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JACOBI VECTOR FIELDS AND GEODESIC 

TUBES IN CERTAIN KAHLER MANIFOLDS 

ANDREAS ARVANITOYEORGOS AND CHRISTINA BENEKI 

ABSTRACT. In this paper we give a characterization of the Kahler manifolds of con
stant holomorphic sectional curvature by using Jacobi and Fermi vector fields as well 
as small geodesic tubes of the manifold. 

1. INTRODUCTION 

The characterization of a Riemannian manifold by using certain properties of 
a specific submanifold constitutes a central problem in differential geometry. The 
corresponding problem for the Riemannian manifolds of constant sectional curvature, 
has been investigated by L. Vanhecke and T. J. Willmore in [Va-Wi] and B. J. 
Papantoniou in [Pa3]. A similar problem by using the properties of small geodesic 
spheres has been treated in several papers (see for example [Bl-Le], [Bl-Va], [Lei], 
[Le2], [Dj-Va], [Pal] and [Pa2]) and furthermore the same characterization by using 
geodesic tubes has been studied in [Pa3], [Bl-Pa], [Gr-Va]. M. Djoric [Dj] studied 
the characterization of complex space forms and locally Hermitian symmetric spaces 
by means of some extrinsic and intrinsic properties of tubular hypersurfaces relating 
to corresponding shape operator and the Ricci operator. 

Recently J. Gillard [Gi] also gave another characterization of complex space forms 
by using the Ricci-semi-symmetry condition RXY ' Q = 0 and the semi-parallel condi
tion RXY'V = 0 considering special choices of tangent vectors XyY to small geodesic 
spheres or geodesic tubes, where i?, g and a denote the Riemann curvature tensor, 
the corresponding Ricci tensor and the second fundamental form of the spheres or 
tubes, even though his characterization is restricted to certain set of points called 
special points. 
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In the present paper we characterize Kahler manifolds of constant holomorphic 
sectional curvature by using properties of the shape operator of small geodesic tubes 
about a geodesic in M. 

Our main theorems are the following: 

Theorem 1.1. Let (M,#, J) be a connected Kahler manifold of constant holomor
phic sectional curvature c and of real dimension 2n > 4. Let a = a(t) be a geodesic 
of M of finite length and 7 = j(s) be a unit speed geodesic, meeting a orthogonally 
at m = a(0). Suppose that {e*} = {JiV,£,e4,.. . ,62n} is an orthonormal frame 
field of parallel vectors along 7. Then every sufficiently small geodesic tube about a 
of radius s in some neighbourhood U. is a quasi-umbilical hypersurface of M with 
respect to the plane spanned by JN and £. 

The basis {e*} mentioned in the theorem above will be constructed in section 3. 

Theorem 1.2. Let (M, g, J) be a connected Kahler manifold of real dimension 2n > 
4. a = a(t) an arbitrary geodesic of M of finite length and 7 = 7(5) a unit speed 
geodesic meeting a orthogonally at m = a(0). Suppose that every sufficiently small 
tube about a of radius s is a quasi-umbilical hypersurface of M with respect to 
the plane spanned by {JiV,£} (i.e the corresponding shape operator has a parallel 
eigenspace along 7 of dimension 2n — 3). Then the manifold M is of constant 
holomorphic sectional curvature. 

2. PRELIMINARIES 

Let (M,#,J) be a connected Kahler manifold of dimension 2n > 4. Denote by 
X(M) the Lie algebra of C°° vector fields on M. We will make use of the following 
results. 

Theorem 2.1. [Ko-No] A Kahler manifold has constant holomorphic sectional cur
vature c if and only if 

R(X, Y)Z = -A[g(X, Z)Y - g(Y, Z)X + g{Y, JZ)JX - g(X} JZ)JY - 2g(X, JY)JZ] 

forallX)Y,Z€X(M). 

Theorem 2.2. [Kos] A Kahler manifold of dimension 2n > 4 has constant holo
morphic sectional curvature, if and only if R(X1 JX)X is proportional to JX for 
every vector field X on M. 

