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RENDICONTIDEL CIRCOLO MATEMATICO DI PALERMO 
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Local and Global Aspects of Separating Coordinates for the 
Klein-Gordon Equation* 

Franz Hinterleitner* 

Abstract 

Coordinate systems allowing for a separation of variables in the Klein - Gor­
don equation in n-dimensional manifolds are characterized by systems of n sym­
metric Killing tensors of order two including the metric tensor. In the case of 
separable coordinates in 1-hi - dimensional Minkowski space a simple geometric 
relation between the horizons (global boundaries) of their domains and the as­
sociated Killing tensors (local tensor fields) is established: Coordinate horizons 
are generated by vectors which are null both in the sense of the flat metric and 
of the other Killing tensor of the two-dimensional Stackel system, when it is con­
sidered as an alternative, curved metric. These curved spaces display curvature 
singularities and signature changes. 

1 Introduction 

The subject of this paper are pseudoorthogonal coordinate systems in 1-f-l - dimen­
sional flat space-time according to which the Klein-Gordon equation is separable by a 
product ansatz 

$(x°,x1) = $0(a:0)$i(x1) (1) 

into ordinary differential equations, so that its solution may be written as an integral 
over modes, 

*(x°,xl) = Jdkc(k)${£\x")<f>?\xl). (2) 

The physical motivation behind this work is the problem of constructing quantum 
states of fields on the background of general relativity. The approach by positive 
and negative frequency mode decompositions has been applied in some curved space-
time examples, and also in flat space it has been carried out not only with respect 
to Minkowski time but also to non-inertial time variables, above all, the proper time 
of uniformly accelerated observers. This example results in the famous Unruh effect 
[1,2]: In the framework of this particular quantum field theory the ordinary Minkowski 
vacuum displays thermal properties. 

Quantization via mode decompositions of fields - provided by a separation of vari­
ables - is a local procedure at first sight, although the global nature of the resulting 

*The paper is in final form and no version of it will be submitted elsewhere. 
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particle concept becomes evident at various instants. On the other hand, there are 
approaches by construction of local field algebras of given space-time domains (for 
example, the Rindler wedge [3]) which take into account global aspects, namely the 
extension and boundaries of these domains, from the beginning. 

The investigation about global properties of separable coordinates is inspired by 
the question to what extent a positive and negative frequency mode decomposition 
may be generalized to non-inertial times and curved spaces to yield reasonable field 
quantizations. 

2 Separable coordinate systems in 1+1 - dimensional Minkowski 
space 

Including the Cartesian system there are 10 orthogonal coordinate systems in 1+1 
- dimensional flat space such that the Klein-Gordon equation may be separated. In 
all of them coordinate lines are either straight lines or conic sections, the latter ones 
being arranged in one or two confocal families [4,5]. In the following list curvilinear 
coordinates are denoted by /x, and v. 

1. Cartesian system: Coordinates t and x. 

2. Elliptic system (E): Elliptic coordinates \i and v are defined by 

t2 = ixv, X2 = (1-JJ)(1-V)\ 0<v<ti<l. (3) 

/i and v label ellipses of one and the same confocal family with mutually orthogonal 
intersections, given by the equations 

t2 x2 

- + - ^ - = 1. W 
\l 1-\L 

This system is defined in the square \t\ + |x| < 1. Like in the other four systems with 
only one family of coordinate lines each line contains both spacelike and timelike parts. 

3. Hyperbolic system (HI): Defined by the same equations as E, but with 1 < v < 
/i < oo, so that (4) describes one family of hyperbolas. HI is the continuation of E to 
other domains in space-time, it may be defined in 4 wedges os space-time, \t\ — \x\ > 1 
or \x\ — \t\ > 1. Two of its patches together with the finite domain of E are shown in 
the figure. 

