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SOME NATURAL OPERATIONS BETWEEN CONNECTIONS
ON FIBRED MANIFOLDS*

MIROSLAV DOUPOVEC AND ALEXANDR VONDRA

Abstract. All first-order natural operators transforming 2-connections on Y — X
and linear connections on X into connections on J'Y — Y are determined. Some
integrability properties of the connections are studied.
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0. INTRODUCTION

In general, the paper represents a continuation of our endeavour at a global
description of the geometry of differential equations represented by connections on
general fibred manifolds [8], [15]. In a strict sense, it stands for a further clarification
of relations between the studied connections on various jet prolongations of the
underlying fibred manifold [5], and consequently it represents generalizations of
some considerations from the time-dependent mechanics [1], [2], [3], [13], [14]. While
[3], [14] are concerned with connections of higher-order over one-dimensional bases,
the presented results describe the situation for second-order connections over bases
with an arbitrary dimension and the results can be then compared with related ones
e.g. in [12] or [16]. Moreover, the adopted approach and methods are immediately
applicable for natural higher-order generalizations.

In this section, we fix the notation of essential underlying structures and related
notions; for detailed description of this standard material we refer e.g. to [1], [6],
[7], [9], [10], [12] and particularly to our previous papers.

Thus 7: Y — X is a fibred manifold with fibred coordinates (z*,y%), i =
1,...,n=dimX, o0 =1,...,m =dimY — dimX. The first jet prolongation of =
is denoted by J!7 with the additional induced coordinates y¢. Then m1: Jlr — X
and 7 0: J'm — Y are induced projections, where the latter one is an affine bundle
with the associated vector bundle V;Y @ #*(T*X) — Y. The sections of this vector
bundle are 7-vertical vector valued 1-forms, called soldering forms on .

A connection on 7 is a section I’ of m 9. Local equations of I' are yJ o' =
I'?(z%,y*), where I'Y are the components of I The horizontal form of I''is a
vector valued 1-form hr: Y — TY @ n*(T*X). Locally, hr = Dr; ® dz*, where
Dr; = 8/8z* +T¢8/8y° is the i-th (absolute) derivative with respect to I'. The
complementary projection to hAr is the vertical form vp = I — hp. The decompo-
sition related with I' is TY = V.Y & Hr, where the n-dimensional m-horizontal
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distribution Hr = Im hr = span{Dr;,7 = 1,...,n}. By I'¢ € TY we denote the
horizontal lift of a vector £ € m*(TX).

Notice that for any connections I', I'1, I'; on 7 and a soldering form ¢ on ,
hr, — hr, is a soldering form and Ar + ¢ defines again a connection on .

We denote by J!m; the second nonholonomic prolongation of 7 and by J*r C
Jlm; the second semiholonomic prolongation of 7. If (z*,y%,y?, Y5, Y5;) are the in-
duced coordinates on J!m;, then J?
ond (holonomic) prolongation J27 of 7 has local fibred coordinates (z*,y°,y?, y%;)-

 is characterized by y = y{ . Finally, the sec-

Recall that (7r1)1,0: Jiny — Jlr or W2, *r — J'r or w1 Jimr — Jlm are
affine bundles modelled on the associated vector bundles Vi, J'7 ® n}(T*X) or
Vo J'7 @ 13 (T*X) or 7} o(VaY) ® 71(S?T*X) over J'm, respectively.

A connection on 7 is a section ¥: Jlr — Jlm; of (71)1,0. Due to Nels c Jim,
a semiholonomic connection on m; is a section T®. jlzx & T2 of 2,1 With Hzy
spanned by the vector fields 8/0z* + y¢ 8/9y° + f:’] 0/0y7, where f:’] need not be
symmetric. Notice that evidently Hp,) is a subdistribution of the canonical Cartan
distribution Cy, , on J'x.

The 2-connections on n (holonomic connections on ) are intrinsically related
to the theory of second-order differential equations. Such a 2-connection is a
section I'®: Jlr — J27 of m3,, locally expressed by Y5 o r@ = T'7;, where
I'f; =T, are the components of I'®. The horizontal form of I'® is hpy: Jlr —
TJ'n @7} (T*X), locally expressed by hp(z) = Dp2); ® dz?, where Dp2); = 8/0z° +
y? 0/0y° + T'}; 8/9y] is the i-th absolute derivative with respect to r'®, The
canonical decomposition generated by hp) is TJ m = Vi, Jin @ Hp(), where the
n-dimensional 7;-horizontal distribution Hpzy = Im hp() is locally generated by
the vector fields Drp(); for i =1,...,n.