Let a : (a, 6) —>• M be a curve of finite length in a Itiemannian manifold M. 
To describe the geometry of M in a neighbourhood of the curve a we use Fermi 
coordinates [Fe] which are the natural generalization of normal coordinates about 
a point m e M, when one replaces m by a submanifold P . Next we apply the 
definition of Fermi coordinates [Gr] for the case of the curve a [Gr-Va]. 

Definition 2.1. Let {Eu • • • ,En} be an orthonormal frame field along a curve a 
and let m = a(0) be a point on a. Assume that a(t) = (Ei)a(ty Then the Fermi 
coordinates (x i , . . . , xn) of a relative to { £ 1 , . . . , En} and m are given by 
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n 

xi(expa(t) X / i ^ W ) ) = *> xi(exPo{t)Y^h(E5)°{t)) = Ui 2<i<n 
3=2 j=2 

provided that the numbers t2l... ,£n are small enough so that the mapping expa(t) 
is a diffeomorphism. 

The Fermi coordinates ( ^ i , . . . , xn) are defined on any open neighbourhood U of 
a for which every point of U can be joined to a by a shortest unit speed geodesic 
meeting a orthogonally. 

Let - — , . . . , - — be the coordinate vector fields associated with the Fermi coordi-
OX\ oxn 

nates (x\,..., xn). It is known [Gr, lemma 2.4] that the restrictions of the coordinate 

vector fields ——,. . . , —— to a are orthonormal. 
ox2 oxn 

Propos i t ion 2 . 1 . Let 7 = 7(5) be a unit speed geodesic of M normal to a with 
7(0) = m = a(0) and let u = 7'(0). Then there exist a system of Fermi coordinates 
( x i , . . . , xn) such that for small s we have [Gr, lemma 2.5]: 

and _ 
0x1 

7(») 

{Ңt)}m,  Є {Ңt)}i 

JL 
dx2 

d 
dxi 

for 2 < i < n. 

Definition 2.2. We say that a vector field X € X(U) is a Fermi vector field relative 

E O 
Ci~— where the Q 'S are constants. 

.=2 dx* 

We will need the following two simple objects. 
For r > 0 we put 

.•-£>? and »-±Z±. 
i-2 t=2 * 

For m G a it is easily proved [Gr, lemma 2.6] that the definitions of r and IV 
are independent of the choice of the Fermi coordinates at m. The geometric signifi
cance of these objects will be stated later on. Next proposition describes their most 
important properties. 

Proposition 2.2. [Gr, lemma 2.8] Let X be a Fermi vector field for U = U(a) and 

A = - — . Then we have 
ox 1 

(o) VWІV = 0, (b) \\N\\ = 1, (c) N(r) = 1, (d) A(r) = 0, (e) [X,A] = [N,A] = 0 

(f)[N,X] = --X + -X(r)N, (, 
r r 

for all U of the form U = A + rX 

(f) [N,X] = --X + -X(r)N, (g) [N,rX] = X(r)N, (h) VNVNU = R(N,U)N 
r r 
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Definition 2.3. A vector field Y along a geodesic 7 is called a Jacobi field if it 
satisfies the following second order differential equation 

Y" = R(j',Yh'. 

Moreover if 7 = 7(5) is a geodesic normal to a at m — a(0) and X a Fermi vector 
r\ 

field onU = U(a), then the restrictions to 7 of rX and -— are Jacobi fields [Gr, 
OX\ 

corollary 2.9]. 
Definition 2.4. [Gh-Va] A solid tube of radius r > 0 about a curve a is the set of 
points of M given by 

T(a,r) = {expa(t)X\X £ M , w , ||X|| < r, g(X1a(t)) = 0, a < t < b} 

where Ma(t) denotes the tangent space of M at the point a(t). For small s, 0 < s < r 
we call the hypersurface of the form 

Ps = {m' e T(a,r)\d(m\a) = s} 

the tubular hypersurface of radius s of M about a, or just tube. 