4. Hyperbolic system (H2): /i and v are defined by 

x2 - t2 = \i +1/, tx = ixv-\\ 0 <v<fi< oo. (5) 

There is one family of hyperbolas covering a half-space, t + x > 1, 

lit2 + tx - fix2 = p? - \, (6) 

rotated against the t- and the £-axes in dependence of the parameter \i of the family. 
Figures of this and the following coordinate systems may be found in [4]. 
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5. Hyperbolic system (H3): These coordinates are defined by 

t2 = -/x/v, x2 = -(/z-r-l)(.v-fl); - o o < z / < - l , 0 < / z < o o . (7) 

There are two families of hyperbolas, /z labels the spacelike one, 

t2 x2 

h-JT^- <8> 
the timelike one is obtained by inserting the (negative) variable v into (8). This coor­
dinate system covers the whole Minkowski space. 

6. Hyperbolic system (H4): The definition of the next two systems of rotated hyper­
bolas are very similar, here it is 

t-x = y/jlvi t2-x2 = \(n + v)\ 0 < ^ < / z < o o . (9) 

The hyperbolas of this one family covering a wedge t + x>l,t> x axe given by 

(2/i - l)t2 + 2tx - (2/i + l)x2 = /A (10) 

7. Hyperbolic system (H5): The difference to H4 is the range of v, -oo < v < 0 < /z < 
oo, therefore t — x = *J—\iv. Now /z and v describe 2 different families of hyperbolas 
given by 

(2/i + l)t2 - 2tx - (2/i - l)x2 = /z2 (11) 

and the same equation with /z repaced by v. Their domain is a half-space t + x > 0. 

8. Hyperbolic system (H6) - the Rindler coordinate system: These coordinates are 
more traditionally denoted by r and r, 

£ = rsinhr, a; = rcoshr; 0 < r < oo, -oo < r < oo. (12) 

The lines r = const, are straight spacelike lines, r = const, denotes timelike hyperbolas, 
the coordinate domain is one of the "Rindler wedges", usually x > \t\ is chosen. 

9. Parabolic system (PI): This system is defined by 

x — t = 2(/i + v)y x + t = —\(fj, — v)2; — oo < v < /z < oo. (13) 

The coordinate lines are arranged in 1 family of parabolas with lightlike axes, trans­
lated against each other, 

s + t = I(Vizl)2. (14) 

This system covers a half-space t + x > 0. 

10. Parabolic system (P2): The second parabolic system is defined by 

t = |(/Z2 + V2), X = JJLV] -oo < v < \i < oo. (15) 
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There is one family of parabolas in a wedge like H6 with the equations 

z2-2/i2* + /i4 = 0. (16) 

With one exception (H3) the curvilinear systems do not cover the whole Minkowski 
space, their domains are bounded by lightlike horizons, whose connection to the confo-
cality of the coordinate lines were studied in [5]. An exceptional system is the Rindler 
system with its time translation symmetry, as the vector field d/dr is a Killing vector 
field. From the point of view of inertial coordinates Rindler time translation is a boost 
transformation. Beside the Cartesian system the Rindler system is the only one where 
coordinate lines are Killing trajectories. 

3 Stackel systems 

As it was shown by Stackel [6] for the Hamilton-Jacobi- and later by Eisenhart [7] for 
the Laplace equation, to any separable coordinate system in n-dimensional space there 
is associated a Stackel system, that is a linear space of n symmetric Killing tensors 
of order two, including the metric tensor. Killing tensors are characterized by the 
vanishing of their symmetrized first covariant derivatives, 

Km) = 0. (17) 

For any pair of Killing tensors of a Stackel system the Nijenhuis-Schouten bracket 
vanishes, in its contravariant version this is 

[K, L p = Kij
tl L

lk - L% Klk = 0. (18) 

This property is equivalent to the existence of n constants of motion in the case of 
physical systems with a separable Hamilton-Jacobi equation [8], 

i*-gg + VM-««. (19) 
The connection between separability and Stackel systems is the fact that the tan­
gent vectors to separable coordinate lines are the common eigenvectors of n linearly 
independent Killing tensors. 

