probability (with the weight ( 2 . 3 ) where the corres

ponding random force is given by ( 2 . 2 ) ) . Using the discrete time approximation to 

the path integral we see that 

(2 .5 ) 0x = £)F . 

It follows that 

K(xx | xQ; t) = N 

BC 

where fthe action1 is given by 

t 

í -SCx] 0 e fjx 

S[x] = | | (үx 

0 

This Gaussian integral can be calculated by 

(2.6) K = Ne"
S
 , 

where S = S[x] is the action evaluated for the classical path x(t) with bound

ary conditions (2.4). We obtain, of course, the heat kernel 

2 ( xr xo } 

a 2 1/2 -aY
Z \ U 

K(Xĵ  | xQ; t) = const. (̂ ~) e 

(The normalization factor N was calculated from the conservation of the total 

probabil i ty.) 

The Ornstein-Uhlenbeck process starts from the complete Newton equation ( 2 . 1 ) . 

By the same argument the path integral to be calculated is 

t 
a Í •• • 2 
• - (mx + үx) dt 

( 2 . 7 ) | e
 w

 g)x 

BC 

assuming the same distribution (2.3) for the random force. Now
 f
the action

1 

t 

(2.8) S[x] = | J(mx' + Y X ) 2 dt ' , 

0 

contains the second time derivative x , so that the natural boundary conditions 

are 
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x(0) = x Q , x(0) = v Q 

(2 .9 ) BC 
x ( t ) = x^ , x ( t ) = v̂  . 

Consequently the transition probability depends on initial and final velocities, 

too 

K ( xr vl I V V t } • 

Using the formula (2 .6 ) we see again that the equation 6S/6x = 0 determining the 

classical trajectory x ( t ) needs the boundary conditions ( 2 . 9 ) . In this way we 

obtain 

(2.10) K(x x ' V l 
| x 0 . v Q ; t ) • • N exp • м-i " V 

1 - e" 

^ p 

•43t 

^Ґ 
+ 

"(ß(x -v-
vo + 

2 

V l 
2 

t h З t ) -

Зt -- t h З t 

LgЄПS hype :ГbolІCUS, 

N = ( ß t - t h З t ) " 1 / 2 ( l - e - 4 ß t ) --1/2 ^ 

í 
where th 

t 

Here the natural time unit 1/3 is given by 

(2.11) 1/3 = m/y . 

For long times t >> 1/3 the transition probability is close to the transi

tion probability of the Wiener process times the Maxwell distribution in veloci

ties 

2 O
( x r x o ) 2 

av. (2.12) K(xx, vl | xQ, vQ; t) = t
 1 / 2 e l e t 

where the initial velocity is completely forgetten. 

For small times t << 1/3 we have a picture completely different from the 
3 

Wiener process. We have St - thSt ~ (St) so that the mean distance and the mean 

velocity behave like x ~ t , v ~ t (for the Wiener process we have 
- 1/2 — -1/2 
x ~t , v ~ t for all t ). The Ornstein-Uhlenbeck trajectories are more 

— -1/2 regular than the Wiener trajectories. The small time singularity v ~ t is 

the mathematical artefact, because the Brownian particle must be described by 

(2.1) and not by (2.2). The origin of this singularity lies in the neglecting the 

inertial term mx in (2.1) ( m ~ 0 implies that the arbitrarily small force 

gives the particle the large velocity limited only by the friction force). 

3. The QM-analog of the Ornstein-Uhlenbeck process 

The similarity between QM and the Brownian motion is well known [2]; the 

difference lies mainly in the use of the probability amplitude instead of the 
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probability (the Feynman approach to QM). We have seen that the Ornstein-Uhlenbeck 

process is the more realistic description of the Brownian motion than the Wiener 

process. 

Our aim is to construct the quantum analog of the Ornstein-Uhlenbeck process. 

We consider the quantum particle as a poi-nt-like object with the behavior descri

bed by the distribution of the probability amplitude. 