If a is a geodesic of M, then the corresponding tubes are called geodesic tubes. At 
this point we can mention the geometric significance of the objects N and r defined 
earlier. The vector N is the unit outward normal from every tubular hypersurface 
and r is the distance of any point m £ M from the curve a. Furthermore, for any 
unit speed geodesic 7 from a to m meeting a orthogonally, N^s) = 7'(s) (s > 0) 
[Gr, lemma 2.7]. 

Let R(s) be the endomorphism of {^'(s)}-1 C Tl(s)M, given by R(s)X = 
R(N,X)N, and Sj^(s) be the shape operator of Ps with respect to N defined by 
SN(s) = -VAT [ON, Page 107]. 

We close this section with a brief discussion on quasi-umbilicity. Normally this 
refers to the shape operator S of a k-dimensional hypersurface as having at least k -1 
equal eigenvalues. It is known [Ch-Ya] that if there exist, on an (n-l)-dimensional 
hypersurface M of an n-dimensional Riemannian manifold iV, two functions p, q 
and a vector field va such that hab = pgab + qvaVb, ( a , 6 = l , . . . , n — 1) where /ia&, 
gab, are the second fundamental form and the fundamental metric tensor of the 
hypesurface respectively, then M is said to be quasi-umbilical. We are interested on 
geodesic tubes as hypersurfaces in Kahler manifolds of dimension 2n. At a point m 
of a tube P3 where two distinguished vectors JN and £ (to be defined later on) are 
tangent vectors, we say that a hypersurface is quasi-umbilical with respect to the 
plane spanned by JN and £, if the shape operator at m has 2n — 3 eigenvalues equal, 
with eigenspace orthogonal to JN and £. (The remaining two eigenvalues may or 
may not be equal). 
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3 . THE SHAPE OPERATOR ON GEODESIC TUBES 

Let M be a Kahler manifold of constant holomorphic sectional curvature and let 
m be a point in M. Let a : (a, b) —> M be a geodesic with a(0) = m and Ps the 
geodesic tube of radius s about a. Suppose that 7 = ^y(s) is a unit speed geodesic 
in M meeting a orthogonally at m, assuming that 7(0) = m and 7'(0) G {a(t)}m. 
According to proposition 2.1 and the discussion after definition 2.4, there is a system 

of Fermi coordinates ( i i , . . . , xn) with corresponding Fermi fields Xi = -— such that 
OXi 

r\ 

= ')'(s) — N. Let an orthonormal basis {Ex,..., 2?2n} 
7(«) 

PI 

at m of the tangent space TmM where Xi = -— 

orthogonal to the geodesic 7 at m, with £1 = o~(0), E2 = 7;(0) = N. We denote by 
the same letter N the tangent vector at m and the tangent vector field along 7. 

In order to compute the shape operator on a geodesic tube along the curve a 
we need to find expressions of the Jacobi vector fields along 7. Because of the 
Kahler condition this basis can be moved by parallel translation along 7. Denote by 
{ei, . . . , e2n} the parallel orthonormal frame field along 7. For our purposes it will 
be convenient to make a special choice of the frame field. 

Therefore, we may choose the frame field {ei , . . . , e2n} such that 

for small s we have _ 
ox 

and jEi,i?3,...,i?2n being 

(3.1) JN = (~nex + Ae3)m 

where K2 + A2 = 1, as in general the vector JiY will have a component tangent to a 
at m and also a component normal to it. 

If we define a parallel unit vector field £ along 7 by 

(3.2) £ = Aei + «e3 

then one easily has that #(£, N) = #(£, JN) = 0. 
Hence, the frame field {e*} = {JJV,£;e4, . . . ,e2n} is an orthonormal frame field 

for the space {N}1- at any point of 7(5). 

