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RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO 
Serie II, Suppl. 69 (2002), pp. 219-231 

ON HOMOGENEOUS SYMMETRIES FOR EVOLUTION SYSTEMS 
WITH CONSTRAINTS 

ARTUR SERGYEYEV 

ABSTRACT. The sufficient conditions of time independence and commutativity for 
local and nonlocal homogeneous symmetries of a large class of (1+1)-dimensional evo­
lution systems are obtained. In contrast with the majority of known results, the verifi­
cation of these conditions does not require the existence of master symmetry or hered­
itary recursion operator for the system in question. We also give simple sufficient 
conditions for the existence of infinite sets of time-independent homogeneous symme­
tries for (l-fl)-dimensional evolution systems within the master symmetry approach. 

1. INTRODUCTION 

Most of known today integrable systems are homogeneous with respect to some 
scaling. In this case one looses no generality in assuming the homogeneity of symme­
tries, master symmetries, recursion operators, etc This considerably simplifies finding 
and investigation of such systems, see e.g. [15]—[21]. Moreover, many inhomogeneous 
systems possess rich sets of homogeneous symmetries. 

In this paper we present some new results on the structure of time-dependent (cf. 
e.g. [18, 10, 11, 12, 9] for the time-independent case) formal symmetries for a natural 
generalization of the systems, considered in [10, 11, 13], namely for (l-rA)-dimensi-
onal nondegenerate weakly diagonalizable (NWD) evolution systems with constraints. 
These results turn out to be particularly useful for the study of homogeneous (with 
respect to some scaling) symmetries of such systems. In particular, we have found sim­
ple sufficient conditions for the commutativity and time-independence of homogeneous 
higher order symmetries and for the existence of infinite number of such symmetries 
for NWD systems with constraints. Note that the overwhelming majority of well-
known [17, 21, 11] and recently found, see e.g. [16, 19, 6], integrable evolution systems 
in (1+1) dimensions fits into this class. Most of them are homogeneous, but there is 
a number of inhomogeneous systems having big sets of homogeneous symmetries as 
well. Let us mention that our results, unlike the majority of already known ones, can 
be applied to the systems with time-dependent coefficients, cf. e.g. [8], and are not 
restricted to scalar evolution equations. 
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Both the proofs and the application of the results of this paper on commutativity 
and time independence of homogeneous symmetries do not rely on the existence of a 
master symmetry or e.g. (hereditary) recursion operator. They involve just an easy 
verification of a few weight-related conditions. In this way we can get rid (cf. [4]) of 
the tedious direct checks that time-independent symmetries of sufficiently high order 
commute and that the symmetries with time-independent leading term in fact are 
time-independent themselves. In addition, our Proposition 5 provides a convenient 
tool for the proof that a 'candidate' for master symmetry indeed is a nontrivial master 
symmetry, producing the hierarchy of symmetries of growing orders. Let us also stress 
that the check whether the system under study satisfies the conditions of our propo­
sitions is almost entirely algorithmic and thus can be performed using the modern 
computer algebra software. This makes our results particularly helpful in the study 
of new integrable systems, for which only a few higher order symmetries and (some­
times) a 'candidate' for the master symmetry are known, but no recursion operator is 
yet found. Moreover, our results, with the exception for Proposition 5, are obviously 
applicable to non-integrable systems as well. 

The paper is organized as follows. In Section 2 we describe the extension of some 
well-known definitions and results from [15, 5, 10, 11, 13] to the case of explicitly time-
dependent evolution systems with constraints. In Section 3 we present the sufficient 
conditions under which the Lie bracket of two symmetries for a general evolution sys­
tem with constraints is well defined. Section 4 contains some results on the structure 
of symmetries and formal symmetries for NWD systems with constraints. In Sec­
tion 5 we present the sufficient conditions for commutativity and time-independence 
of homogeneous higher order symmetries and for the existence of infinite hierarchies 
of time-independent homogeneous higher order symmetries for NWD systems with 
constraints along with the examples illustrating the application of these results. 

2. BASIC DEFINITIONS AND FACTS 

Consider an evolution system with constraints (cf. [13]) 

(1) du/d* = F(x,*,u , . . . ,u n , ,£) 

for the vector function u = (u1 , . . . ,u5)T . Here Uj = 3Ju/9a,J,u0 = u and F = 
(F 1 , . . . ,F 5 ) T ; UJ = (u>i,...,u;c)

T; the superscript T ' denotes the matrix transpo­
sition. The quantities u;a, which are usually interpreted as nonlocal variables, are 
defined here by means of the relations [13, 20] 

(2) duJa/dx = Ka(x,t,u,Ui,...,u/i,a3), 

(3) duia/dt = Ta(x, i, u, u i , . . . , x\h, (3). 

