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RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO 
Serie II, Suppl. 75 (2005), pp. 233-239 

AUTOMORPHISM GROUPS OF PARABOLIC GEOMETRIES 

ANDREAS CAP 

ABSTRACT. We show that elementary algebraic techniques lead to surprising results 
on automorphism groups of Cartan geometries and especially parabolic geometries. 
The example of three-dimensional CR structures is discussed in detail. 

1. INTRODUCTION 

The aim of this article is to show how rather elementary algebra can be used to 
obtain surprising information on the automorphism groups of Cartan geometries and, 
more specifically, parabolic geometries. On the way, we review several basic facts 
about Cartan geometries, so this article can also be considered as a short introduction 
to some basic ideas of the theory A detailed introduction to Cartan geometries can 
be found in the book [6]. 

Any Cartan geometry comes with a homogeneous model G/H. The crucial point for 
our purposes, is that the autmorphism group of any Cartan geometry can be made into 
a Lie group, and the Lie algebra of this group can be described explicitly in terms of the 
Lie algebra g of G and the curvature of the geometry This description can be improved 
considerably in the special case of parabolic geometries, in which g is semisimple and 
P C G is a parabolic subgroup. In this case, one can obtain information on possible 
autmorphism groups by studying certain Lie subalgebras of g. We work this out 
explicitly in the case of three-dimensional CR structures of hypersurface type, in 
which the algebraic problems become particularly simple. In particular, we show that 
the classification of homogeneous three-dimensional CR structures reduces to purely 
algebraic problems. 

Except for the presentation, nothing in this article is really original. The proof 
of Corollary 2.2 sketched here can be found in the book [3]. The basic results for 
parabolic geometries in 2.5 can be found (in the special case of CR structures) in [7]. 
The results on three-dimensional CR structures go back to E. Cartan, see [1] and [4] 
for a modern presentation. 
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2 . CARTAN GEOMETRIES AND THEIR AUTOMORPHISM GROUPS 

2.L Cartan geometries. Let G be a Lie group, H C G a closed subgroup such that 
G/H is connected, and let \) C g be the corresponding Lie algebras. The basic idea 
behind Cartan geometries is to view this homogeneous space as a particularly nice in­
stance of a differential geometric structure. Manifolds endowed with the corresponding 
structure can then be thought of as "curved analogs" of the homogeneous space G/H. 
The main requirement on this structure is that the automorphisms of G/H should be 
exactly the left actions of elements of G. 

The natural projection G —• G/H is an H-principal bundle, and left multiplication 
by g € G lifts the left action of g on G/H to an automorphism of this principal 
bundle. The left multiplications by elements of G can be characterized within the 
(infinite dimensional) space of principal bundle automorphisms of G —> G/H by the 
fact that they preserve the left Maurer-Cartan form. This motivates the definition of 
"curved analogs" as general principal H-bundles endowed with a g-valued one form, 
which has all properties of the left Maurer Cartan form that do make sense in the 
more general context: 

Definition. (1) A Cartan geometry of type (G, H) on a smooth manifold M is a 
principal H-bundle p : Q —• M together with a one form w € ^(Q, g) such that 

• (rh)*u = Ad(/i)-1 ooj for all h € H, where rh denotes the principal right action 
of h. 

• V(GA) = A for all A G f), where (A denotes the fundamental vector field with 
generator A. 

• u(u) : TUQ —• g is a linear isomorphism for all u E Q. 

(2) A morphism between two Cartan geometries (Q —> M,CJ) and (Q —> M,u>) is a 
principal bundle homomorphism $ : Q —> Q such that $*d) = u. Note that since both UJ 
and u are bijective on each tangent space, this implies that $ is a local diffeomorphism. 
(3) The homogeneous model of the geometry is the principal bundle G —> G/H together 
with the left Maurer-Cartan form uMC. 