Proposition 3.1. Let (M,^, J) be a connected Kahler manifold of dimension 2n > 
4 and of constant holomorphic sectional curvature e > 0. Suppose that a = a(t) 
is a geodesic of M of finite length and let 7 = j(s) be a unit speed geodesic of M 
meeting a orthogonally atme M. Suppose that {e*} is an orthonormal frame field 
along 7 as defined above. Then the Jacobi vector fields along 7 which are uniquely 
determined by the initial conditions: 

71(0) = ^ , Y3(0) = 0, Yj(0) = 0, 
(3.3) 

y/(0)--0, Yf(0) = --3, Yj(0) = Ejt j = 4, . . . ,2n 
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are given by 

\fc 
Yx(s) = -KCOsh(>/cs)JN + A cosh( ~~s)£ 

(3.4) Y3(s) = -^ sinh(^s) JN + ^ s i n h ( ^ * ) £ 
\ /C y/C I 

2 
Yj(s) = -y=s'mh(y/cs)ej(s) , j -= 4, . . . , 2n . 

\JC 

Proof. Since at any point of 7 every Jacobi vector field Yi is perpendicular to TV, it 
may be written with respect to the basis {e*}, as 

2n 

(3.5) Yi = Y*XJN + Y*3t + £ Yijejj i = 1; 3 , . . . , 4n. 
j=4 

Now supposing that c > 0, the relations (3.4) can be obtained combining Theorem 
2.1, relation (3.5) and definition 2.3. 

If c < 0, then (3.4) are also valid by substituting all the hyperbolic functions by 
the corresponding trigonometric ones, and c by |c|. 

If c = 0 then we have 

Yx(s) = -KJN + AC, Y3(s) = {Xs)JN + («*)£, 
(3.6) 

Yj(s) = sej(s), j = 4 , . . . ,2n . 

and the proof is completed. 

We can now prove Theorem 1.1. 
Consider the tubular hypersurface P8 of radius s about the geodesic a and let 

SN(S) = —V1V be its shape operator acting on the space {N}1 where N is the unit 
tangent vector field along the geodesic 7. Let Yi = Yi(s) be the Jacobi vector fields 
along 7, given by (3.4). Then an easy computation shows (e.g. see [BP] Lemma 2.2, 
page 69) that [N, Yi] = 0 and by using that Y-(s) = VjvYi(s) we obtain 

(3.7) Y!(s) = -SN(s)Yi(s), i = 1;3,.. . ,2n. 

We denote by B the (2n - 1) x (2n — 1) matrix whose columns are the coordinates 
of the above Jacobi vector fields with respect to the basis {e*} of {N}1. We write 

(3.8) Yi(s) = B(s)ei(s), i = 1; 3 , . . . , 2n. 

Differentiating this relation we obtain 
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(3.9) y/W = B,(s)ei(s) 

and therefore by using (3.7),(3.8) and (3.9) we easily get 

SN(s)B(s)ei(s) = -Bf(s)ei(s). 

Hence, we obtain an expression of the shape operator of tubes in terms of the Jacobi 
vector fields [GV] 

(3.10) 5лг(s) = - ^ Д О - Ҷ s ) . 

Suppose that c> 0. By substituting JN and £ from (3.1) and (3.2) to (3.4) and 
by applying the relation (3.10), we conclude that the shape operator SN(s) of the 
tube P3 is given by the following (2n - 1) x (2n — 1) matrix: 

(K L 
L M 

(3.11) Ss{s) 

whєre 

v ^ .../Vlč x •— coth(—s) 

ţcotцţs)/ 

K = -,4[(A4 + 4K 4 ) c o s h ( ^ s ) s i n h 2 ( ^ s ) - 2K 2 A 2 (1 - cosh(^s) cosh(^s)], 
L L L 

L =- AKX[{4K2 - A2) c o s h ( ^ s ) s i n h 2 ( ^ s ) + {K2 - A2)(l - cosh(\/5s) c o s h ( ^ 
L L L 

M =- -vl[AV(2 + 5 c o s h ( ^ s ) s i n h 2 ( ^ s ) + (K4 + A4) cosh(v^s) cosh(^s)] 

and A = -—-=-—, ß = A2 cosh2(^--s) + K2 cosh(v^c5). 
o • u / V c N 2 

2/isinh(—-s) 
L 

2 

(3.12) 

Therefore, the shape operator SN(s) has the eigenfunction K\(s) = — — coth(—s) 
L L 

of multiplicity 2n - 3 and the corresponding eigenspace orthogonal to JN and £. 
Hence the tube P8 is a quasi-umbilical hypersurface of M with respect to the plane 
spanned by JN and £. 