Additionally, we consider first jet prolongations J'm or J'ms 1, i.e. the mani-
folds of 1-jets of local connections on 7 or of local 2-connections on 7, respectively.
The additional induced coordinates on J l7r1,0 oron J 17('2’1 are denoted by z;’j,z,.”,\
or 27, 25 A,zfj’;, respectively. The vector bundle associated to (7r1,0)1’0: Jim g —
Jlm is now evidently Ve, o J'7 @ 7} o(T*Y) — J'm.

Accordingly, a connection on 1, is a section Z: Jir — J lmyo of (Wi,o)l,o
with the horizontal form hz: J'r — TJ'r @ 7} o(T*Y') locally expressed by hz =
Dz ®dz? + DzA®dy*, where Dz = 8/0a? +EY; 8/0y?, D=a = 8/8y* +EY, 8/0y?
forj=1,...,nand A =1,...,m. The decomposition generated by hz is TJ'r =
Vrrod 1rx @ Hz, where the (n + m)-dimensional m1,0-horizontal distribution Hz =
Im hz is locally generated by the vector fields Dz; and Dza.

1. CHARACTERISTIC CONNECTIONS

In this section we summarize the notions and results of [5], [8] and [15] necessary
for further considerations and applications.

Theorem 1 [5]. All natural transformations of J 17r1,0 into Jlm; over the identity
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of Jir form a 1-parameter family {f,}, where
1) yiofa=y7

’ yi;ofa =2z + z,‘-’,\y? + a(2f; — 27; + ngy} - Z}’Ayi)‘)
for an arbitrary a € R.

The term z{; + 27 AyJ in (1.1) represents a coordinate expression of the canonical
mapping fo: J 71,0 — J1m. This mapping has the form Jy IT s j1(T 0 7), where
I':V CY — J'7 is a local connection on 7, I'(y) = jly,7: U C X — Y. This
corresponds to the fact that fo(] T') = JY(T',idx) o I'(y) for any y € V, where by
JY(T',idx) we denote the prolongatlon of I considered as a fibred morphism over

The natural projections
s: J*r — J?r and r: JPr— 7} o(VaY @ m*(A’T*X))
corresponding to the canonical bundle isomorphism
T2 2 JP1 X i [7}0(VeY @ 7*(A2T*X))]

express the symmetric and antisymmetric part of every fibred coordinate y{ ;. Con-
sequently one can define the mappings

S=so0fy: J17r1,o - J*r,
R=rofo: J'mo — n}o(VaY @ 7*(A’T*X))
with the components
55 = 35 + 25+ 250} + 25500)
R = 5 (a5 =+ 2} — 2had)
and the family of transformations (1.1) may be rewritten to

{foloer = {y = v, 97; = 7 + bR }oer -

Clearly, for each a € R we get so fo = S and R, :=ro f, = (1 + 2a)R.
As a corollary we get :

Proposition 1 [5]. All natural transformations transforming connections on 1,9
into (in fact, semiholonomic) connections on m; are of the form = +— f, o Z. The
only natural transformation transforming connections on m, o into 2-connections on
w is of the form Z+— So E.

Thus there is a unique 2-connection I'® on = natura.lly assigned to any connec-
tion = on 9, defined by I'® = So0E. For = E% Z?) being the components of =,
those of I'(® are in fibred coordinates expressed by

, 1 o o
Iy =3 EG+EF+E0 4 +Eh ) -
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If Ro= =0 then R, 0= =0 for all a € R. Locally it reads
(1.2) EG —EL+Ehy —Eh vl =0.

Due to the properties of the distributions Hpz) and Hz we get that if E is a
connection on m ¢ and I'® = S0 E, then Hp) C Hz if and only if Ro = = 0 and
thus Hp) C Hz if and only if I'® = f; 0o E. Accordingly, a connection = on T1,0 is
called characterizable if Ro = = 0 and the corresponding 2-connection I'?) = S0 =
is called the characteristic connection of E. Since the local conditions for Z to be
characterizable are (1.2), the components of its characteristic connection are

o __ =0 =0 A
IY =Ej+Ehy; -

Proposition 2 [15]. Let Z be a characterizable connection on w1, and r® jts
characteristic connection on w. Then Fz = 2hz — hpsy — I is an f(3,-1) structure
on Jlr of rank m(n + 1).