Of course, we cannot use the concept of the friction force, because it breaks 

the Galilean invariance of the theory. Instead of the friction term we have the 

Feynman principle in QM: 

(i) probability amplitude for the path x(t) , 0 ^ t ^ t. is given by 

i/fi S
Q
[x] 

ampl. [x] = const* e , 

(3.1) 
S

0
[x;0,

tl
] = | J x

2
dt 

We interpret it as an amplitude of the presence of a particle. Given that the par

ticle is surely (i.e. with prob. = 1 ) at the point, say x , we have still the 

freedom of a choice of a fase <f> = e , a real, of this presence. The principle 

(i) than says that the amplitude of the presence of the particle <J>(t) changes 

when the particle moves along the path x(t) by the rule 

i/fi S [x;0,t] 

(3.2) <|>(t) = e
 U

 • -<K0) • 

The second part of the Feynman's principle says that having (i) than every 

trajectory contributes with the same weight to the transition amplitude. 

Instead of this we shall suppose: 

(ii) There is a random force acting on the particle so that instead of the iner-

tial motion x(t) = 0 the particle moves along x(t) given by the Newton 

equation without the friction term 

(3.3) mx = F(t) . 

We shall suppose that the distribution of the random force is governed by the 

probability amplitude 

"I ti 

І?| F(t)
2
dt 4 

(3.4) e ° ÖF 

We have $F = const S)x as above. 

So that the resulting amplitude of an event [traj. of part. = x(t)] is given 

by (see (3.1), (3.4)) 
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ifh S[x;0,t. ] 
e L ÍĎx , 

(3.5) tl 

SLx^.tj] = í (f x 2 + | m 2 x2] dt . 

O 

The transition amplitudě 

(3.6) K(xx, vx | xQ, vQ; t ) = Nt J 

BC 

±Пí S[x;0,t]
Э x 

depends naturally on the initial and final positions and velocities as before, so 

that boundary conditions BC should be ( 2 . 9 ) . Using the classical trajec

tory x ( t ) (defined by ( 3 . 3 ) and ( 2 . 9 ) ) in the calculation of ( 3 . 6 ) we obtain 

i/tl S(x ,v |x ,v ; t ) 
(3.7) K(xx, v1 | xQ, vQ; t) = N ^ U U 

(v - v ) 2 

(3.8) S(x x, V l | xQ, vQ; t) = f-3 [ t h 3 f ( v 2 + v 2 ) + \ 2 £ > ] + 

v + v 2 

(xi " xo " —u~ thet^ 
+ m , 

t - i th3t 

(3.9) N =const-(1 - e"4 3 t)"1 / 2(3t - th3t)"1 / 2 

where the natural time unit 1/3 is given by 

(3.10) 32 = i- . 
am 

Now it is natural to consider the amplitude distrubution 

<Kx,v;t) 

as a "subquantum wave function" with the law (expressing (3 .2 ) ) 

(3.11) *(x1,v1;t) = J K(xx, V]_ | xQ, vQ; t ) ^ ( x 0 , V ( ) ; 0 ) dxQ dvQ . 

The corresponding Schroedinger (or evolution or Focker-Planck) equation reeds 

2 
(3.12) ±hd 1> = f- mv2 - itv8 - — n282 + ifeal* . 

t v x m v J 

We see that this equation has a deterministic character in 3 (9 enters in 

(3.12) in the first degree - not like 8X in the usual Schroedinger equation), 

but the origine of the diffusion is in 9-̂  . Initially the diffusion takes place 

in the velocity and then enters also in position by the term iv9 
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Contrary to the situation in the preceeding Chapter the initial velocity vn 

is not forgotten; moreover, the process (3 .7 ) is time - reversible 

(3.13) K(xx, vx | xQ, vQ; t) = K(xQ, -vQ | x ^ -v^ t) . 