The fact that interesting geometric structures can be described as Cartan geometries 
usually is the result of a theorem rather than a definition. In most cases of interest, 
the principal bundle and the Cartan connection are obtained by fairly involved con­
structions from some underlying data. These underlying data may for example be 
a geometric strcuture (a Riemannian metric, a conformal structure, a CR structure, 
etc.) or a differential equation of a certain type. Then one proves existence of a 
unique Cartan connection (with certain properties), which leads to an equivalence of 
the category under consideration with a category of Cartan geometries. 

In this paper, we will mostly view Cartan geometries as the basic input, and not 
care about the equivalence to some underlying structure. Let us only describe the 
equivalence briefly in the case of Riemannian metrics. This simple example was one of 
the basic motivations for the development of the general concept of Cartan geometries. 

Example. Let G be the group of rigid motions of Rn and H C G the subgroup of 
motions fixing 0 £ R. Then H = 0(n) and G/H is Euclidean space Rn. For an n-
dimensional Riemannian manifold M let Q be the orthonormal frame bundle, which is 
a principal O(n)-bundle. The bundle carries a canonical Revalued one-form 0 called 
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the soldering form. On the other hand, the Levi-Civita connection of M induces 
a principal connection 7 on Q. Then 0 -f 7 can be viewed as a g-valued one form 
on Q, and is elementary to verify that this is a Cartan connection. Any isometry 
between Riemannian manifolds lifts to the orthonormal frame bundle and such a lift 
preserves the soldering form and the Levi-Civita connection. Hence any isometry 
defines a morphism of Cartan geometries, and it is easy to see that conversely for 
any such morphism the underlying map between the bases is isometry. Thus we have 
obtained an equivalence of categories between n-dimensional Riemannian manifolds 
and a subcategory of Cartan geometries of type (G} H). 

2.2. Automorphisms. For a Cartan geometry (p : Q —» M, u) of some fixed type 
(GyH) let Aut((y,c-J) be the group of automorphisms. Note that for a category of 
Cartan geometries which is equivalent to some category of underlying structures, this 
group is naturally isomorphic to the automorphism group of the underlying structure. 
The infinitesimal version of an automorphism $ : Q —> Q is a vector field £ on Q such 
that (rh)*^ = £ for all h G H and such that C^u = 0. The space inf(£,u;) of all these 
infinitesimal automorphisms evidently is a Lie subalgebra of X(Q). 

For A G Q let A G X(Q) be the "constant vector field" characterized by iv(A) = A. 
In particular, A = £A for A G I) C 0. For £ G inf((5,a;) the equation 0 = (C^)(A) 
immediately implies [£, A] = 0. Hence the flows of £ and A commute and denoting by 
Flf the flow of A up to time t, we obtain £(Flf (u)) = Tu Flftf (tx)) for all u G Q and 
all t G R for which the flow is defined. Since the fields A with A G g span each tangent 
space, we conclude that the value of £ G inf (Q,UJ) in a point u€Q uniquely determines 
£ locally around u. By H-invariance of £, the value in one point determines the values 
along the fiber through that point, and we obtain 

Proposition. If M is connected, then for any point UQ G Q the map £ 1—• u(£(uo)) 
defines a linear isomorphism from inf(Q,u>) onto a linear subspace a C g . 

Now we have to invoke a characterization of Lie transformation groups due to 
R. Palais, see [5, 3]: 

Theorem. Let S be a group of diffeomorphisms of a smooth manifold N and let 
s C X(N) be the space of those vector fields for which the flow is defined for all 
times and lies in the group S. If the Lie subalgebra of X(N) generated by s is finite 
dimensional, then it coincides with s and S can be made into a Lie group with Lie 
algebra s, which acts smoothly on N. 

This result can be directly applied to our situation: If £ is a complete vector field 
on Q then the corresponding one-parameter group of diffeomorphisms is contained in 
Aut(Q,u) if and only if £ lies in mf((y,a;). By the Proposition, irtf((/,u;) is a finite 
dimensional Lie subalgebra (of dimension < dim(g)) of X(Q), so we get 

Corollary. The group Aut((/,u;) is a Lie group with Lie algebra given by all complete 
vector fields contained in inf(Q,u). For connected M, one has dim(Aut(</,a;)) < 
dim(G). 

