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RENDICONTI DEL CIRCOLO MATEMATICO DIPALERMO 
Serie II, Suppl. 43 (1996), pp. 123-132 

COHOMOLOGY AND CONNECTION ON S^BUNDLES 

Christian Gross 

1. INTRODUCT ION 

Given any fiber bundle H(M, F,G), the projection ir:B —> M induces an homomorphism of 
the DE-RHAM cohomology groups 7r*:H*(M) -> H*(H), since the exterior derivative d of 
differential forms commutes with pullbacks. Nevertheless this homomorphism neither needs 
to be injective nor surjective, as the example of the HOPF fibration 7r: S3 —> S2 shows. In 
general, spectral sequences are needed to construct the cohomology of the bundle from those 
of the base and the fiber, and to answer the question whether some closed u £ A(F) lives to 
the bundle and one thus finds [u>] £ H*(B), such that u is the restriction of a) to the fibers. 

Now Jet any connection T on the associated principal bundle P(M, G) be given. T defines 
horizontal and vertical projections of differential forms on any associated bundle H(M, F, G). 
It is only natural to ask if — given any u £ A(F) that lives to the bundle — such u> can be 
found, which is anyhow adapted to Y. In view of this question we will prove an answer for 
G = S1: given any left LIE group action L: S1 x F —> F, such an adapted CJ exists for any S1-
invariant u £ -4(F) only if LJ lives to any S^bundle, that comes along with L, independently 
of the base manifold and the transition functions. On the other hand, Q exists, if the zig-zag 
produced by UJ in the spectral sequence, is of a certain form. 

Finally, we apply our results to the skyrmion bundle in theoretical nuclear physics, 
which generalizes the ungauged SKYRME model8 in order ot treat interactions not only 
between baryons and mesons but also with electromagnetic fields, that are described by a 
MAXWELL connection on the associated principal bundle. 

2. CONNECT IONS ON PRINCIPAL S^BUNDLES 

For any fiber bundle B(M,F,G) with bundle manifold H, base manifold M, fiber F and 
LIE group G, let 7r: B -» M denote the projection onto the base and {(Ua, ^a)}aeA a bundle 
atlas, where it--- {Ua}a£A is an open cover of M and i>a:7r~l(Ua) -> UaxF:b •-> (7r(6),7ra(6)) 
define local projections 7ra:7r-1(L7a) —>> F onto the fiber. For the left effective LIE group ac­
tion L:G X F -> F, we write Lg(f) = T/(<l), where Lg: F —> F and T/:G —>• F are differen-
tiable for all g £ G and / £ F. For all a,/3 £ A with UaP := Uaf)Up ^ 0, gaj5: Ua(3 -> G 
means the G°°-map defined by gap(x) := 7ra|̂ -i({a?}) o (npU-mx}))'1' F —> F. 

This paper is in final form and no version of it will be submitted for 
publication elsewhere. 
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Recall that any connection T on a principal bundle is uniquely defined by a connection 
1-form u;r G A1(P,L(G)). For G =* S1 we can identify L(G) and R. Then the curvature 
2-form Q r G A2(P) simply reads fir = du>r. If aaJ:Ua -» 7r_1(c7a):a; i-> ^^(x.f) denote 
local sections for all a G A and / G P, then ur and Qr define local 1-forms AQ G -4i(Ua) 
and 2-forms Fa G A2(Ua) by 

-4° = <o("r|ir-Mtf«.)) € A(Ua), F0 = <0(n rU--(Cf.)) € ^2(Ua) (2.1) 

(we write the group operation in S1 additively, so 0 is the neutral element). We have7 

Theorem 2.1 If F is a connection on P(M, S1) and {(Ua, 4>a)}a£A is a bundle atlas for P, 
then for all a, /3 G A with Uap := Ua n Up ^ 0 and for all x G Uap: 

FQ = dAa, dFa = 0, (2.2) 

Aa\u., = A%afi+dgf,a = A%ttfi-dgafh FQ\Uafi = F%afi (2.3) 

Vice versa, if for a bundle atlas {(Uaitpa)}a£A on the principal bundle P(M, S1) a fam­
ily {AQ G Ai(Ua,$i)}aeA is given such that (2.3) holds, then there exists one unique connec­
tion T on P(M, S1) such that AQ = O"a)0(^

r|rr-
1(Utt)) for all a £ A. 