For long times t >> 1/3 we have (with "h = 1 ) 

2 2 
,,,_.' ^ .. m V0 + Vl , |u (x - v/g)

2
 u

 Vl + V2 
(3.14) S - - _ + >-___,„ , v -

2 __ 2 0 

m V0 + Vl , x2 

-1—2~ + m r 

because the typical orders are v s /& , v/3 = 1//3 , x ~ /t >> 1//I . We obtain 

the Schroedinger propagator times the "amplitude" Maxwell distribution in vn and 

v i • 

QM is the limiting case of our theory. This can be seen simply from the be-

gining. If a ~ 0 , than in (ii) every random force F(t) contribute equally and 

(ii) comes back to the original Feynman assumption that every trajectory comes 

with the same weight. 

4. Tachyonic background in QM 

Now we came to the question of the possible origine of the random force F(t). 

By the analogy we could suppose that the point-like particle moves in a certain 

medium (governed by the statistical law given by the probability amplitude). 

Clearly, this medium cannot be formed from observable particles. Another important 

property is that the random force F(t) depends on time, but does not depend on 

the position x ( t ) of the particle. 

We think that for this purpose serves very well the idea of a medium compo

sed from tachyons. This is a rather strange idea, but something really strange is 

needed in this situation. 

Now we shall report some properties of tachyons from [3]. The most important 

property is the impossibility to localize a tachyon. This means that the usual 

localized wave packet cannot be constructed. The classical approximation and other 

arguments [3] show that the "classical trajectory" of a tachyon (which should 

enter in the path integral for tychyons) is given by 

( 4 . 1 ) t = t ( x ) . 

Say t = v x for the inertial motion. Things are clearer in the non-relativistic 

approximation which gives infinite velocity to each tachyon. The trajectory of 

such a tachyon in the space-time ( x , t ) is given W 

(4.2) t - t_ . 
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The strength of the interaction of any object with the particle in our labo

ratory is proportional to the part of its wave function entering the laboratory, 

so that we can suppose that the interaction is proportional to 1/Nn > where 

•» 
f. ON XT volume of the Universe 
( 4 . 3 ) Nn = k 0 volume of the laboratory 

Thus the effect of the interaction with any particular tachyon can be considered 

as negligibly small : a tachyon is not observable. This allows us to suppose that 

there may be, in fact, many tachyons in the Universe. But the collective effect 

of the interaction with many (say N ) tachyons need not be small. 

On the other hand we must not forget that each tachyon in the Universe (with 

the trajectory ( 4 . 2 ) , where 0 ._ tn ^ t. ) enters partially (like 1/Nn ) into 

our laboratory. 

In conclussion : the influence of any particular tachyon is negligibly small, 

but the collective influence of many tachyons (all tachyons in the Universe with 

0 ^ t ̂  t. ) can be considerable. The non-relativistic trajectory (4 .2 ) corres

ponds well to the assumption that the random force F( t ) does not depend on x . 

We are not able to propose a more concrete form of the interaction between 

a tachyon and a particle. We shall represent it by the random force term as above. 

A possible consequence of our assumption on the tachyonic medium will be conside

red in the next chapters. 

A natural question is how many tachyons there may be in Universe for a unit 

of time (say for 1 meter in units with c = 1 ). An idea of an order of this quan-

tity may come (by analogy) from the fact that there are roughly 1 baryon for meter 

in the Universe. In this way we 'obtain1 an estimate 1 tachyon for meter/c . 

Generally, having the fact of the non-observability of any individual tachyon, 

there is no obstacle to suppose there are many tachyons in the Universe. Thus the 

collective effect of many tachyom can be, in principle, observable. The question 

is : what sort of an effect it could be? Our proposal is the following : it is not 

a new effect, it is an effect well known from the begining of QM, namely, the 

phenomenon of the indeterminism of QM. (For the discussion of hidden parameters, 

see Chap. 7 . ) 

5. The subquantum coherence effect 

We shall consider now the system of n independent particles. We can suppose 

generally that the random forces F . ( t ) = mx. are independent. We have their di

stribution 

ia )' I Ft dt ïH *>F. ... S)F 
1 n (5.1) exp 

Clearly, they cannot create correlations between particles, because from (5.1) we 
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have 

(5 .2 ) K(x{,v[,...,xn,vn | x1,v1,...,xn,vn; t) = n K(x£,v^ | x.,v..; t) . 

