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DERIVATIONS ON THE NIJENHUIS-SCHOUTEN
BRACKET ALGEBRA

Jif1 Vanzura

This is an announcement of results. The proofs will appear elsewhere.

All structures appearing in this paper are of class C*™. Let M be a connected
and paracompact orientable manifold, dimM = m. As usual we denote by TM the
tangent bundle of M, and by A*T'M its i-th exterior power. We set

Li =TA'TM for -1<i<m-1,

where I' denotes the functor of sections over M. In order to avoid technical compli-
cations we set
Li=0 fori<—-lori>m-—1.

Obviously for any ¢ € Z L; is a real vector space. To complete our notation we set

If a € L; we call a homogenous element and write |a| = ¢. Let us notice that L_; is
the vector space of functions on M, and Ly is the vector space of vector fields on M.

Using a result of Schouten [2], Nijenhuis [1] defined a bilinear mapping
[,:LxL—>L

which is now called Nijenhuis-Schouten bracket. This bracket is characterized by the
following properties (All elements are homogenous.):

(a) [Li, Lj] C Liy;

(b) [o, 8] = —(=1)l=HA[B, a]

() (=1)Hel[a, [8,4]] + (=1)IeHAI[B, [y, 0] + (=1)1#+I[y, [, B]) = 0

(d) [a, f] =~ t4ra, where f € L_; and ¢ denotes the inner product operator.

(©) [ BAq] = [, I A7+ (1)1 Ao, 9]
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The properties (b) and (c) show that L is a graded Lie algebra. Further using (b)-(e)
we find easily that for X € Ly, « € L there is [X, a] = Lxa, where Lx denotes the
Lie derivative. Consequently for X, Y € L [X, Y] is the ordinary Lie bracket.

Let us recall that a derivation of degree k € Z on L is a linear mapping D: L — L
such that

(1) DL; C Liyx

(2) Dla, 8] = [Da, 8] + (-1)*1*l[a, D).
A derivation D is called local if it has the following property: If a € L;, U C M is
an open subset and a|U = 0, then Da|U = 0. We shall denote by Der;, the vector
space of all local derivations of degree k£ on L. The goal of this paper is to describe
Dery, for k € Z.

PROPOSITION 1. Dery =0 for k < —1.

For the sake of formulation of the next propositions we shall recall some facts about
the forms of higher order. By a k-form on M we shall mean a local skew-symmetric

k-linear (over the reals) mapping

w: Logx...x Ly — L_;.
(w is called local if it has the following property: If Xi,...,Xx € Lo, U C M is an
open subset, and X |U =0, then w(X;,...,X})|U = 0.) The usual formula
k+1
do( X1, Xigr) = D (D) X (X, Koy, Xig)
i=1
+ 3 (1) Ho((X, X)Xy X X Xe)
i<j
defines the exterior derivative dw of w, which is a (k + 1)-form (i.e. it is again local).
Ordinary k-forms on M we shall call k-forms of order 0.

We shall fix a volume element p on M (i.e. an everywhere nonzero m-form of order
0). For any X € Lg there exists a ﬁnique function, which we shall denote by div.X
such that '

Lxp=divX.u,
where Lx denotes the Lie derivative with respect to X. The linear mapping div: X —
divX is a closed 1-form. (We remark that this is not a 1-form of order 0. In fact the
order of div is 1.)

Obviously any derivation D € Der_; determines a 1-form wp on M defined by the
formula

wp(X) = DX.
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PROPOSITION 2. If dimM = 1, then the mapping D — wp defines an isomorphism

between Der_; and the vector space of closed 1-forms on M.

PROPOSITION 3. If dimM > 1, then the mapping D — wp defines an isomorphism

between Der_, and the vector space consisting of all 1-forms
w=cdiv+w'

on M, where ¢c € R, and w' is a closed 1-form of order 0.

PROPOSITION 4. Let D € Dery. Then there exist unique Xp € Lo and ¢ € R such
that

Da =Lx,a+ica, a€L;,-1<i<m-1,
where Lx,, denotes the Lie derivative with respect to Xp.

Conversely for any X € Ly and c € R the formula
Da=Lxa+ica, a€L;,-1<i<m-1

defines a derivation of degree 0 on L.

PROPOSITION 5. Every derivation D € Dery, k > 0 is inner.
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