So the Fa constitute a global F G A2(M). 
Every connection T on P(M, C) induces horizontal and vertical projections li, v of vector 

fields and differential forms on every associated bundle H(M, P, C) = P xG F. For S1-
invariant differential forms x o n P? -• e- ^ X = X f° r a n 9 £ S1- we obtain: 

Theorem 2.2 Let T be a connection on P(M, S1) and H(M, P, S1) an associated bundle. 
For any S1-invariant x € An(F) define v G An-i(F) by 

uJ{F(
f
l\...,FJ"-i)):=X/{FJ1\...,F^-1\drs{l)) for all f € F, F«> € V1 {F). 

For any Ua G 11 denote xa •= naX> va := nav. Then on all Uap / 0 

X° = XP + dgaPAv, X
Qv = X* + -4a A i/ = / + A* A 1/ = x V 

Thus x^ a^d ^ define global S1-invariant, vertical forms on B. dx = 0 t/ie/ds dz/ = 0, too. 

So vertical projection v:A(B) —> A(H) on the bundle not only maps global forms to 
global forms but also these locally embedded SMnvariant forms on the fiber to global vertical 
forms on the bundle. This result remains true for any C-bundle, yet the projected forms do 
not look that simple any more, but require higher powers of Aa. 

3 . S P E C T R A L SEQUENCES 

For a countable ordered good cover il = {Ua}a£A of M (which means that all finite 
intersections Uao...Qp := Uao n •••H Uap, p G N0 are diffeomorphic to Rn), let C(w~1ii)A) 
denote the CECH-DE-RHAM double complex2 (Figure 1) 

C(ir-%A):= 0 Cp(ir-%Aq), where C^TT 1 ! ! . ^ ) := J} M^~\Uao...ap)). 
p,g€N0 a0<-<ap 
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Figuře 1: The ČECH-DE-RHAM complex for a bundle B 
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We have two commuting differential operators: on the vertical lines we have the exterior 
derivative d, and on the horizontal lines we have 8 defined by ("~" denotes omission) 

p + i 

(M-.-..+. := £(-1)Ч0...«y..«J--Ҷt/....,ł+l) Vu> = П ««.--, Є П ^ " 1 ^ . - , ) ) -
І = 0 a 0 < - . < a p a 0 < . - < a p 

D := D' + D", with D' := S and D" := {-l)pd, is the differential operator for the single 
(graded) complex with C(7T-1ii,A)n = © p + < 7 = n Cp(Tr-%Aq). Figure 2 shows a D-closed 
element $ = 01 + 02 + 03 and a D-exact element \I> = ipi + ip2+ fa = DE, where S = 
6+6+6+6: 

DФ = 0 

Ф = DE 

dфi = 0, 80i + dø2 = 0, 8Ø2 - elØз = 0, 8øз = 0, 

# i = 0, SÇx+dÇ2 = фu Sţ2-dţ3 = ф2, Í 6 + # 4 = ^з, *Í4 = 0. 

Figure 2: D-closed and D-exact elements in a double complex 
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The possibility to compute H*(B) by spectral sequences relies on the fact that the 
D-cohomology of the CECH-DE-RHAM complex and the DE-RHAM cohomology of B are 
isomorphic:2 
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Theorem 3.1 (Mayer-Vietoris Principle) Let n 1iX be an open cover of B, then the 
restriction map P:A(B) - I YlaA(7r~1(Ua)) C C(7r"1il, A) induces an isomorphism: 

r*:H*(B) -> H*D{C{ic~liX,A)), Hn(B) -> H£{C{ir-%A)). 

The inverse map that collates together the components of an element in the CECH-DE-
RHAM complex into a global form on B is less intuitive. For any partition of unity {pa}aeA 
subordinate to 11 define K:Cp{n~%Aq) -J> C ^ ^ T T " 1 ! ! , ^ ) by 

aG_4 

then we have KS + SK = id and the following Collating formula:2 

(3.1) 

Theorem 3.2 Let a = £"= 0 a,- G C(7r-1il,.4)n with a,- G C ^ T T - 1 ! ! , ^ - ; ) and Da = (5 = 
Er=o A t->iM ft € C ^ T T - ^ A + I - . ) , ^ d de/me K 6y ($.i ; . Then 

/(«) := £( -0"f f )*'<*. -YjK(-D"K)if3w e C°{ir-%An) 
i=0 i=0 

is a global form on B (resp., the restriction of such a form to the sets 7r-l(Ua)). The induced 
maps f* and r* on the cohomology level are inverse isomorphisms. 