The situation is more interesting if we consider the physical..origine of the 

random forces F . ( t ) proposed in the preceding chapter. The forces F . ( t ) , 

1 ^ i <= n have their common root in the interaction with the tachyons ( 4 . 2 ) . We 

can make then a reasonable assumption that forces F ( t ) are correlated, so that 

we shall suppose, instead of ( 5 . 1 ) the following (ampli tude) distribution for them 

(5.3) exp i{-ji l J(F. - F ) 2 dt + -̂  J F2 dt} , 

where F denotes the mean force 

(5.4) F(t) = ± I F ( t) . 

i 

We shall suppose that 

(5 .5 ) a][ » aQ ; 

this means that typical forces F . ( t ) are (in a given i n s t a n t ) closed one to 

each other. 

Consequently we have two time scales 

(5 .6 ) l/3n « 1/3, , 3, = -i- ., i = 1,2 . 
0 1 l a .m 

During the time interval l/3n the initial mean velocity is forgotten, while at 

1/3, the initial correlation of velocities (if there e x i s t s ) is lost. 

We shall study the evolution of the system during the intermediate time inter

vals At 

(5 .7 ) 1/3Q « At « 1/3X . 

(In fact, only 3,t << 1 is essential in the following argument.) 

It is clear that forces distributed by ( 5 . 3 ) will create a correlation in the 

'sub-quantum' wave function 

(5 .8 ) *<x1,v1,...,xn,vn; t) 

of the system during time intervals of order At (this correlation will be lost 

at longer t i m e s ) . Equivalently, the formula (5 .2 ) does not hold in this case. 

For the simplicity we shall describe only the limit case 

a = °° 

for the evolution during At . We shall show that the repeated localization of 

positions of our particles at instants 
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(5.9) tQ > tQ , tQ - tQ ~ At 

will create the correlation of velocities of particles. 

We shall consider the selection by two slits like in Fig. 1. 

= > = > 
1 ' outgoing 

incoming 1th slit 2nd slit correlated 
beam F±g> l beam 

We use, in fact, the 'space-time slits' (y^n) > (y',t:n^ which select particles 

with trajectories fulfilling 

(5.10) x.(t0) = y , x.(t') = y\ 

(We consider the ideal experiment with the exact localization of positions of par

ticles at instants tn , t' .) 

Let us suppose that two particles (say first and second ones) have passed 

through both slits (i.e. were selected in the preparation part). From (5.3), (5.7) 

and a = °° we have F (t) = F (t) , x (t) - x (t) = 0 and using x (t ) = 

x_(tn) = y we obtain 

(5.11) xx(t) - x2(t) = [^(t^ - x2(tQ)](t - tQ) , tQ < t < t̂  . 

By the condition x (t') = x_(t') = y' we obtain 

VV = i2 ( t0 ) 

and, as a consequence, also 

(5.12) xx(t) = x2(t) , tQ < t < tQ + At . 

(This holds only in the approximation a. = °° , of course.) 

After the first slit the wave function (5.8) must have the form 

(5.13) n 5(x± - y)())(v1,...,vn; tQ) , 
i 

while after the second slit the wave function will be 

(5.14) n 6(x - y') n 6(v - v ) cf)(v ,;t') 
i i>2 

with the correlated positions and velocities. 

Now we shall measure the positions of our particle at the instant t" > t' , 

t" - t' ~ At . By (5.12) we see that in t'' the wave function will be of the type 
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(5.15) IT 6(x - x ) n 6(v. - v.)(Kx ,v.;t'') . 
i__2 i__2 

So we shall find the correlation of the particles' positions in t" . After pas

sing the preparation part of our experiment the group of particles moves coherent

ly, like a unique quantum object (during "time intervals of order At ). 

Since a = °° is the rather crude approximation, we shall give a more exact 

treatment for the case of two particles. Let the amplitude for the path x.(t) , 

x (t) in the time interval t = t' - tn is given by 

exp i { ^ J(F_ + F_) 2 dt + ̂  J(F_ - F Q )
2 dt + f J(x_ + x2) dt} 

where F = m x , F = m x . 