Applied to the case of Riemannian manifolds discussed in 2.1, this result shows that 
the isometry group of a connected n-dimensional Riemannian manifold is a Lie group 
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of dimension at most n ^ • This bound is attained for the homogeneous model En 

but also for 5 n , which has isometry group SO(n + 1). This shows that there may 
be non-flat manifolds, for which the automorphism group has the maximal possible 
dimension. 

2.3. Curvature. Let us look more closely at the relation between infinitesimal au­
tomorphisms and curvature. There is a general notion of the curvature of a Cartan 
geometry (£/, u;) for which there are two equivalent descriptions. The curvature form 
K G fi2(£,g) and the curvature function K : G —» L(A2g,g). They are defined by 

K(S,v) = Mt,ri) + MS)Mv)] 
K(U)(X,Y) = K(U)(X,Y), 

where X,Y G X(G) are the constant vector fields corresponding to X,Y G g. 
The defining properties of the Cartan connection u imply that K is H-equivariant 

and horizontal. Correspondingly, the function K is H-equivariant (for the action of H 
on F(A2g,g) induced from the adjoint action of G) and has values in L(A2(g/fj),g). 
The curvature turns out to be a complete obstruction to local isomorphism of the 
Cartan geometry (G^) with the homogeneous model. 

Let £ G X(G) be a vector field such that C^JJ = 0. Prom the definitions one easily 
concludes that C^K = 0 and £• K = 0. If in addition ^(u) is vertical, and A = u((;(u)), 
then ^(u) = CA(U) and equivariancy of n implies that ((A • «)(^) coincides with the 
algebraic action of A G f) on K(U) G L(A2(g/f)),g). Hence for a = {v(£(uo)) : £ G 
irvf(£/,u;)} c 0 we see that all elements of afl \) annihilate n(uQ) G F(A2(g/l)),g). 

For the Cartan geometry associated to a Riemannian manifold as in 2.1, the cur­
vature defined above equals the usual Riemann curvature. It is well know that this 
splits into the Weyl curvature, the tracefree part of the Ricci curvature and the scalar 
curvature. While the Weyl curvature and the tracefree part of the Ricci curvature 
have values in a non-trivial representation of O(n), the scalar curvature has values 
in a trivial representation. Hence from above we conclude that any Riemannian n-
manifold whose isometry group has dimension n(ra

2
+1) must have trivial Weyl curvature 

and its Ricci curvature must be pure trace, so it must be conformally flat and Einstein. 
As the example of 5 n shows, the scalar curvature may indeed be nontrivial. 

2.4. The Lie bracket on irtf(£,a;). The bracket on the Lie algebra aut(£,u;) of 
Aut((7,u;) is induced by the negative of the Lie bracket of vector fields on G, which 
also makes sense on inf(£/,c<;). For £ E inf((/,-*;) and rj G X(Q) we compute 

0 = (C^)(r}) = ^u(r1)--oj([^rl}) 

= dw(£,r)) + ri'Lj(0 

= K(u(Z),uj(r))) - [u(Z)Ml)] + V ' "(fl • 

If both £ and r\ are infinitesimal automorphisms, we may combine the first and last 
line to obtain an expression for — a;([£, rj]). This shows that for fixed u0 G G, the above 
bracket on inf(C/,cj) corresponds to the operation 

(*) (A,B)^[A,B)-K(UO)(A,B) 

on o = M£(tio)) : £ € inf(ly,w)} C 0. 
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This concludes our discussion of inf(5,o;) for general Cartan geometries. Let us 
collect the results: 

• Choosing a point u0 G Q identifies inf(C/,ct;) with a linear subspace a C g 
endowed with Lie bracket given by (*). 

• Any element jl 6 aflf) annihilates the value K(UO) ~ L(A2(g/f)),f)) of the 
curvature function in u0. 