Figure 3 illustrates how the components a3 and /34 of a and fi are mapped onto elements 
in C°(7r~1ll, .43). For a global form on B, all components a, and /3, must be mapped like 
this. 

Figure 3: Illustration of the Collating formula 
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For any double complex the sequence Kp := ©,>p ©g>0I-','9i P € N0 is a filtration by 
the columns of K with associated graded complex 

GK = 0 Kp/Kp+Í = 0 
P€1N0 p€N 0 

®к>*\+кp+1 
q>0 
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Obviously, the induced differential operator on GC(7T~1ii,A) is just (-l)pd. 
Let {Er,Dr}rqn0 denote the spectral sequence for the CECH-DE-RHAM complex: E0 = 

GC(7r-1ii,A) and Er+1 = HDr(Er), where Dr:E
pq -> ££+'.*-'•+- is the differential operator 

induced by D on Er. If ER becomes stationary, i. e. Er = Fr+i for all r > H, we denote ER by 
Eoo and say that the spectral sequence converges to some filtered complex H if E^ = GH. 
P G C(7T~1ii,A) "lives to" Er iff it represents a cohomology class [/3]r G Er, i. e. if /3 is 
Dt-closed in EQ,...,Er_i. Then /3 is d-closed and we get a "zig-zag" 5 = £0 + . . . + £r_i of 
elements £,• G C ^ - 1 ! ! , .4) with £0 := fi and 

-D'6 = % = -F>"&+i, t = 0 , . . . , r - 2 (3.2) 

(cf. Figure 4). Since Dr[/3]r = [6"£r_i]r = [x]r> Dr is given by o* at the end of the zig-zag. 

Figure 4: Illustration of the Differential operator Dr: Dr[£0]r = [£fr_i]r = [x]r 
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Now LERAY'S theorem states that {Er,Dr}reNo converges to H*(H):2, 9 

Theorem 3.3 (Leray's Theorem) If B(M,F,G) is a fiber bundle andii= {Ua}aeA is a 
good cover of M then there is a spectral sequence converging to H*(B) with E\ term 

E['" = r j H<(n-\Uaa...ap))~ n IIW 
ao<- -<Ofp a 0 < - - < a P 

If H*(F) is finitely generated and in addition M simply connected or B = M X F, then 

Ep>q = Hp(M, Hq(F)) 9_ Hp(M) 0 Hq(F) 0 Tor[Hp + 1(M), Hq(F)]. 

Finally, we find the following result:2 

Theorem 3.4 For any closed form u G Aq(F), there exists a closed Q G Aq(B), such 
that w is the restriction of Q, iff u lives to Eq+2> i- e- *if a zig-zag E = £0 + . . . + £q of 
elements & G Ci(n~1il,Aq-i) exists, with f0 = u>q and 5£,q = 0. 
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4 . T-ADAPTATION OF THE DIFFERENTIAL FORMS FOR S^BUNDLES 

Once a zig-zag for UJ has been found, Theorem 3.2 exhibits representatives Q for the coho-
mology groups of the bundle. Yet we would like to obtain forms that are anyhow adapted to 
T. To this end, suppose S = fo H h fr is a zig-zag for a closed SMnvariant uq G Aq(F), 
where every £,- is of the type (a0/ • • • /otj indicates that one may use any trivialization) 

(€i)«o-«; = dgaia._x A • • • A dgaiao A (x4-2i)ao/ ' / a j 

with xj-27 £ Aq-2j{F) and d(x^_2(i+i)) = ^-2i fr°m Theorem 2.2. Since uq is SMnvariant, 
all xj-2i c a n be chosen SMnvariant, otherwise use the HAAR measure Jgl L*xJ

q-2j dg to 
achieve this. One checks that 

(^j)ao--aj+l = dgaj+iaj A • • A dgaiao A ^ _ 2 j - i i 

so E indeed is a zig-zag for tjq. vr_2r_l be zero such that Xo-2r is global (and vertical) and 
S£r = Dr+1[uq]r+1 = DE = 0. Then Theorem 2.1 and Theorem 2.2 yield that the following 
T-adapted differential form 