It can be shown that FZ—I = —hpq), F2+Fz = 2(hzs—hp@) ) and F2—Fz = 2vz.
Consequently, there is a canonically determined direct sum decomposition

(1.3) TJ'T = V,rl'o.]lﬂ‘ @ Hre) @ Hp.

where Hy(2) ® Hp, = Hz. The m-dimensional distribution Hp, = Im(hz — hpe))
is called strong horizontal, which means the decomposition

VmJ'n = Ve, J'r® Hp, .

A reduced connection of type (1,0) on  is a section 'y o): 73 (VoY) — Vpr, J'7
linear in g, given by g7 o I'(y0) = I (z7,y%,3¢) 9. In other words, I'(3,0) repre-
sents a lift of vector fields expressed by

9 r 0 15}
.1 2 (1,0) +o A
(.7:7, C 'a_y; I'y(a:)> — C a_ya- iy + F?}\ C _y_g ity o

and thus it generates a decomposition
Vi, J'm = Vo, o J'm @ Hryy )

with Hr, ,, = ImT ) generated by the vector fields 9/ Ay +T9,0/dy? for A =
1,...,m.

Prop. 2 can thus be reformulated.
Proposition 3. Any characterizable connection = on w9 splits into the direct
sum of a 2-connection T'®) on 7 and a reduced connection T'(1,0) of type (1,0) on .
The decomposition is given by Hz = Hpe) @ Hr, o), where I'®) js the characteristic
connection of Z and I'(y o) = hg|,,:'0(vty).

We refer to [15] for the importance of reduced connections (or in other words of
the corresponding strong horizontal subbundles) in the theory of symmetries of the
corresponding characteristic connection I'?).
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Let I'® be an integrable 2-connection on 7. A (generally local) connection =
on m g is called an integral of I'® if = is integrable and I'?) is its characteristic
connection.

We have shown in [8] (in terms of the so-called fields of paths) that the meaning
of searching for integrals of a given I'(2) rests upon the possibility of transferring the
problem of solving second-order equations related to I'?) to that of solving a family
of first-order equations for integral sections of =. In the same paper, the possibility
for a local integral of I'?) to be constructed by means of a set of independent first
integrals of Hp(2), was presented.

The following questions naturally appear in terms of the above considerations.
First, whether there exist transformations ‘converse’ in some sense to those of The-
orem 1; in particular: is there a possibility to assign a (global) characterizable
connection = on 7,0 to a given 2-connection I'® on 7 ? And secondly: what
conditions (if any) must be satisfied for = to be a (global) integral of I'?) ?

It is worth mentioning here the existing results closely related to these ques-
tions. For dimX = 1, the fibred coordinates on J27 or Jlm ¢ are denoted by
(t,q",q&’l),qz’z)) or (t,q¢°, q(al),z",zj"), respectively. Accordingly, the components of
I'® or E are I‘E’Z) or 27, &, respectively.

In [14], the following assertion was proved (for the sake of brevity, we present
the ‘first-order case’ only).

Proposition 4. Let 7: Y — X be an arbitrary fibred manifold with dim X = 1.
Let T®): Jlzx — J2r be a 2-connection on =, let @ = wdt be a volume form on
X. Then there is a connection =: Jint — J l7r1,o on w0 whose characterizable
connection is I'®, called a natural dynamical connection of type Q on J'w. The

components of = are
=T — l ar‘(,-z) _ iw_ l FY4
A 2 6q("1) dt w

= o 1[dw 1 argz) A o 1 =0, A

The proposition was proved locally by means of constructing the corresponding
f(3,-1) structure rather then =. In the proof, natural affinors (vector-valued one
forms) were used (for the case of R x T1M see [4] and for the general situation
see [12]). What is interesting in this respect is the fact that these affinors are just
the ‘differences’ of the connections on 7, i.e. the sections of the corresponding
associated vector bundle (soldering forms).

Supposing X = R and (t) to be a global canonical coordinate on R and using a
canonical volume form {2 = dt, one obtains the results for J17 = R x TM ([1], [2],
[3] etc.):

=0 __ }_aFE’?) =0 o 1 anZ) A

=y = =7 =T —_ 2
3¢ S (2) 9 -
2 g3y . 2 9q(y)

The motivation for the results we will present is the fact that the functions

dw 1
Aty =-2=
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are transformed in the same way as the components of a linear connection A on
7x: TX — X, or equivalently A*(t) = —A(t) like the components of the dual
connection A* on 7% : T*X — X. In keeping with previous ideas and formalism, a
linear connection on 7x: TX — X (or briefly on X) is a section A: TX — Jlrx,
locally given by
(zi,ii,i§) oA = (a', 3, A;k(:cl):bk)
and the dual connection A* of A is again a linear connection, now on the dual
*

bundle 7% : T*X — X, the components of which are Aj;; = —A;k (see [10]).