We shall denote by VI the set of nonlocal variables u;7, 7 = 1 , . . . , c. 
Denote by -4j,fc(n) the algebra of all locally analytic scalar functions of x,t ,u, 

Ui , . . . ,Uj,u;i,... ,cjfc with respect to the standard multiplication. Let A = A(il) = 
U = i U r = o ^ ( f t ) ' a n d ^toc = {/ € A I df/du = 0} be the subalgebra of local 
functions in A. Note that we do not exclude the case c = 00. 
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The operators of total x- and t-derivatives on A have the form 

d °° d c d 
D = DX =—+Y: U,-+1 -—+£ Xa—, 

ox t=0 cm,- a=i dbja 
d °° . d c d 

Dt = ^ + ZDt(F)^+ZTa^-. 
ot t=0 OUi a = 1 9o;a 

As in [13, 20], we require that [Dx,Dt] = 0 or, equivalently, Dt(Xa) = Dx(Ta) for 
a = 1 , . . . , c. We assume that X7, T7 £ A for all 7 = 1 , . . . , c. We shall denote by 
Im D the image of A under D. Below in this paper (with the exception for Section 3) 
we make a blanket assumption that the kernel of D in A consists solely of functions of t. 

Let Matp(-A)[D_1] stand for the set of formal series in powers of D of the form 
S) — ̂ = - 0 0 hjD\ where hj are p x p matrices with entries from A, cf. e.g. [10, 11]. 
For the sake of brevity we shall use the notation AJD"1] instead of Mati(A)[D -1]. 

Recall that the degree of formal series 5} £ Matp(A)[D_1] is the greatest m £ Z 
such that hm 7-= 0. It is denoted as m = deg.ft. Following the literature (see e.g. [15]), 
we assume that degO = —00. The formal series fj of degree m is called nondegene-
rate [11], if dethm ^ 0. For £ = Y^=-oohiDJ € AJD""1], hm ^ 0, its residue and 
logarithmic residue are defined as resf) = ^-1 and reslni) = hm-\/hm [10, 11]. 

The multiplication law (see e.g. [15]) 

aDi o bD> = a £ * " X ) ' " f " * + l) Dq(h)D^~q 

g=0 9* 

for monomials aD\ 6DJ, where a,6 are p x p matrices with entries from A, extended 
by linearity to the whole set Matp(>-i)[D~1], endows the set Matp(^)[D_1] by the 
structure of an associative algebra. The commutator [21,03] = 21 o © — 03 o 21 makes 
Matp(>l)[D"1] into a Lie algebra. Below we omit o if this is not confusing. 

Following [15, 5, 2], let us say that a vector function G £ As is a symmetry for 
(l)-(3), if 

(4) flG/0t + [F ,G]=O, 

where [•,•] is the Lie bracket: [K,H] = H'[K] - K'[H]. In analogy with [13], for any 
vector function / £ Aq we define the operator of its directional derivative as 

0 0 f)f c Q/ h 

/' = E ̂  + E «£((-' - *T')* o £ «-/*,,• o zy. 
Here VV is a c x c matrix with the entries dXa/dup, and (D — W)~l stands for the 
formalinverseofD-iy,thatis,(D-KV)-1 = D" 1o(E-KVoD- 1)- 1=ID- 1 + D-1OKVo 
D"1 H , where I denotes a c x c unit matrix. Clearly, (D — W)~l £ Matc(«A)[D"1], 

so we can write (D — W) 1 = ID x + ]Cj=-oo Wj^J> where IVj are c x c matrices 
with entries from A, and we set ((D — W)""1)^ = &apD~l + Y^I-OQ^J)*^ , where 
(Wj)ap is the (a,/?)-th entry of the matrix IV}, and 8ap is Kronecker delta. 

As an immediate consequence of the above definition, we see that for any K £ As we 
have K' £ Mat5(»4)[D""1], so for H £ As the quantity K'[H] is an s-component vector. 

In analogy with the notion of order for local functions (cf. e.g. [15, 11]), we shall 
define the formal order of / £ Aq as ford / = deg / ' . 
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Let SF(A) denote the set of all symmetries G e As for ( l ) - (3) , S{
F\A) = {G € 

SF(A) | fordG < Jfe}, AnnF(A) = {G G SF(A) \ dG/dt = 0}. In general, unless A = 
4i o c , neither As nor SF(A) are closed under the Lie bracket. However, if [P, Q] G As 

for some P , Q G SF(A), then it is straightforward to verify that [P ,Q] G SF(A). 
Let us mention that our definition of symmetries for the system (1)~(3) is essentially 

the same as that of [2, 7], while in the terminology of [20] the elements of SF(A) are 
referred as shadows of symmetries. 

Following [15,10,13], we shall call a formal series 9\ = ~Z)=-a> VjDj £ Mat. ( ^ [ . D " 1 ] 
a formal symmetry of rank m for ( l )-(3) , if 

(5) deg(A(W) - [F',5t]) < degF ' -f deg<K - m. 

Here Dt(fR) = E ^ Dt(m)D>. 