K ) a := r F a A - : - A F a A ( x i _ 2 , - ) ^ (4.1) 
i=o j 

is the one we are looking for: it is global, it reproduces uqi when restricted to the fibers, and 
it is closed, because d(xJ

q-2j
v) = dx\-2j + F A v3

q_2j_1. Thus it represents [u>£] G Hq(B). 
Since any principal fiber bundle over a (paracompact) manifold M admits a connec­

tion T,7 we have proven the following theorem: 

Theorem 4.1 Lel L: S1 x F -> F be a left LIE group action andujq G Aq(F) be S1-invariant. 
IfXq-2j € Aq-2j(F), j = 0 , . . . , r, can be found, with d(xq_

1
2j-2) = ^ -2 i - i from Theorem 2.2, 

X° = vq and vr_2r_i = 0, then for any fiber bundle H(M, F, S1), that comes along with L, 
independently of the base manifold M and its transition functions, u lives to B and defines 
a cohomology class in Hq(B). For any connection V on the associated principal bundle, 
uq G Aq(B) in (4-1) is a representative for that cohomology class. 

We conjecture that this condition for the existence of such an T-adapted representative 
is not only necessary but also sufficient. E. g., iff-, with (dfx)^ = (S£0)ap = dg$a A v^_x 

exists for any S^bundle, then x\-2 w i t n ^x\-2 = vq-2j ex-sts and (^)ap = dg/3aA(x\-2j)a^(3' 
Induction should show that this holds for any j . 

5 . APPLICAT ION TO THE SKYRMION BUNDLE 

In order to apply our results to the skyrmion bundle in theoretical nuclear physics, let 
us briefly recall the main topological features of the SKYRME model8 as an effective field 
theory related to quantum chromodynamics (QCD) by its underlying symmetry. In this 
ungauged SKYRME model, the meson fields 7ra on space-time M generate differentiable func­
tions U: M —•> SU/vF defined by (NF denotes the number of flavors in QCD) 

iVj-l 

U = exp(i ] T 7r*Aa) with Aa = (Afl)t G CNFXNF, Tr(Aa) = 0. 



COHOMOLOGY AND CONNECTION ON S'-BUNDLES 129 

The vacuum is represented by the unit matrix _ G SUTVF. Requiring 7ra(r) -» 0 and thus 
U(r) -> t for r -> oo one can compactify euclidian space R3, resp., space-time R4, so that 
the meson fields constitute functions H:R(t) x S 3 - > S U ^ , resp., U:S4 -> S\JNF. 

Let L:= U~l dU = W dU and R:= (dU)U~x = (dU)W G -4i(Um,CBXm) denote the 
left, resp., right invariant currents: Cmxm-valued 1-forms that are invariant under mul­
tiplication with constant elements of Um from the left, resp., from the right and obey 
L(X)(t) = R(X)(t) = X for all vector fields X G Px(Um) with *(_) = X G um = L(Um). 
For any constant Q G C m x m , we define A? and p% G Ak(Um, C) by 

A? := Tr(QL") := Tr(QL A • •• A L), pQ := TT(QR") := TT(Q R A • • • A H), 
k k 

These are left, resp., right invariant complex-valued k-forms on Um; for Q = 11 we have 

ojk := \\ = p\ = TT(Lk) = TT(Rk) G Ak(\Jm, C), 

which are invariant under all multiplications. Obviously u2i = 0. The forms u>2i+i are closed 
since the MAURER-CARTAN identities dL = - L A L, dR = R A R yield 

dL2/+1 = -L 2 / + 2 , dH2/+1 = H2/+2, dL2/+2 = dH2/+2 = 0, (5.1) 

d(UL21) = UL2/+1, d(L2,Ut) = -L 2 i + 1U t , d(HL2/+1) = d(L2/+1Ut) = 0 . (5.2) 

Moreover, <JJ2I+I generate the DE-RHAM cohomology H*(SUm,C), resp., H*(Um,C). 
In the SKYRME model, baryons appear as topological soliton solutions of the meson 

fields. Their number B can be computed by an integration over the space manifold: 

BW)= I -^U*u*= I " J " . E Ti{LiLjLk)dxiAd^Adxk. (5.3) 
d§3 247T- J13 1\-KZ

 {r^=1 

Compactification of space-time is crucial: normally there is no guarantee that the integral 
in (5.3) is an integer, but for spheres we have the following Index theorem:1 

Theorem 5.1 For every map L7:S2n_1 -> Um the integral 

f§2n-l \27T/ 
U*^2n-i is an integer. 