Using substitutions /2 zn = x. + x_ , /2 z, = x - x , /2 wfi = v. + v_ , 

/2 w = v. - v_ the path integral reduces to (3.7). The resulting formula simpli

fies if we use the assumptions 1 << 3nt , 3,t << 1 and their consequences 

th3Qt = 1 , sh23nt = °° , (th3nt)/(3nt) = 0 , (tt^-O/^t) = 1 and 

th3 t 
(5.16) x . - A - . l B 2 t 2 . 

In this way we obtain (using the notation /2 z' = x' + x' etc.) 

(5.17) K(x|,v^,x^,v^ | x1,v1,z2iv2; t) = Nt exp i/ti S , 

___ , 2 w~ + w' 
- „ m , 2 ___ ,2, ___ -lr , 0 0>> , 
S = 2R-(w0 + vj ) + mt (zj - zQ - - Җ — J + 

0 

2 

+
 _f- [8

lt
(„

2
 + w_

2
) + %^~]

 + 

+
 TT&i'-i-l<VPf-

6
i

t 

In the case of our two-slit preparation we have z = /2 y , z = 0 , z' 

/ 2 y ' , z' = 0 .and thus 

__. f 2 

r~ w + w \ 
(5.18) S ~ ^ ( w 2 + W(_

2) + • . t~1[/2(y' - y) - 0_,g °j + 

+ _f^H2 + w2 + K-v2] • 
We see that for 3,t « 1 a good correlation is obtained for velocities vj - v' 
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2 2Bi1i 

(5.19) w, ~ — B . t . 

In the case of the measuring part of our ideal experiment we must consider 

the propagator in the time interval 

(5.20) t = tg - t£ * At < 1/3X 

with condition z' = /2 y' , zj = 0 . From (5.17) (written for t' , t" ) we 

have (w" - w!) z 43]hm" 3,t and thus also wj + w" = (huT 3? t) 1 ' 2 . From the 

last term in (5-17) we obtain (using also (5.20)) 

h t , 1 / 2 

,» = t/2(wí+W») + (f) ßlt 

, 1/2 1/2 
-const (—) $lt Sconst (—) 6^ . 

6. Possible observational differences between QM and the proposed theory 

The main difference is in the short time behavior of the propagator (3.7). 

This needs measurements repeated in the short time interval of order 1/3 . But in 

the quantum theory the short time behavior is obscured by many effects and it is 

not a simple task to decide that a certain short time behavior contradicts QM . 

We think that the subquantum coherence effect introduced above may serve 

better for this purpose. It is not difficult to see that this effect contradicts 

strictly QM . In fact, after the second slit the QM-wave function is of the type 

(6.1) i | j ( x 1 , . . . , x n ; t ^ ) = n 5(x± -y') 

and does not depend on the existence of the first slit (only the intensity of the 

beam is lower). There is no possibility to introduce a correlation among particles 

into the wave function (6.1); QM predicts the independent amplitude distribution 

for particles and this excludes any sort of the coherence. In QM the amplitude 

diffusion (described by the Schroedinger equation) is absolute, without any under

lying mechanism, and thus it is independent for different particles. There is 

another advantage of this type of an effect, namely that the time constant is 

1/3, > which may be quite greater than l/3n . 

We propose to make a systematic search for effects of the type of the sub-

-quantum coherence. The main problem is to insure the * space—timef character of 

the slits in the preparation part of the experiment (this is necessary for crea

tion of the coherence). The time localization of particles at the slits may be 

obtained using a very short lazer puis and assuming that the 'sub-quantum1 velo

city of photons is always c . 

The main ingredients of such a type of an experiment are: 
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(i) the shortest possible puis of the beam of particles (the duration of the 

puis should be smaller than l/3n )> 

( i i ) the two slits creating the sub-quantum correlation, 

( i i i ) any usual instrument separating particles into different channels. 