Let FSp(A) denote the set of all formal symmetries of system (1)~(3) having rank 

not lower than r. This set is a Lie algebra, because for any ty G FSp(A) and £} G 

FS^(A) we obviously have [<£,£}] G FSP(A) for r = min(p,?), cf. [11] for local case. 
It is well known that (4) is a compatibility condition for (1) and du/da = G. On 

the other hand, if G G As, then d(du/da)dt = Dt(G) and d(du/dt)da = F'[G]. 
Hence, we can rewrite (4) as Dt(G) = F'[G]. 

We have F ' = £ & D \ Set n0 = j \ ~ J ^ = ^ ^ ' = * " ^ ' ' ' ' " ' 

As Dt(G) = F'[G] implies Dt(G') - [F', G'] - F"[G] = 0, and degF"[G] < d e g F -f 

n0 - 2, we find that G' G FS$ordG-n°+2\A) for G G SF(A). 

3. S O M E PROPERTIES O F T H E L I E B R A C K E T 

Let P , Q G As. In general we cannot guarantee (see above) that [P,Q] G As or, 
more broadly, that Qt- = ad l

P(Q) = [P,Q t_i] G A9, i = 1 ,2 , . . . . Here ad H (G) = 
[H,G] . In some cases it is possible to make the conditions adp(Q) G As hold, if we 
introduce new nonlocal variables CJK and thus replace A by a larger algebra A. But in 
order that [P,Q] G As for P , Q G As it obviously suffices to require that o;^[P] G A 
for those u;̂  on which Q actually depends and t^[Q] G A for those uu on which P 
actually depends, cf. Ch. 6 in [20]. Moreover, we have the following result. 

P r o p o s i t i o n 1. Let P , Q G A', t^[Q] G .4 and u^[P] G A for 7 = 1 , . . . , c. Then all 
elements of Lie algebra £p,Q generated by P and Q belong to As. 

Proof. For any H G 4* and / G .4 set LH(f) = / ' [H] . Next, for any G , H 6 ^ such 
that LG and Ln map .4 into A we have L[G,H] = LQ 0 LH — LH o LG, where 0 stands 
for the composition of mappings. Hence, L[G,H] also maps A into A. In particular, 
Lp?.Q] maps A into ,4, as our assumptions imply that Lp and LQ map .4 into A. From 
this it is immediate that for any G, H G £ P . Q £[G,H] maps .4 into 4 , if so do L G and 
Ln. For G , H G As this implies [G,H] G 4 5 , and the result follows. • 

If P is a master symmetry and Q is a symmetry for ( l ) -(3) , then the above result 
enables us to ensure that the symmetries Q/ = ad P (Q) belong to As. Apparently, 
the conditions of Proposition 1 are satisfied for nearly all known master symmetries 
of integrable systems (l)-(3) for a suitably chosen set Q, of nonlocal variables u;7, so 
in the majority of cases the action of master symmetries indeed yields the symmetries 
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from As. In particular, if dF/du = 0, then the results from Ch. 6 of [20] imply that 
any P , Q € SF(A(SI\JAC,F)) meet the requirements of Proposition 1. Here DUAC.F 
denotes the set of all nonlocal variables associated with the universal Abelian covering 
(see [20] for its definition) over (1). 

Note that Proposition 1 is obviously valid for more general systems of PDEs with 
constraints than ( l ) - (3) , if we suitably redefine for them the Lie bracket, the direc­
tional derivative and the algebra A. M 

4. F O R M A L SYMMETRIES O F N W D SYSTEMS 

Let us consider an evolution system with constraints ( l )-(3) having n = fordF > 2 
and such that the leading coefficient $ of the formal series F ' (that is, F ' = $Dn + ...) 
can be diagonalized by means of an s x s matrix T with entries from A and has s distinct 
eigenvalues A,-, i.e., the matrix A = T$T~l is diagonal, cf. [10,11], A = diag(Ai , . . . , A5), 
and At- 7- Aj, if i ^ j . For the system (l)-(3) with these properties there exists a unique 
formal series X = T + TY%Li rJD~J e M a t ^ J I r 1 ] ) such that all coefficients of the 
formal series 93 = XF'X""1 + (Dt(T))X~1 are diagonal matrices and the diagonal entries 
of matrices TjJ = 1 ,2 , . . . , are equal to zero. This result is a straightforward general­
ization of Proposition 3.1 from [10] to the case of evolution systems with constraints. 
We shall call the systems with constraints ( l )-(3) having the above properties and 
such that det $ 7-- 0 nondegenerate weakly diagonalizable (NWD). If u is a scalar, i.e. 
5 = 1, then any system (l)-(3) with n = fordF > 2 obviously is an NWD system with 
constraints, and we have X = 1 and 93 = F ' . 