Given the diagonal (contravariant) metric gu(x) in terms of orthogonal separable 
coordinates there is a straightforward method to determine n — 1 other Killing ten­
sors, KtJ, which of course must be diagonal, too. This method can be found, for 
example, in [8], where extensive studies about Stackel systems in connection with 
geodesic Hamilton-Jacobi equations are performed. In these equations the contravari­
ant metric plays a preferred rdle. If the matrix elements of a desired Killing tensor K 
are written as 

* " = W (20) 
pi may be obtained as solutions of the following set of partial differential equations 

dipj = (Pi-pj)di\n\g»\. (21) 

In [9] it was shown that the solutions of these equations are "elementary symmetric 
functions" in the coordinate variables. 
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4 A relation between Killing tensors and horizons 

Concerning the problems mentioned in the introdution, on a geometric level it was 
possible to establish a close connection between local (Killing tensor fields) and global 
(coordinate horizons) aspects of separable coordinate systems. The basic idea is the 
interchange of the r6les of the flat metric tensor gik and another Killing tensor kik of 
the associated Stackel system. 

One obtains a curved space with metric kik, or k^, respectively, where the wave 
equation is separable again. Both metrics gik and k^ can be applied (locally) to the 
same underlying manifold, albeit the curved one may cause curvature singularities, 
so that the extensions of the two metric spaces may be different. The hope is that 
the completely artificial horizons of separating coordinate patches in flat space would 
be more natural in the curved space-time domains generated in this way. The rest 
of this work will be dealing with their causal structure (null geodesies and curvature 
singularities). 

For establishing the above relations the metric and another Killing tensor are ex­
pressed explicitely in terms of the curvilinear separable coordinates. In the elliptic 
and the hyperbolic systems (with the exception of H6) the line element has the form 

d S
2 = ^ ; Ҷ ^ d"2 ) (22) 

\(џ-a)(џ-b) (v-a)(v-Ь))' K ] 

The coordinate systems are distinguished by particular values of a and b (= 0, ±1, 
or complex conjugate). Horizons occur when \L = «v, that is when ds2 = 0 - the 
coordinate system becomes degenerate there. 

A particular Killing tensor obtained by means of (21) is given by the formula 

«*-{r ;9»). <-> 
arbitrary Killing tensors of the Stackel systems under consideration are linear combi­
nations of g and K, in the following 

kik = Kik _ cgik ( 2 4 ) 

will be used. 

Lightlike covectors V{ (in the sense of the flat metric) are characterized by 

g°°v$ + guv? = 0; (25) 

null covectors in the sense of the metric ktk by 

(..-ch^ + O.-c)^2^. (26) 

So nonzero null vectors in both senses occur only in the limit \i -> i/, that is, on the 
coordinate horizons. 
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In the exceptional case of Rindler coordinates the line element is 

ds2 = r2dT2-dr2 (27) 

and a one-parameter family of Killing tensors Ktk - cgik is given by 

kik=(lY J ) . c€R. (28) 

(Here the tensor Ktk (c = 0) corresponding to (23) is singular.) Again, common null 
vectors can appear only when ktk becomes proportional to gik = diag(l/r2, -1) , this is 
the case in the limit r —> 0, on the horizon. Here in both metrics <700 becomes singular 
and null vectors approach (0,1). 

For the parabolic coordinate systems the metric is explicitely conformal to the 
Minkowski metric %, 

(29) Pi: * = <*-'>*., *"~(V-Ac); 

P2: fc-(^-^)», ^^^h^O0 J+c)- <»> 
Again common null covectors can occur when /z -» v (PI), respectively /z -> ±v (P2), 
that is on the horizons in both cases. 

Conclusion: Horizons of separable coordinate systems for the Klein-Gordon equation 
in two-dimensional flat space-time are generated by the common null vectors of the 
metric tensor and another Killing tensor of the associated Stackel system. 