2. NEW RESULTS

According to the general theory of natural operations in differential geometry [6],
natural operators generalize the concept of a geometrical construction. In this con-
text we can pose the question of determining all natural operators (i.e. all possible
geometric constructions of a prescribed type). In particular, we look for all geomet-
rical constructions of a connection on m1,9: J!m — Y by means of a 2-connection
on 7: Y — X and a linear connection on X. We will use the concept of a natural
operator from [6].

The following assertion represents the main result of this paper.

Theorem 2. All natural operators transforming a 2-connection I'® on 7 and a
linear connection A on X into the connection = on 0 being of the first order in
I'® and of the zero order in A are of the form

(2.1) Ef = g8 0j'T®

where gA: Jimy 1 — J'm1,0 is a fibred morphism over J'w locally expressed by

o 1 o (4 o
(2.2) Zin = E(Zikk,\ + 8JARK) + adS (A% — AR

c _ .0 o, A
Zij = Yij — Zi\Y;

for any a € R.

Proof. Denote by Gi,m the group of all 3—jets at the origin of the diffeomorphisms
7' = 7(z), §° = §°(z,y) of R™*™ preserving the origin and the canonical fibration
R™*™ — R™. Then the local coordinates on G3 ,, which correspond to the partial

g

derivatives of Z* and ¥ at the origin are
i1 i c o o o o o ' ' o
(2.3) (a'jvajkvajktaa'i 7aijaaijk:“AvaAiaaAij’a)\paaz\phaz\pr)'

We shall denote by tilde the coordinates of the element inverse to (2.3) in G} ..
By [6] and [7] there is a canonical bijection between natural operators and the
equivariant maps of the corresponding standard fibres. Hence we have to determine
all G}, ,,— equivariant maps

”,—— (0 0O _O o ok H
2 = FAW] v 25k 2500 2000 Nik)
c _ go0( 0 O _O o ok i
2 = ij(yi ,yij,zijk,zij,\,zijx,f\jk)

(2.4)
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which express the coordinate form of the natural operators in question. Using
standard evaluations we compute the following transformation laws

Rjt = AT G} + aidla]
77 = afy}al + afd]
U%; = aSykeda; + aA,,yky,a i+ aAkyt akal+
+ agly2&f~§ + a,\yka,] + akla + aka,fJ
Zho= a:z;r”f\&f +a pry_, a,\a g apJa)‘a]
= aKz,’},af"j + GKZQP a;a Y+ afpata , ¢4 a,\,,yk&”?z +
+ afypal; + af,akal + ak,\&’\ ak + akau
7:’:]5\ = "iafaf_&{&_’,’ Zfhp + hag pryha + @fagal, yraras+
+dfafag,atal + dafag,alal + aAa,a”a‘
Zijk ai&{&jézz}“h +
0 = Bazabalef, ..

where for z7;; and ZJ;, we shall need only the first terms. The homotheties a a =
ké;-, af = 6,\ with other a's vanishing will be called the base homotheties. Qulte
analogously, the fibre homotheties will be characterized by @; = §;, af = ké5.
Consider first the map f3 from (2.4). Using the equivariance with respect to the

base homotheties we obtam a homogeneity condition
M = f,,\(ky, ,k2y‘]’k3 le?kz Zija kz:]/\, kA'k)

By the homogeneous function theorem [6] f7, is independent of y7;, 27, 2{;, and

linear in y7, 27; L . Next, the fibre homotheties yield
f;“t\ = {'A(kyio’ 11A7 Jk)
so that fJ is linear in zfjﬁ, . Denote further by G C G2 ,,, the subgroup with

arbitrary a]-, af and with other a's vanishing. Then the equlva.riance with respect
to G implies that fJ correspond to the GL(n,R) x GL(m,R)-invariant tensors.
Taking into account the symmetry of z{; % in ¢, j and applying the invariant tensor
theorem [6] we find that