Below in this section we assume that ( l )-(3) is an NWD system with constraints. 
Let ( l)-(3) be an NWD system with constraints, and %\ £ FSF(A) be its formal 

symmetry of rank m and degree r. The determining equation (5) for 9\ under the 
"gauge" transformation <K -> jft = XSKX"1, F ' -> 93, where the formal series X and 93 
are defined above, goes into the equation deg(Dt(D\) — [93,<H]) < deg 93 -f degiH — m, 
which is far more convenient for further analysis. Thus, let us consider the equation 

(6) deg(D t(%) - [93, q3]) < deg 93 + deg ̂  - m . 

Assume that ^3 = Y7j=-oo "i®* 1S a solution for (6). It is clear that for any formal 
series <P of degree p we have deg(Dt(^) - [93, <#]) < n + p. If m > 0, then equating to 
zero the coefficient at Dp+n in (6) yields 

(7) fe,A] = 0. 

Since A is a diagonal matrix and Aj 7- Aj, if i 7-- j , (7) implies that the matrix rjp is 
diagonal as well. 

Next, if p > 1, then, equating to zero the coefficient at DP+n--? w e obtain 

nAD(rjp) - rrjpD(A) - [?7P-i,A] = 0 . 

Writing out diagonal and antidiagonal part of this equation yields 

(8) nAD(rJp)-prJpD(A) = 0, 
(9) [r7p.1,A] = 0. 

Let rjp = diag(77Pjl,... ,r7P|5). Then (8) reduces to the set of equations of the form 

nA/D(7/pJ) -prfpjD(^i) = 0 , I = l , . . . , s , 
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where Aj denote the eigenvalues of the matrix $ (see above). 
The substitution rjpj = hpjXj further simplifies these equations to D(hpj) = 0. By 

assumption, kerD in A is exhausted by functions of t, so hpj = hpj(t) are arbitrary 
functions of t, and rjpj = hpj(t)Xy, I = l , . . . , s . Thus, rjp = Cp(t)Ap/n, where 
cp(t) = diag(/iP)i,..., hPfS), and we can represent ^3 in the form 

(10) 93 = cp(t)3F/n + £ , 

where ^ is a formal series of degree not higher than p — 1. Here and below we define 
the fractional powers of 93 = diag(93i,... ,935) as 2P"/n = diag(93J/n,.. .,93i /n), and 
the fractional powers of 93, E .4JD"1] are defined like for the local case, cf. e.g. [11]. 
Let us mention that [9JJfn,9^/n] = 0, and hence [93{/n, 93J'/n] = 0 for all integer ij. 

Let us plug (10) into (5). We have cp(t)W>/n = d iag(n p > 1 (^ i / n , . • . lAPii(0-O! /n), 
and by virtue of the above we obtain [cp(t)W

/n, 93] -= 0. Therefore, .£ satisfies the con­
dition deg(A(£)-[93,Jl]) < max(p+n-m,deg(D t(cp(^93p/n))), whencedeg(D t(£)-
[93, £]) < p + max(n - m, 0). If m > 2 and hence p + max(n - m, 0) < p + n - 2, 
we can equate to zero the coefficients at DP+n_1 and at Dp+n~2 in Dt(k) — [93,.$] and 
repeat the above reasoning. 

Iterating these steps, we conclude that if a formal series <J3 of degree p satisfies (6) 
for m > 1, then we have 

(ii) y = m+J2'&)&'", 
i=io 

where Cj(t) are diagonal 3 x 5 matrices, 9t = Cjo-i-^0""1 + Cjo-2-^0"2 + • •• -s some 
formal series, Cjo-i ^s a diagonal 5X3 matrix, j0 = p — min(m, n) + 2. 

Replacing p by r = degDr and setting 91 = X^tftX and 9r = l " 1 ^ , we see that 
any formal symmetry 9\ £ FS^(A) for m = 2 , . . . , n, can be represented in the form 

(12) X = %-1 I £ Cj(*)93'/n )T + <n, deg91 <r-m + 2. 
yj_r-m+2 y 

For m > n we can further improve the above results. Namely, equating to zero the 
coefficient at Dp in A (9-0 — [93,9$] and taking diagonal and antidiagonal part of thus 
obtained equation, we find 

(13) nAo(CP_n+i) - (P - n + l)(p.n+lD(A) = D,(cp(t)A'/n), 

(14) [A,O-n] = 0. 

Under the substitution Cp-n+i = hA ~» , where h is a diagonal s x s matrix, (13) 
becomes nD(/i) = cp(t)A-l/n - pcp(t)Dt(A-^n), whence 

n = cp_n+1(0 + ( l /nJZr1 (cp(0A"1/n - pcr-WD^A"1'")). 

Here cp_n+i(t) is a diagonal 5 x 5 matrix. Its entries are arbitrary functions of t, 
because ker D in A is exhausted by functions of t. 