2.5. The case of parabolic geometries. Parabolic geometries are Cartan geome­
tries corresponding to parabolic subgroups in (real or complex) semisimple Lie groups. 
There is a simple way to characterize these: Let g be a semisimple Lie algebra endowed 
with a grading of the form g = ~-k © • • • © g*, such that [&, $j] C gj+j and such that 
the nilpotent subalgebra g_fc©- • -©g-i is generated by g_i. Put f) := g0©- • -©g*. For 
a Lie group G with Lie algebra g let H be the normalizer of l) in G. It turns out that 
H has Lie algebra f), and this definition is equivalent to H being a parabolic subgroup 
of G in the sense of representation theory. A parabolic geometry of type (G, H) is then 
defined as a Cartan geometry of that type. 

Putting gl = gj©- • -©g^ defines an H-invariant filtration g = g~k D • • • D gfc, which 
makes g into a filtered Lie algebra such that J) = g°. A parabolic geometry (Q —> M, UJ) 
of type (G, H) is called regular, if its curvature function K satisfies K(U)($, QJ) C gl+:/+1 

for all u € Q and all i,j = —fc,..., —1. 
There are general results showing that regular parabolic geometries, whose curva­

ture satisfies an additional normalization condition, are equivalent (in the categori­
cal sense) to certain underlying structures, see e.g. [2]. These underlying structures 
include conformal, almost quaternionic, non-degenerate hypersurface type CR, and 
quaternionic CR. Hence together with many others, these structures can be identified 
with subclasses of regular normal parabolic geometries of some type. 

The first important information for our purposes concerns the curvature of parabolic 
geometries. 

Proposition. Let (Q —• M, a;) be a regular normal parabolic geometry with curvature 
function K. If K ^ 0. then the lowest homogeneous component of K has values in a 
nontrivial, completely reducible representation of H. 

This representation can be computed explicitly for any given type. Since it is always 
nontrivial, Aut(f5,cj) may have the maximal possible dimension dim(G) only if K = 0 
and thus the parabolic geometry is locally isomorphic to the homogeneous model. 

For a parabolic geometry (p : Q —> M, a;) of type (G, H) fix a point uQ ~ Q and 
consider the subsapce a = {a>(^(u0)) : £ € inf(Q,u>)} as before. Define a filtration on 
a by a1 := a n gl for i = - fc , . . . , k. The bracket (*) from 2.4 makes a into a filtered 
Lie algebra by regularity. It is worth noticing that the filtration can be pulled back to 
inf (f5, UJ) and the result does not depend on the choice of the point UQ G Q but only on 
p(uo) ~ M, since different choices of UQ are related by the action of an element of H. 

The inclusion a <-• g is filtration preserving so it induces a linear map gr(a) —• gr(g) 
between the associated graded vector spaces. The associated graded of a filtered Lie 
algebra canonically inherits a Lie bracket, and by regularity the map gr(a) —» gr(g) is 
a Lie algebra homomorphism. Since the filtration of g is derived from a grading, we 
conclude that gr(g) = g as a Lie algebra. Thus we conclude that gr(a) (which has the 
same dimension as a) is (isomorphic to) a graded Lie subalgebra of g. 
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3. EXAMPLE: 3-DIMENSIONAL CR STRUCTURES 

These are 3-dimensional contact manifolds together with a complex structure on the 
contact subbundle. The prototypical examples of such manifolds arise as follows: For 
a smooth real hypersurface M c C2, each tangent space of M is a real subspace in C2 

of real dimension 3. The maximal complex subspace contained in such a tangent space 
has to be of complex dimension one, so we obtain a complex line bundle sitting inside 
the tangent bundle of M. Generically, this subbundle will be non-integrable, and thus 
defines a contact structure on M. In this case, the hypersurface M is called non-
degenerate. A local CR diffeomorphism is defined as a local diffeomorphism whose 
tangent maps preserve the contact subbundle and such that the restriction to the 
contact subbundle is complex linear. 