fu\ - azzkA + bé)\A + C(SKAI“ + d‘sgzlkﬂ
with real parameters a, b, ¢, d. Finally, the full equivariance with respect to the
subgroup L C G3, ,, characterized by a; = 6' , a§ = 6% reads
az,k)‘-l-b&,‘A +caKAkl+d‘$/\zxkp+aApyl +a)‘,
= a(25 + aS,uf + afay! + aS; + af; + 85a%)
+ da)\(z:kp + az-ryl + a’:ryi + a,’:i + az;’ + &fk)
+ b6JAK + b6Zak, + cOSAL, + c65ak;
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This implies a = %, d =0, b+ ¢ = a which corresponds to the first equation of
(2-2). Applying the same procedure to ff; we obtain

f] = alyx] + a2y: ]kp + a3yz ]kp + a4y_1 |kp + a5y] tkp + asyk zl]p + a7ykz11p

+ agyy A"k + agy; Ak, + a10y; IAk + any; TA + alzykAij + a13Yi Aji .

The equivariance with respect to L then leads to such relations among ay,...,a;3,
which correspond to the second equation of (2.2). O

The verification of the following assertion is an easy replica of the proof of The-
orem 2.

Proposition 5. There is no first order natural operator transforming 2-connections
on m into connections on Ty g.

It should be mentioned that the presence of a linear connection A on X is not
surprising since linear connections on the base manifold play an important role in
many other geometrical constructions on jet spaces, see [6].

Remark 1. In Theorem 2 we have discussed natural operators of the first order in
I'® and of the zero order in A. Using homotheties one can easily prove that zero
is the maximal finite order in A. In other words, the connection = on m ¢ cannot
depend on the higher order derivatives D"Afj, where the multiindex a satisfies
o] > 1.

Let A be alinear connection on X with the torsion T. Contracting T one obtains
a 1-form T = T dz* with T; = Tk k= AK, — A¥.. Moreover, the following assertion
appears.

Proposition 6. All natural operators transforming linear connections on X into
1-forms on X are of the form

A~ kT, keR.

Proof. Denote by @ = A'R™* the standard fibre of A'T* and by F, = (QPR™),
the standard fibre of the bundle QP! of linear connections.

Step 1. By [6] the zero order operators QP! ~» A!T* correspond to the G2,-
equivariant maps Fy — @ of the form w; = w,-(A;-k), where w; are the induced
coordinates on @. Using the equivariance with respect to the homotheties we get
kw; = w,(kAJk), which implies that w; are linear in AJk, ie. wi = k1AL, + kaAf,
k; € R. The full equivariance then leads to the relation k; = —k;. Hence w; =
k(Afi — A{,), which is the coordinate form of our assertion.

Step 2. Using homotheties one easily evaluates that the r-th order natural op-
erators are reduced to the case 1 for any r > 0.

Step 3. By [6] every natural operator QP! ~» A!T* has finite order. O

According to [12], any linear connection A on X thus generates canonically a
vector-valued 1-form

7]
(2.5) Sy=T By7 ® (dy” — y§ da’) .
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Clearly, Sp is a soldering form on m,0 or in other words a deformation of the
connections on 7y g, trivial if and only if A is torsion free. The above connection
=2 from (2.2) can be then written as

(2.6) EA=Erta Sy,

where the components of Z2 are by (2.2)

= __ 1 81-‘?’: oAk
S =5 (3yi‘ + 6AAki)

=0 __ 10 =0 A
=25 =T —EhY;

(2.7)

for I'}; being the components of I'®). Recall in this context the result of [6]: all
natural operators transforming linear connections on X into themselves form a
3-parameter family

(2.8) A=sA+kT+kI®T+kTQI

where ky, ko, k3 € R, T is a contracted torsion of A and I is the identity tensor of
TX ® T*X. Then the term a Sy in (2.6) expresses the difference between =3 and
=4 corresponding to (2.8).

Remark 2. It is easy to see a geometrical interpretation of Z4 in the case of one-
dimensional base X. In this situation, for any volume form 2 = wdt on X which
is an integral section of the dual connection A* (i.e. A* 0 Q = j!§), the natural
dynamical connection of type Q2 (see Prop. 4) is just Z5.

Proposition 7. A connection E2 from (2.1) is characterizable with the character-
istic connection T'?) for any A and a.

Proof. Immediately from the second part of (2.2) we obtain (1.2). O

The whole situation can be described by the following commutative diagram:

1

J 7r1,0 J17l'1,o J17r1,0

nl EQT g:T
T2 iir(2

Jir Jin 21— J17r2’1 .