Taking into account (14) and the fact that det $ 7- 0 implies det A 7- 0, we readily 
see that if a formal series 93 of degree r satisfies (6) with m > n, then it can be 
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represented in the form 

(15) 
r 

93 = 91+ £ ci(.)^ln + (l/n)(o-1(M<)A-1ln-rc,(f)A(A-1/n)))2}r^±i, 
j-r-n+1 

where Cj(t) are diagonal s x s matrices, 9t = /3r_nD
r~n + /3r_n_iDr~n~1 + . . . is some 

formal series, /?r_n is a diagonal s x s matrix, and dot stands for the partial derivative 
with respect to t. 

Setting 9t = T_1Q3T and 9t = X"1?!^, we readily find that any formal symmetry 
-ft G FSpl'(A) of degree r can be represented in the form 

W = T"1 ( £ Cj(*)2F/n J X + - S " 1 (-D-1 (c r(0A"1/n 

(16) y-r-n+l ) * 
-rcr(t) A(A~1 /n))) QJ-^-X + 91, deg91 < r - n + 1. 

Note that in (12) and (16) we assume that any function of the form h + a(t), where 
a(t) is an arbitrary function of t, can be taken for D-1(/i), if h = D(h) and h,h G A. 

Let us mention that (12) and (16) represent a general solution of (5) for m = 2 , . . . , n 
and m = n +1, respectively, for any NWD system with constraints (l)-(3). Therefore, 
if at least one entry of the matrix (cr(*)A~1/n — rcr(£)D,(A~1/n)) does not belong to 
ImD, then the system in question has no formal symmetries from FSp^(A) for a 
given matrix Cr(t). 

Let <£,£} € FS{p+1](A). Then <p = £~1cp(02Jp/nX+- • •, £2 = (Z-1dq(t)W'n<Z+- - •, 
and the straightforward computation with usage of representations (16) for *# and jQ 
shows that 

(17) [%Q] = %-\\ln){pCp{t)dq(t) - qdq{t)cp{t))VOt±^'Z + * , 

where .ft G Mat5(^4)[D~1] is some formal series, deg .ft <p + q — n. 
Let P , Q 6 ^ , R E [P, Q]. Then R' = Q"[P] - P"[Q] - [P', Q']. If P , Q G SF(A), 

then (5) and (16) for K = P ' and fR = Q' imply deg P"[Q] < p+q-n and deg Q"[P] < 
p + q - n for p, q > max(n + n0 - 2,0), p = ford P , g = ford Q. Hence (17) for 93 = P' , 
O. = Q' yields 

(is) [P, Q]' = -x-Hi/^^WrfgW - ^(O^W)^8*5^! + S. 

Here A G Mat3(«4)ID~1] is some formal series, deg .ft <p + q — n. 
Thus, for P , Q G SF(A) with P, q > max(n + n0 — 2,0) we have ford K< p + q-n. 

Clearly, if R e A°, then R G 5JrP+9"n)(^) as well. Moreover, R G S^9'n'l)(A), 
provided pCp(t)dq(t) - qdq(t)cp(t) = 0. 

Let us mention that the formula (18) enables us to compute the leading term of the 
commutator of two symmetries and thus provides the complete solution to the problem 
of 'evaluation from the top' for SF(A), posed by A.M. Vinogradov et al., see e.g. [22]. 

Assume that an NWD system (l)-(3) has a nondegenerate formal symmetry 1H G 
Mats(t4)[D~1], r = deg<R ^ 0, of rank q > n. Set D£ = resln((XSHX~1)1/r)aa 

and p) = res^IKT- 1 )^- )^ for j ? 0. Then Dt(p)) G ImD for a = 1, . . . ,.s and 
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j = - 1 , 0 , . . . , q — n - 2, i.e., pa are conserved densities, cf. [10]. For n0 < 2 we have 
pjG ImD (i.e., the densities pa are trivial) for all a = 1 , . . . , s and j = — 1,0,..., — no. 

Proposition 2. Suppose that an NWD system with constraints (l)-(S) has a non-
degenerate formal symmetry 9t G Mat5(.>4)[Z)~1], r = deg!(H ^ 0, q = rankW > n. 
Let for a = 1 , . . . , s there exist ma G {—1,1,2,..., min(n — 2, q — n — 2)} such that 
ma 7- 0, pma £ ImD and p" G ImD for j = —1,1 . . . , ma — 1, j ^ 0. Then for any 

93 G F Sp1**1*2'(A), where m = maxma, there exists a constant s x s diagonal matrix 
.a 

c (different for different <#) such that <P = cZ~ldRp/r% + • • •, p = deg^3. 

Proof. AslHG FSjrn+1)(-4)» by virtue of (16) we have D\ = T-1h(^)53r/nX+ • • •. Fur­
thermore, in complete analogy with (16), for any ty G FSp (A) we have (cf. [18, 9]) 

(19) <p = 1VZ-1 = £ cfflW'' + i (o-1 (ep(0(A(0)BVi)) ^ ^ + *• 
j=p-n+l 

Here 91 = ££"00 hDJ £ Ma t . ^ ID - 1 ] ] , Cj(t), M*), &P-n are diagonal s x s matrices, 
p_i = diag^Lu.- . -pi!) , -H = T-HX"1. The fractional powers {fK*lr are defined here 
so that their first r coefficients are diagonal. This is always possible, cf. [10, 11]. 