In order to compute the shape operator SN(s) for the negative curvature case 
(c < 0), it suffices to change the hyperbolic functions in (3.11) and (3.12) into the 
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corresponding trigonometric functions and replace c by \c\. Hence, we obtain the 
same conclusion. 

For the zero curvature case (c = 0), one can easily obtain that the shape operator 

SM(S) has the eigenfunction n2(s) = - - of multiplicity 2n - 2 and therefore, we get 
s 

the same result and the proof of the Theorem 1.1 has been completed. 

Next we will prove Theorem 1.2. 
Let m = a(0) be a point of M and denote by 7 = 7(5) the unit-speed geodesic of 

M which meets a orthogonally at m with 7(0) = m. 
From the hypothesis that every sufficiently small tube about a is quasi-umbilical 

with respect to the plane spanned by {JN,£}, we obtain that the shape operator 
SN(S) = S(s) of each tube will have three eigenfunctions, say «i = K\(S), «2 = ^ 2(s) , 
of multiplicity one, and K3 = K3(S) of multiplicity 2n — 3. 

Let {ei; e 3 , . . . , e2n} be a parallel orthonormal frame field along 7 such that 

(3.13) Se\ = K\ei, Se^ = K2e3, 5e^ = K^, z = 4 , . . . , 2 n 

and let 

(3.14) e2(s) = i(s) = N. 

From equation S = —B'B~l we obtain Bf = —SB, from which by differentiation we 
get eventually that 

(3.15) Y!' = (S2 - Sf)Yi, i = 1; 3 , . . . , 2n 

where Yi are the Jacobi vector fields along 7 perpendicular to N. On the other hand, 
we also have 

(3.16) F / ' = R(N,Yi)N 

along 7 \ {m}. 
Therefore, we get 

(3.17) R(N, Yi)N = (S2 - Sf)Y{. 

Since R(N, -)N, S2 and S' are tensor fields, then, along 7 \ { m } , (3.17) is equivalent 
to 

(3.18) R(N,Y)N = (S2 - S')Y 
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for all vector fields Y perpendicular to N. By substituting relation (3.13) to (3.18) 
we obtain 

It(iV,ei)JV = (KI-K^ 

(3.19) R(N,e3)N = (4 - K'2)e3 

R(N,ei)N = (KJ-K3)ei, i = 4 , . . . , 2 n . 

Thus ei, e3 and e*, t = 4 , . . . , 2n are eigenvector fields of R(N, -)N along 7 \ {m}, 
corresponding to the eigenfunctions K\ — K\,K2 — K2 of multiplicity 1, and K\ — K/3 

of multiplicity 2n — 3. By substituting at the point m we have 

R(E2,El)E2 = k(E2,E1)El 

(3.20) R(E2,E3)E2 = l(E2,E3)E3 

R(E2,Ei)E2 = m(E2,Ei)Ei, i = 4 , . . . , 2 n . 

Consider an arbitrary point m £ M and let 7 be a geodesic passing through m 
such that N — E2 is its tangent vector at m. Let JE2 = E3 and a be the geodesic 
perpendicular to the plane spanned by JE2 and E2. Then from the relations (3.1) 
and (3.2) one concludes that £ = E\. Moreover, from the second equation of (3.20) 
one easily concludes that 

R(E2, JE2)E2 = R(E2, E3)E2 = l(E2, E3)JE2 

and this relation holds for every tangent vector E2 at m, as 7 may be chosen in an 
arbitrary direction. 

Hence by Theorem 2.2 the manifold M has constant holomorphic sectional cur
vature and the proof is completed. 

Acknowledgements: The authors would like to express their gratitude tQ Professors 
B. J. Papantoniou and M. H. Shahid for useful discussions during the preparation 
of this work. 
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