(2n-l)\ 

The assignment [U] i-> n(U): 7r2n_i(Um) -> Z is an isomorphism for m> n. 

We are thus able to identify (^-)n ^n-iy. u^-i with the generators of the integer valued 
cohomology of the unitary groups. At any time the meson fields respresent elements of the 
homotopy groups 7T3(U7vF) — Z for NF > 2; the integer characterizing the homotopy class is 
a topological invariant, the "topological charge" B(U). 

The vacuum map represents the zero element, and so B(U = 1) = 0. For proton 
and neutron we have B = 1, for their antiparticles B = — 1. Annihilation of proton and 
antiproton corresponds to the "addition" of their maps within the homotopy group and 
generates a mesonic field of topological charge B = 0. 

The meson fields obey the field equations derived as EULER-LAGRANGE equations from 
a lagrangian C(U,dU) by variation of the action integral r(U) = fSACdV. The latter splits 
into two parts: one of them (Nc denotes the number of colors in QCD), 

rAN(U) = xJjUT^ with A = ^ j , (5.4) 
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describes the anomalous processes of QCD: one uses 7T4(SUArF) = 0 and extends U to a 
differentiate map U':D5 -» SU3 from a five-dimensional disc L)5 whose boundary 3D5 is 
space-time S4. The topological quantization of the coupling constant A in (5.4) is again a 
consequence of Theorem 5.1, and of the requirement that for any extension U' the result has 
to be unique.10 

It is well known that electromagnetic fields can conveniently be described by a MAXWELL 
connection T on a principal Ui-bundle over space-time M. Since P(M, Ui) = P(M, S1), we 
can apply our results. Yet for compatibility reasons we will extract the electromagnetic 
charge e such that ieUi = S1, resp., ieUi = R. Then the gauge potentials Aa and the gauge 
field F are related to the connection 1-form and the curvature 2-form as in (2.1) (apart 
from this additional factor ie). The homogeneous MAXWELL equations then simply take the 
form dF = 0, cf. (2.2). Non-triviality of the bundle is always related to the appearance of 
magnetic monopoles. In fact, observe that (2.3) yields that a global gauge potential A exists 
iff the bundle is trivial. 

For the purpose of treating interactions between electromagnetic fields on the one hand 
and mesons, resp., baryons on the other hand, we have to gauge the SKYRME model and 
introduce the skyrmion bundle as follows:4' 5 instead of considering maps U: M —> SUn we 
now think of the meson fields as of global sections in a bundle H(M, SUn,Ui) associated to 
P(M, Ui). The left action of Ui on SUn is given by the inner automorphisms 

L„(U) = TV(g) = e-iesQUe+i«>Q, 

which do not effect the vacuum being diagonal symmetry operations. Q is the hermitian 
n x rc-matrix containing the quark charges in units of e (again n = 2, resp., 3) 

( ! - ' . ) • 

2 
3 0 0 
0 i 

3 
0 

0 0 _ i 
4 

Q = [ o - i ) ' resp-' Q = 

Thus the transition functions are Ua(x) = e-
ie^^)Q Up(x) e+

iea*'l*)Q. So not only vac­
uum U = 11 is a global section but every U(x) = elx^x)Q with a differentiable map x: M —> S1. 
Since CJ2/+1, pQ and \Q are Ui-invariant and dru(X) = — ieX[Q,U] for all X £ Ui, Theo­
rem 2.2 yields: 

Lemma 5.2 CJ2/+1U. pQv and \Qv for I £ N0 are global forms on B and we have: 