For <P G FS{p\A) we have deg(Ap)J) ~ P*,*PD < n + p - d , and thus deg(D,(<pt) " 
[53,&]) < n + p + i - min(g, (1) for <J3t = %W'r, whence res( £,(&•) - [53, <J3t]) = 0 for 
—p — 2 < i < min(<7,d) — n — p— 1. 

Let —p — 2<i< min(<7, d, 2n) — n — p— 1. Plug (19) into the equality res(Di(^3t) -
P3>$.]) = 0 and break it into s scalar equations. We have res([93,^Jt])aa G ImD 
by virtue of Adler's formula (see e.g. [11]), and Dt(p

a
+i) G ImD by assumption. 

Hence, choosing appropriate values of i, for any ^3 G FSp n '(A) we find that 
(cp(t))aapma = 0 modulo the terms from ImD for all a = 1, . . . , s . As pm<x £ ImD, 
this implies cp(t) = 0, and the result follows. D 

Corollary 1. Under the assumptions of Proposition 2, for any G G SF(A), k = 
fordG > m + n + n0, we have G' = %~1cfftktr% + • • • , where c is a constant s x s 
diagonal matrix (different for different G). 

5. HOMOGENEOUS SYMMETRIES OF NWD SYSTEMS 

Given a scaling vector field D = atF + xu\ + /3u, where ft = diag(/?x,...,/?,) is a di­
agonal matrix, a,(ij = const, we can assign the weight —a to the variable t, the weight 
— 1 to x and the weight /3{ to u\ i = 1 , . . . , s, cf. e.g. [22]. Assume that the determining 
equations (2), (3) for u;7, 7 = 1 , . . . , c, are homogeneous with respect to this weighting, 
i.e., we can assign some weights /i7 to all variables u;7, 7 = 1 , . . . , c, so that (2), (3) are 
homogeneous. If a formal vector field G9/3u is homogeneous of weight v with respect 
to this weighting, then we shall say for short that G £ As itself is (D-)homogeneous of 
weight v and write wt(G) = v. Note that if G G SF(A), then we have [D, G] = vG. 

The commutator of two D-homogeneous symmetries from SF(A) clearly is a D-ho-
mogeneous symmetry from SF(A) as well, provided it belongs to As, so we have the 
following easy lemma. 
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Lemma 1. Let (l)-(S) be an evolution system with constraints such that (2), (3) are 
homogeneous with respect to the weighting induced by a scaling D = atF+xui+/3u, and 
let D-homogeneous P , Q G SF(A) be such that [P,Q] € M, where M is a subspace 
ofAs. Suppose that wt(G) ^ wt([P,Q]) = wt(P) + wt(Q) for all D-homogeneous 
GeS{£+q)(A)nM, where p = foidP, 9 = fordQ. Then [P,Q] = 0. 

This result, like other results below, makes it possible to prove the commutativ-
ity not only for two given symmetries, but also for large families of symmetries. In 
practice (see examples below) we usually can choose the subspaces like M sufficiently 
"large", i.e., such that one can check the condition [P,Q] G M for all symmetries in 
the family without actually computing [P ,Q] . On the other hand, the proper choice 
of these subspaces can considerably reduce the number of weight-related conditions to 
be verified, and thus make the application of our results truly efficient. 

Below in this section we assume that (l)-(3) is an NWD system with constraints 
and P , Q € SF(A) are its D-homogeneous symmetries for some scaling D of the 
form D = atF + xui + /3u. We also assume that the determining equations (2), 
(3) for CJ7, 7 = l , . . . , c , are D-homogeneous. Let p = fordP, q = fordQ. Note 
that if p, q > max(n + n0 — 2,0), then by (18) we should verify the conditions of 
Lemma 1 only for G G S{^q~n)(A) C\ M (for G G Si^q~n~1)(A) n M, if in addition 
pcp(t)dq(t)-qdq(t)cp(t) = 0). 

Proposit ion 3. Let d$/dt = 0, dX^/dt = dT^/dt = 0, 7 = 1 , . . . , c . and all entries 
0 / $ be D-homogeneous for some D = atF + xUi+/3u with a 7- 0. Let D-homogeneous 
P , Q G AnnF(A) be such that [P,Q] G C, where C is a subspace of As, and p,q > 
bF = max(n0,1)> P = fordP, q = ford Q. Suppose that wt(G) 7- (p + q)a/n for all 
D-homogeneous G G S{p'l)(A) C\ AnnF(.4) n C. 

Then [P,Q] = 0. 