The result loocked for is the following. QM predicts the probability p for 

a particle to enter into the i-th channel. Let us suppose that n. particles were 

found in the i-th channel, n = En. being to total number of particles. From the 

mutual independence of particles we know (the normal d i s t r i b u t i o n ) that fluctua

tions are of order 

( 6 . 2 ) i 1 

- " - P - | S / S 

The usual puis contains an enormous number of particles, so that (6 .2 ) is very 

small. 

The pure coherence effect says that all particles of the puis will enter into 

one channel, i.e. that n. = n , n. = 0 for i ;- i_ for some i~ . Of course, 
ifj l 0 0 

we can expect only a partial coherence effect. So we suggest 

(iv) to measure the number n. of particles entering into the i-th channel and 

to calculate the observed fluctuations 

I ni I ( 6 . 3 ) AP. = | - - p . | 

Oi 

(v) to repeate the experiment and to find that the mean value of Ap. exceeds 

the limit given by ( 6 . 2 ) . 

In fact, the total number of particles need not be known with the sufficient 

accuracy, so that we prefer to use the relative probability between the i-th and 

j-th channels 

(6 .4) 
ťi ~ "i 

8ij Pj ' 8ij n^ 

We have similarly to (6 .2 ) 

( 6 . 5 ) |~ 1 -1/2 

The goal is then to find that the observed mean fluctuations 

(6.6) &±J = |g±j - g ± j | 

exceed the bound (6.5). The observation of the fluctuations exceeding their quan

tum mechanical values indicates clearly the tendency of particles to enter into 

the same channel. 

There can be also another indication: the dependence of fluctuations (6.3) 
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and (6 .6 ) on 

(a) the duration of the puis, 

(b) the existence of the first slit. 

Such a dependence is in the contradiction with the principles of QM (assuming 

that the interaction among particles can be neglected). 

A possible form of the proposed experiment is in Fig. 2. 

= > 
short 

lazer puis 
l t h slit 2 n d slit 

reflecting 
wall 

Ь 
|
 n

2 

Fig. 2. 

The simplified form of it using the ratio g.
?
 is in Fig. 3. 

= > 
short 

lazer puis 
l

t h
 slit 2

n d
 slit 

У - th 
counter : ni 

^ 2
n d
 counter : n

9 

Fig. 3. 

Note that the axial symmetry of Fig.s 2 and 3 imply in QM that n. = n
9 

1/2 
with the accuracy n. 

7. The interpretation of Quantum Mechanics 

Here we shall discuss the interpretation of QM underlying the ideas developed 

in the preceeding Chapters of the paper. The best way to do this is to develop 

the analogy between QM and the Brownian motion. For this purpose we shall intro

duce an 'orthodox' interpretation of the Brownian motion which corresponds to the 

orthodox interpretation of QM. We shall consider, for the simplicity, only the 

one-dimensional case. 

1. The state of the Brownian particle is described by the distribution func

tion f(x) with properties 

(7.1) | f(x; ) dx = 1 , f >= 0 on R
1
 . 

2. The evolution of the state of the particle is deterministic, described by 

the equation 
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? 
(7.2) 9 f(x;t) = c«9 f(x;t) , c = constant. 

3. The measurement postulate. The result of the measurement of the position 

of the particle is described by x £ R. . The probability to find the particle 

in the interval (x ,x ) is given by 

_. 

| f(x) (7.3) I f(x) dx . 

Xl 

where the distribution f(x) describes the state of the particle before the 

measurement. The state of the particle changes discontinuously and un-predicably 

during the measurement process (by the 'un-controllable' influence of the 'clas

sical' measuring apparatus) so that after the measurement the particle will be in 

the state 

(7.4) f (x) = 6(x - x.) , 
x0 ° 

where x_ is the observed position of the particle. 

(Note that there is, contrary to QM, the only one decomposition of the unit 

in the space of probability distributions (7.1), composed of vectors (7.4), so 

that there is the only possibility to measure the position.) 

This interpretation is correct if one considers only the phenomenon of the 

Brownian motion without any relations to other branches of Physics (the molecular 

theory etc.) 

