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D E R I V A T I O N S O N T H E NIJENHUIS-SCHOUTEN 

BRACKET ALGEBRA 

Jiří Vanžura 

This is an announcement of results. The proofs will appear elsewhere. 
All structures appearing in this paper are of class C°°. Let M be a connected 

and paracompact orient able manifold, dimM = m. As usual we denote by TM the 
tangent bundle of M, and by A%TM its i-th. exterior power. We set 

Li = TA t + 1 TM for - 1 < i < m - 1, 

where T denotes the functor of sections over M. In order to avoid technical compli­
cations we set 

Li = 0 for i < —1 or i > m — 1. 

Obviously for any i G Z Li is a real vector space. To complete our notation we set 

oo 

L= ^ L, 
t = —oo 

If a G Li we call a homogenous element and write |a | = i. Let us notice that L_i is 
the vector space of functions on M, and LQ is the vector space of vector fields on M. 

Using a result of Schouten [2], Nijenhuis [1] defined a bilinear mapping 

[, ]:LxL-+L 

which is now called Nijenhuis-Schouten bracket. This bracket is characterized by the 
following properties (All elements are homogenous.): 

(a) [Li.Lj] CLi+j 

(b) [a,/?]^-.(-l)H-lfl[j9,a] 
( c ) ( - l ) M ^ 
(d) [a,/] =.5 irf/a, where / G L-i and i denotes the inner product operator. 

(e) [a ,^A 7 ] = [ a , ^ A 7 + (-l)|Q|^l/3A[a,7] 
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The properties (b) and (c) show that L is a graded Lie algebra. Further using (b)-(e) 

we find easily that for X E L0, ^ E L there is [X,a] = Cx&, where Cx denotes the 

Lie derivative. Consequently for X, Y E L0 [X, Y] is the ordinary Lie bracket. 

Let us recall that a derivation of degree k E Z on L is a linear mapping D: L —* L 

such that 

(1) DLi C L i+ fc 

(2) D[a,(3] = [Da,lB] + (-l)k-^[a,Dl3]. 

A derivation D is called local if it has the following property: If a E Li, U C M is 

an open subset and a\U = 0, then Da\U = 0. We shall denote by Der& the vector 

space of all local derivations of degree k on L. The goal of this paper is to describe 

T>evk for k E Z. 

PROPOSITION 1. Derk = 0 for k < - 1 . 

For the sake of formulation of the next propositions we shall recall some facts about 

the forms of higher order. By a k-form on M we shall mean a local skew-symmetric 

k-linear (over the reals) mapping 

u?: L0 x . . . x L0 —y X_i . 

fc-times 

(u> is called local if it has the following property: If X\,... ,Xk E L0, U C M is an 

open subset, and X1 \U = 0, then u>(ATi,... ,Xk)\U = 0.) The usual formula. 

MXt^.^Xk^^J^i-iy^xMXu^^x,,...^,^) 
»= i 

+ ^ ( - 1 ) < + M [ j f i , Jfj], Jf l 5 . . . , l i , . . .,Xj,... , -Y t + i ) 

defines the exterior derivative duj of UJ, which is a (k + l)-form (i.e. it is again local). 

Ordinary k-forms on M we shall call k-forms of order 0. 

We shall fix a volume element Lj on M (i.e. an everywhere nonzero m-form of order 

0). For any X E L0 there exists a unique function, which we shall denote by divA' 

such that 

Cx^ = divX.fi, 

where Cx denotes the Lie derivative with respect to X. The linear mapping div: X *-» 

divX is a closed 1-form. (We remark that this is not a 1-form of order 0. In fact the 

order of div is 1.) 

Obviously any derivation D E Der_i determines a 1-form UJD °n M defined by the 

formula 

uD(X) = DX. 
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PROPOSITION 2. If dimM = 1, then the mapping D i-> uD defines an isomorphism 

between Der_i and the vector space of closed 1-forms on M. 

PROPOSITION 3. If dimM > 1, then the mapping D i-> uD defines an isomorphism 

between Der_i and the vector space consisting of all 1-forms 

LO = cdiv + io' 

on M, where c G R, and LO1 is a closed 1-form of order 0. 

PROPOSITION 4. Let D G Der0. Then there exist unique XD G L0 and c G R such 

that 

Da = CXDOL + ica, a G Li, — 1 < i < m — 1, 

where CxD denotes the Lie derivative with respect to XD. 

Conversely for any X G Lo and c G R t i e formula 

Da = Cxoc + ica, a G Li- —1 < i < m — 1 

defines a derivation of degree 0 on L. 

PROPOSITION 5. Every derivation D G Derki k > 0 is inner. 
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