Proof. Suppose that P , Q G AnnF(A), [P,Q] G A8, p,q> bF. Since p,q > bF, using 
(12) or (16), we easily find that deg[P', Q'] < p + q - 1. It is also easy to show that 
deg P"[Q] < p + q - 1 and deg Q"[P] < p + q - 1 for p, q > bF. Thus, deg[P, Q] = 
ford[P, Q]' = ford(Q , , [P] -P , ' [Q]- [P , , Q']) < p+q-l, and [P, Q] G M = ^ ^ " ^ ( ^ n 
A n n F ( ^ ) . Eq. (12) or (16) for OT = G' implies wt(G) = ka/n ± wt([P,Q]) = 
(p+q)a/n for all D-homogeneous G G M with k = ford G > n0. Hence, wt(G) 7- (p+ 
q)a/n for all D-homogeneous G G M n C = JVf, and thus by Lemma 1 [P, Q] = 0. D 

It is important to stress that if D G SF(A), then it is often possible to prove that in 
SF(A) n C or AnnF(*4) n C there exists a basis made of D-homogeneous symmetries. 
In this case the usage of Proposition 3 may even allow to prove the commutativity 
of all symmetries of sufficiently high formal order (considered modulo low order ones) 
from AnnF(.A) n C. 

As an example, consider integrable [3] equation ut = D2(w1" ) + u? = K. It 
has n0 = 2, and K is D-homogeneous with D = 3tK/2 + xu\. Let C = SA'(-4.OC). 
The space SJ^ (./4ioc) n AnnA'(-4ioc) is spanned by 1 and u\, and wt( l ) , wt(u i) < 1 < 
Q(p + Q)/n = (P + <1)/2 for p, q > &A' = 2. Hence, by Proposition 3 all D-homogeneous 
time-independent local generalized symmetries of formal order p > 1 for this equation 
commute. Furthermore, if we take for C the set of £,*, w-independent symmetries of 
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ut = K, then all elements of C commute with K, _i and 1 by construction. All D-
homogeneous elements of C having formal order greater than 1 commute by virtue of 
the above, because C C AnnA'(*4ioc). As [uu 1] = 0, and C obviously possesses a basis 
made of D-homogeneous symmetries only, we conclude that any two (not necessarily 
D-homogeneous) elements of C commute. 

Let n0 < 0, d$/dt = 0, dX1/dt = dT^/dt = 0, 7 = 1 , . . . , c, and let all entries of * 
be D-homogeneous for some D = atF + xu\ + /?u with a 7- 0. Let D-homogeneous 
P , Q G Anni-(*4) be such that p,q > 1, [P,Q] G SF(A\OC), [P,Q] is ^ - independen t , 
and wt([P,Q]) 7- 0. Then [P,Q] = 0 by virtue of Proposition 3. Indeed, in this case 
the weight-related conditions are automatically satisfied, as the only ^^-independent 
symmetries in 5 F ~ (A\oc) are constant ones, and their weight is zero. E.g., if an 
NWD system of the form u t = $(x)un + $ (x ,* )u n - i + f ( x , t , u , . . . ,u„_ 2 ) , where 
$ , ^ are s x s matrices, is such that all entries of $ are D-homogeneous for some 
D = atF + zu i + pu with a 7- 0, then all D-homogeneous x,£-independent local 
generalized symmetries of formal order k > 0 for this system commute. 

Propos i t ion 4. Let (1)~(S) be an NWD system with constraints possessing a scaling 
symmetry of the form D = atF + xux + /3u with a 7- 0. and let dF/dt = 0, dX^/dt = 
dT^/dt = 0, 7 = 1 , . . . , c; let D-homogeneous P G SF(A) be such that p = ford P > n0, 
foiddP/dt < p and [P,F] E C, where C is a subspace of As. Suppose that for all D-
homogeneous G £ Sp (*4) H C we have wt(G) 7- (p + n)a/n. 

Then [P,F] = 0, and thus dP/dt = 0 and P G AnnF(.A). 

Proof. As ioxddP/dt < p, we have dP/dt = [P,F] G S^'1](A) H C = M. The 
conditions ford dP/dt < p and p > n0 by virtue of (12) or (16) for SH = P ' readily imply 
wt(P) = pa/n. Hence wt([P,F]) = (p + n)a/n, and thus by Lemma 1 [P ,F] = 0. • 

Suppose that (l)-(3) is an NWD system with constraints having no < 0 and pos­
sessing a scaling symmetry D = atF + zu i + /3u with a > 0, and dF/dt = 0, 
dX^/dt = dTy/dt = 0, 7 = 1 , . . . ,c. Then by Proposition 4 any homogeneous sym­
metry K G SF(A\OC) of formal order k > 0 being polynomial in t and x and such that 
d2K/dukdt = 0 is in fact time-independent, i.e., dK/dt = 0, and by Proposition 3 any 
two such symmetries commute. Indeed, if n0 < 0, then 5 F ° (*4ioc) contains only the 
symmetries G = G(x,t), and all homogeneous symmetries of this form being polyno­
mials in x, t clearly are of negative weight, while K is of positive weight. This result is 
valid e.g. for any NWD system of the form ut = $ ( z ) u n + \I/(a:)Un-.i + f (x, u , . . . , u n _ 2 ) , 
where $ , $ are 5 x 5 matrices, provided this system possesses a scaling symmetry 
D = atF + xui + (3u with a > 0. 