QM differs from the Brownian motion theory in the following : 

(i) The state is described by the amplitude distribution ijj(x) > which takes 

values in the complex numbers and has the property 

(7.5) | |*(x)|2 dx - 1 . 

R1 

(ii) The evolution of the state is described by the Schroedinger equation for 

the amplitude \|j(x;t) 

(7.6) 13tiKx;t) = c3^(x;t) . 

(iii) The Feynman probability amplitude theory [1] (a slightly more developed 

formulation of it can be found in [4]) is used instead of the usual Kolmo-

gorov probability theory. Mainly, the probability is calculated by the 

formula P = | <f> | , where <|> is the amplitude of an event. 

(Note that (i) and (ii) are completely natural if we assume (iii).) The main 

disatvantage of the orthodox interpretation is that (in both cases) the change of 

the state during the measurement is completely mysterious. 

We think that the fundamental importance of the Feynman probability amplitude 
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theory (instead of the Kolmogorov probability theory) is the main consequence of 

QM confermed strongly by the experiment and it should be used without any doubts. 

On the other hand, the exact properties of the probability amplitude do not follow 

from the general assumptions. Namely, it is usually supposed that the amplitude 

distribution can depend only on the particles' positions; we have shown above that 

there is the theory with the amplitude depending on the positions and velocities 

of particles which agrees observationally with QM (the case with 1/3 sufficient

ly small - QM is equal to the 1/3 = 0 case of our t h e o r y ) . 

Now we shall discuss the so-called particle-wave dualism. It is assumed 

usually that there is a complete symmetry or duality between these two descrip

tions. We shall show that this is not true. It is possible to see the position of 

the particle (by seeing the point-like trace of it on a screen ) in the experiment 

with the single particle. But it is not possible to see the interference pattern 

in the experiment with the single particle - this pattern can be developed only 

using the large number of particles. Thus there is not the complete symmetry bet

ween particle-like and wave-like descriptions. 

We may conclude that quantum particles are point-like objets with the evo

lution described by the probability amplitude distribution. In this way the para

dox of the 'reduction of the wave function' disappears. All this is in the com

plete analogy with the two (usual and orthodox) possible interpretations of the 

Brownian motion - we can observe the probability distribution f(x) only in the 

experiment with many particles. 

Clearly, assuming the point-like nature of particles, the description given 

by the probability amplitude distribution (or by the probability distribution in 

the Brownian motion case) is incomplete. In fact, in the theory described above 

there are 'hidden parameters' - they are the random forces F.(t) . But these are 

the hidden parameters different from hidden parameters usually considered (so that 

the name 'hidden parameters' is rather m i s l ead ing ) . The usual hidden parameters are 

described by the probability distribution and they are aimed to 'explain' clas

sically the Feynman probability amplitude theory. Such an explanation cannot agree 

with QM (Bell i n e q u a l i t i e s ) . On the contrary, our hidden parameters live inside 

QM (i.e. they are the parameters introduced into QM); they are described by the 

probability amplitude distribution. The resulting theory may agree with QM with 

an arbitrary accuracy (there are no Bell i n e q u a l i t i e s ). 

Our hidden parameters probably cannot be observed directly. If we assume 

moreover the hypotheses of the tachyonic background from Chap. 4, these parame

ters principially cannot be observed, because any particular tachyon cannot be 

observed. Only the collective effect of many of them (the sub-quantum coherence) 

could be seen. 

In conclusion, our theory is based on the following assumptions: 

(a) The Feynman theory of the probability amplitude is used as the general and 
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firmly established basis of any possible generalization of the quantum theory. 

(b) The wave function (interpreted as the probability amplitude distribution) is 

considered as an incomplete description of the point-like particle. 

(c) This incompleteness is attributed to the random forces acting on the partic

les. These forces are introduced in such a way that the resulting theory ge

neralizes QM and reduces to QM if 1/3 •+- 0 . 

(d) The special hypotheses on the (amplitude) distribution of random forces is 

introduced (implying the possibility of the subquantum coherence effect). 

The mechanism creating these random forces is proposed using the idea of a 

sub-quantum medium composed from tachyons. 
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