"S+i" = w2"+i - (2/ + l)*'e A° A 0 « - Ag), 

0>2)a« = (Pv)" ~ieA°A Y?-J~l)i KWV-W-Wlr, 

(\%)°v = (Ag)« - ie A° A E-l/"1)'' TT{QUL*-1QL"-W)°, 
2/4-1 

( ^+ . ) " f = ( ^ + i ) ° - i ^ a A ^ . = i Tr(Q^- 1Qfi 2 '+ 1 -^-QP- 1U tQUL 2 , + 1 ->)«, 
2/4-1 

(Ag+i)°v = ( A ? ( + 1 ) a - i e A a A _ . = i TI(QVLi-1QL*+1-W-QlJ-1QVa+1->)'', 

{pl ~ $)av = <& - A?,)", (p? + tf)"v = (/>? + A?)", 
(P3 + A?)at; = (p? + A?)a - lie A° ATr [Q2(R2 -L2)+Q dU* AQ dU]" , 

<pti+*tFv = (P?,+i+A?(+1)a -2ieA° A ^ = 1 T t ( Q U L « - 1 Q L 2 , - « + 1 l / t ) « 

-ie A° A ̂ ,=oTi(QRVQR2,-V - QL2'QL2'-2')°. 
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Analogous relations — with dgap instead of Aa — hold for the transformation rules, proving 
that P21 — \% and p^ + A? are global forms on B. 

For calculations we need the action integral and the topological charge for the skyrmion 
bundle. Thus 1̂3 and CJ5 have to be lifted to the bundle in order to get forms uA, resp., uA 

on B, whose pullbacks by the mesonic sections U:M —> B can be integrated over space-time, 
resp., the space manifold only. The topological charge BA(U) for the skyrmion bundle is then 
defined analogously to (5.3). In view of Theorem 4.1, we can read the following differential 
forms X2(j-j)+i €*42(/-j)+i(SUn) from (5.1), (5.2) and Lemma 5.2: 

xj,_i = (2 /+l ) (p2_ 1 + Ag_1)> 

X2,_3 = (2/ + 1) [2(pgl8 + Agl3) + ^ TT(QR2^QR21~2>-2 + QL*-lQL»-"-2) 

+ £ ' " * TT(QUL2'-1QL21-2'-2U^ + QUL2i-2QL2l-2i-W)\. 

This yields the following corollary to Theorem 4.1: 

Corollary 5.3 Gauge invariant generalizations of u3 and u>$ adapted to T and generating 
cohomology groups isomorphic to R on every bundle B(M, SUn,Ui), where Ui acts on SUn 

by inner automorphisms, are 

(uA)a = u>3v + ieFAx\v = K ~ 3ie Aa A (p? - A?)] + 3ieF A (/>? + A?), 

(uA)a = u>5v + ieFAxlv+(ie)2FAFAX
2iV = [ua - hie Aa A (p? - A?)] 

+5ie F A {(p? + A?)a - 2te Aa A Tr[Q2(H2 - L2) + Q dUf A Q dU]a} 

+5(ie)2 F A F A [2(pf + \f)a + Tr(Q dUQUt - QUQ dW)a]. 

These forms coincide with the ones found by "trial-and-error" in the literature.10' 6 The 
integral over U*wA gives the topological charge, and the integral over U*OJA is the anomalous 
action for the skyrmion bundle. Nevertheless these forms are not unique in the sense that 
they are the only possible generalizations of type (4.1). An additional term 

r(ie)lFl AdTT(QU^QU), r£R, 

may be added to w^+1, and this is still of the given type, because dTr(QWQU) is global, Ui-
invariant and vertical.6 One could even add any Fl A da with a = L*a £ .40(SUn). In order 
to exclude these, one needs further physical requirements like parity invariance, equality of 
the numbers of F's and Q's, etc. 

These forms now allow for the treatment of the monopole-induced proton decay within 
the skyrmion bundle. In fact, although we have proven that uA is a correct closed differential 
form for the topological charge, and although the integer valued cohomology group induced 
by J^;(JJA is isomorphc to Z, the number of baryons BA(U) is not topologically conserved 
any more, whenever magnetic monopoles are present. This is due to the fact, that in contrast 
to the ungauged SKYRME model, the Index theorem 5.1 does not apply any more. There is 
no possibility to compactify space to an S3, so the topological charge can vanish through the 
monopole singularities.3 
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