A generalization of this fact to higher dimensions is very probable - some examples 
in 3 dimensions have already been studied [10]. 

5 Curved space-times generated by Killing tensors 

For all the nine curvilinear coordinate systems considered here it may be seen by 
separating the geodesic Hamilton-Jacobi equation ((19) with V = 0) that the resulting 
kinds of ordinary differential equations are the same for gtk and ktk - c enters only into 
the separation constants - so that one may conclude that in all the cases geodesies are 
the same curves as in flat space, namely straight lines in (J, x) - space. 

This may be checked explicitely by calculating null directions for any ktk. For the 
elliptic coordinate system this will be done here. The Killing metric 

^ = W rt--/•><*--) o \ (31) 
[i - v \ 0 -i/(l - v){\i -c) ) K } 

has the following null covectors 

Vi = ( ^ ( l - t / ) ( l i - c ) , ±A//z(l-/i)(i/-c)) . (32) 
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To compare null lines with those of flat space-time it is suitable to transform v to 
cartesian coordinates, which results in 

v% x) = (t2 -c,tx± yjt2-c(t2-x2 + l) + c2\ (33) 

for the directions of null vector fields. For them the equation 

v'jtfocv* (34) 

holds, so their integral curves are straight fines. 
Moreover, their enveloping curve is an ellipse of the family (4) of coordinate lines 

belonging to the value \i = c, or v = c, respectively, provided c lies among the 
coordinate values, 0 < c < 1. 

Concerning curvature, the Ricci scalar of kik := (A;**)""1 is 

o ( H 2 - 2(* - c)MM + iv) - c(n + v)2 + 4c2(n + v) + 2c(3 - Ac)ixv - 6c3 + 3c4 

R~ (fi-c)2(v-c)2 

(35) 
it has a singularity at /x = c or v = c. From the determinant of the metric, 

(u - v)2 

det(*«*) = -7Z—R \/i \f w 7 (36) 
l§liv(l - n)(l - v)(n - c)(v - c) v ' 

it is seen that the metric is indefinite either for both \i and v being less or greater than 
c, and definite for v < c < \x. So, when k# is employed as metric tensor, the ellipse 
labelled by the paramter value c divides the domain covered by elliptic coordinates 
into four portions with Lorentzian metrics separated by one with a Euclidean one - the 
interior of this ellipse (see figure). The tangents of this ellipse are the null geodesies 
of the pseudoriemannian spaces - like the triangle (A, B1C) - between it and the 
horizons, which are tangent to all ellipses and hyperbolas and distinguished by dashed 
lines. For other values of c, c < 0 or c > 1, the singularity appears along one of the 
hyperbolas of HI. 

Concerning the other coordinate systems the situation is analogous: When the 
parameter c lies in the range of the coordinate values, there appears one coordinate 
line dividing the space into a part "inside" with a Euclidean metric, and parts with 
Lorentzian metrics bounded by this line and the horizons. So horizons may be charac­
terized also as enveloping surfaces of curvature singularities of one-parameter families 
of metrics with varying c's defined on the same manifold. They are reminiscent of black 
hole horizons; the main difference is that the singularities have null tangents. For a 
physical interpretation of the curved spaces further investigations will be necessary; 
at least for the example associated with H6 such an interpretation in the framework 
of two-dimensional gravity [11] seems to be available quite straightforwardly. 

Acknowledgement: The author thanks the Department of Theoretical Physics and 
Astrophysics of the Masaryk University in Brno for hospitality, helpful discussions and 
for support to participate in the winter school at Srni. 
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^ў\\—"fc^ŞŞĘpІS 

Figure: Domains of E with two ellipses and HI with two hyperbolas each in two wedges. 
The straight lines are null geodesies of a curved space generated from E. The interior 
of their enveloping ellipse has a positive-definite metric. 
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