In [1], E. Cartan showed that these structures admit a canonical normal Cartan 
connection of type (G, H), where G = PSU(2} 1) and H C G is a Borel subgroup. 
This construction identifies the category of 3-dimensional CR manifolds and local 
CR diffeomorphisms with the category of regular normal parabolic geometries of type 
(G,H). 

The homogeneous model in this case is 5 3 C C2. Therefore, CR-manifolds which 
are locally isomorphic to the homogeneous model are called spherical. 

The general results on Cartan geometries imply that the group Aut(M) of CR 
automorphisms of a 3-dimensional CR manifold M is a Lie group of dimension at 
most dim(G) = 8. We now claim: 

Theorem. (1) I/dim(Aut(M)) < 8. then dim(Aut(M)) < 5. 
(2) If M is not spherical, then dim(Aut(M)) < 3. 

Proof. The grading of g = su(2,1) has the form g = g_2 © • • • © g2 with g±2 = R, 
g±i = C and g0 = C. The Lie algebra of Aut(M) must be contained in inf(£,a/), 
which gives rise to a graded Lie subalgebra gr(a) of g. Hence we can prove (1) by 
showing that any proper graded Lie subalgebra of g has dimension at most 5. 

For (2) one verifies that the representation of f), in which the lowest nonzero homoge­
neous component of the curvature has its values, comes from a faithful representation 
of g0 = C. Thus we can prove (2) by showing that any graded Lie subalgebra of g 
which has a trivial component in degree 0 has dimension at most 3. 

For an appropriate choice of Hermitian metric on C2 we have 

{ /a + ij3 z iip 

x -2ip -z 
\ itp —x —a + if3j 

with a,/3,<p,ip G R and x, z G C. The grading is given by the diagonals, i.e. the com­
ponent i(p lies in g_2, the component x in g_i, and so on. From this, one immediately 
reads off that the brackets between the various grading components. The main point 
is that the brackets g±i x g±i —» g±2 are given by the standard symplectic form on C, 
while the other brackets are essentially induced by complex multiplications. 

Suppose that b = b_2 © • • • © b2 is a graded Lie subalgebra of g, put n» = dim(b^) 
and n = dim(b), where all dimensions are over R. 

Case 1: n_i = 2. This means that b_i = g_i and then [b_i,b_i] = g_2 C b. 
Suppose there is a nonzero element z G bi. Then [zy b_i] = g0 and hence [z,g0] = gi 
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are contained in b, which immediately implies b = g. Hence we conclude that b ^ g is 
only possible if n\ = 0. This implies n<i = 0, since for a nonzero element iip £ 92 the 
map ad-^ : g_i —• 0i is surjective. Hence b C 0-2 © 0-i © 0o, and we get (1) and (2). 

Case 2: n_i = 1. For 0 ^ x € b_i the map ad^ is a linear isomorphism 0O —• 0-i 
and fji —• 0o, so we conclude that n0 < 1 and then n\ < 1, which implies (1). For 
n0 = 0 we also.must have n\ = 0, which implies (2). 

Case 3: n_i = 0. Since the bracket induces a linear isomorphism 0_2 <8>0i —* 0_i 
we conclude that either n_2 = 0 or n\ = 0, which completes the proof. • 

This theorem reduces the classification of homogeneous 3-dimensional CR manifolds 
to pure algebra: In the spherical case, the Lie algebra of the automorphism group is a 
subalgebra of 0 = 5u(2,1), and one can work in the homogeneous model. If M is not 
spherical, then dim(Aut(M)) = 3 and fixing a point XQ e M the map / i-> f(xo) is 
a covering Aut(Af) —» M. The CR structure on M lifts to a left invariant structure 
on Aut(M). Hence any non-spherical homogeneous 3-dimensional CR structure is 
covered by a left invariant structure on a Lie group. Determining such left invariant 
structures is a rather simple algebraic problem. 

For higher dimensional CR structures, similar methods are used in [7] to determine 
the second largest possible dimension for the automorphism group. In that paper, 
Yamaguchi completely classified the CR structures with automorphism group of this 
second largest dimension. 
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