Corollary 2. Let d$/dt = 0 and OX^/dt = dT^/dt = 0. 7 = l , . . . , c . and let 
all entries of $ be D-homogeneous for some D = atF + xui + /3u with a / 0. 
Suppose that there exist a D-homogeneous Q G ArmF(A) and a D-homogeneous r G 
A3 such that dT/dt = 0, d[TyF]/dt = 0, K = r + t[r,F] G SF(A), q = fordQ > 
max(n + n0 - 2,0), b = ford[r,F] > max(fordT,n), the formal series ( [ r ,F ] ) ' is 
nondegenerate, [[r,F],Q] G C, where C is a subspace of A3, and [r ,Q] G A3. Let also 
wt(H) T- (6 + q)a/n for all homogeneous H G C O S{F°~1)(A) fl AnnF(.4). 

Then Qj = [ r , Q ] G AnnF(.A), <md fordQi > q-
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Proof. Under the assumptions made, Eq. (4) for G = K implies that [ r ,F ] £ 
AnnF(A). Hence, by Proposition 3 we have [ [ r ,F] ,Q] = 0, whence, using [F,Q] = 0 
and the Jacobi identity, we find that [F , [ r ,Q]] = 0, i.e., [ r ,Q] £ AnnF(*4). By (18) 
the nondegeneracy of ([r , F]) ; readily implies ford[r, Q] = ford[K, Q] = b+q-n > q> 0 

Proposit ion 5. Suppose that the conditions of Corollary 2 are satisfied, and for j = 
2 , . . . , i Qj = ad((Q) £ As, adfT>Fj(Q) £ Cj, where Cj are some subspaces of As, and 

wt(H) 7- ((b-n)j + q + n)a/nfor all (homogeneous) H £ Cj nS{F°~1](A)n AnnF(A). 
Then Qj £ ArmF(A) and ford Qj > ford Q j - i , j = 1 , . . . , i. 

This proposition is proved by the repeated application of Corollary 2 for Q := Qj 
and j = 2 , . . . , i. Note that we can easily verify that Qj £ As using Proposition 1. 

Using Propositions 1 and 5 and Corollary 2, we can check whether r indeed is a 
nontrivial master symmetry, and whether it produces a sequence of symmetries of in­
finitely growing formal orders. Let us stress that in order to apply these results we 
do not need to assume a priori the existence of hereditary recursion operator [14] or 
e.g. of "negative" master symmetries r ;-, j < 0 [4] for the system in question. Thus, 
the results of the present paper provide a useful complement to the general theory of 
master symmetries of integrable evolution equations, cf. e.g. [2, 7, 14, 4]. 

Let us mention that in general the symmetries Q t are not obliged to commute. 
However, using either the results presented above in this section or other methods, 
see e.g. [15, 7, 14, 4], one can easily check the commutativity of Q t and pick out the 
commutative subset in the set of Q t , if necessary. 

Note that it is often possible to take [r, F] or F for the seed symmetry Q. In this 
case the only additional ingredient required for the use of Proposition 5 is a suitable 
'candidate' r for the master symmetry. 

As an example, consider integrable Harry Dym equation ut = u3u3 = H, see e.g. 
[15, 9]. II is homogeneous with respect to D = ZtH + xux and satisfies the conditions 
of Propositions 1 and 5 for all i = 2 , 3 , . . . with a = 3, b = 5, A = .4(fiuAC,j/)> r = 
u3D3(uux) = r 0 + U3U3UJU r 0 £ A>c, Q = [T,U3U3] = 3u5u5 + • • • £ AvmH(A). The 
nonlocal variable u>i in r is defined by means of the relations duj\/dt = — uu2 — wJ/2, 
dui/dx = u~l (informally, ui = D~l(u~1)). Thus, by Proposition 5 Qj = ad^.(Q) £ 
Ann#(.4), j = 1 ,2 , . . . , together with Q_i = u3u3 £ Ann.H(A\oc) and Q 0 = Q form 
the infinite hierarchy of time-independent symmetries for the Harry Dym equation. 
Proposition 3 readily implies the commutativity of Q j , j = —1,0,1, Moreover, 
one can show that Q j , j = 0 , 1 , . . . , are in fact local generalized symmetries of Harry 
Dym equation and coincide (up to the constant multiples) with the members of hier­
archy generated by means of the recursion operator *K = u3D3 o u o D~l o u~2 from 
the seed symmetry u3u3. 
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