Notice that the class of characterizable connections = on 7,9 with the same
characteristic I'® is wide (any such = will be called associated to T'®). In fact,
it is easy to see that there is a family of natural linear morphisms of Ve, ,J'7 ®
71 o(T*Y) into 7} o (VY ) @7} (T*X @ T*X) over the identity of J', induced by {f.}
from Theorem 1. Using the alternative description by S and R, the corresponding
associated transformations read
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where
29) 5= %(‘/’iﬂj +@fi+ehy; +ehud)
iy = 5 (95— ¢5i + o0y — o5aud)
with
?:7] 0p € 1} o(VaY) ® 7f(S*T*X)
R 0p € 1 o(VaY) ® 7H(A2T*X)
for

p= 66? ® (7 dz? + ¢ dy*): J'm — Vi, ,J'1® T o(T*Y) .
i

Then ¢ can be called admissible deformation on 7 o if and only if ¢ € kerf,, since
just these deformations do not change the characteristic connection when added to
the given associated =; the local conditions for ¢ to be admissible are

(2:10) 0% +ohy; =0

for any 0,4, j. Remark that for any 1-form A = ); dz’ on X, Sx = X;0/0y¢ @ (dy® —
y? dz’) is admissible.

Following the ideas mentioned in the previous section, we finally discuss the inte-
grability of connections (and thus of corresponding equations) under consideration.
Integrability conditions for a connection I" on 7, meaning equivalently the involu-
tiveness of the corresponding horizontal distribution Hr, can be expressed among
others by the vanishing of the Frolicher-Nijenhuis bracket [hr, hr] or equivalently
of the Lie bracket [Dr;, Dr;] for ¢,j = 1,...,n. Consequently, the analogous inte-
grability conditions for other connections in question will be applied. In particular,
a connection = on g is integrable if and only if

(2.11) [DE,‘,DEJ'] =0
(2.12) [DEA, Dz,]=0
(2.13) [Dzi,D=a] =0

for any 1, 7,0, A.

Let = be characterizable and I'® its characteristic connection. Then for any
t=1,...,n
(2.14) Dr2y; = D=i + yf‘Dg,\

and as a consequence

(2.15) [Dre;, Dr(2)j] =
=y} Dz, D=o] + v} [D=i, Dza] — v Dzj, Dzal + [Dzi, D=j)
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for any 4,j = 1,...,n, which means that if = is integrable so is I'® (we refer to [8]
for an alternative procedure).

Conversely, if Z is associated with an integrable I'®), then it is not possible to
say much about the integrability of = in general. Suppose then additionally the
involutivity of the strong horizontal distribution Hp., which means just (2.12) for
all o, A; recall that the involutivity both of Hpr2) and Hp. is generated e.g. by the
vanishing of Np. = [Fk, Fx] (called the integrability of the f(3,-1)-structure Fk).
Due to Hz = Hp@) ® Hp., E is then integrable if and only if

[Dre;, D=a] € He
for any ¢ and A. Under the above assumptions and by means of (2.14) we get
[Dri, Dzal = [Dzi, Dza] — E)\Dzo

and thus the following assertion can be presented.

Proposition 8. Let I'®) be an integrable 2-connection on =, let = be a connection
on 9 associated with T(®. If the strong horizontal distribution Hp. of E is
involutive then E is integrable if and only if [Dz;, D=z] = 0 for any i, \.

In such situation, (2.13) locally reads
I8
8 ki <H,w6‘ 9 ’“) =8, =0

forany :,k=1,...,nand o, A =1,...,m.

Let dimX = 1. Then any 2-connection I'® on ~ is integrable (as a system
of ordinary differential equations), (2.11) holds trivially and consequently (2.15)
means that (2.12) holds for any connection = on m;,9. Accordingly, Z is integrable
if and only if (2.13) holds. Then analogously to (2.16) we obtain local conditions

(2.16) Dr@; (Ex) —

are ore,
(2.17) Dray (53) — ﬂ +2- 5 @ Jze =0
0g* 9

for any 0,A =1,...,m. As a consequence we get :

Corollary 1. Let dimX = 1, let I'? be a 2-connection on m and A a linear
connection on X. Then the connection Ef is a (global) integral of I'® if and only

if
Do <3F<”é)> 100G TGy 900 (dA N Az) 6 =0
aq(’;) 2 3q(1) Bq(l) Oq* dt

for any o,A =1,...,mx

Briefly, the searching for global integrals of I'®) can be parameterized by linear
connections on the base X,
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