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NINTH WINTER SCHOOL ON ABSTRACT ARALYSIS (1981)

Analvsis in comrlex auaternions and its c.nnezti~ns with rathemra-

tical phvsics

Viadim{r Soufek

The use of complex quaternions in mathematical physics is far
from being new, many relativistic notions have been naturally ex-
pressed in term of complex quaternions ( [4],‘.2-] ). We want to
describe here some new aspects of the connections between complex-

quaternionic analysis and mathematical physics, especially that of
twistor theory.

1. Introductory remarks.

There are two interesting types of regular quaternionic functions:
(1) 4: Q& —» @ is said to be reqular at X e @ iff

s $(r*"~);={(l'~)

40
It can be shown ([3)) that only linear function have this pro-
perty.Such functions can be described as a solution of a dif-
ferential operator Dy {- -0 .
(i1) Another generalization of the notion of holomorphic functions
was introduced by Fueter; let us denote by D, the operator

existse.

D, - ;3,'; - ‘.4%‘1 '.‘1-3'&.'.‘3%')5 ) X= UL'H“'-:.’%.";-:X:GQ,
The solutions of the equation P, f -0 have many nice pro-
perties in common with holomorphic functions (Cauchy integral
formula, residue formula, power series expansion - see Y}] )e

Let us consider 4-dimensional complex vector space T,' . We
shall use flag anifolds F‘\j Fa: 1:4',_ of vector subspaces of Tn,:

Fo= {LieTy | diml, =4} = P3(0)
Fam LLacTh | dmla=2} & Gou() = €0
Taa = {.u'hLﬂ.] \ (7% CL:_, Lly=1, dl""‘"—:."?-}

The Grasmanian Ga,, can be considered to be the conformal compac-
tification of complex Minkowski space €M .
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Set-véluec maps P, W  defined using netural forgetting pro-
jections in basic twistor diagram

T Py (L) oLy ~BCE) (& <plane iv i)

) ‘p'b(();i;' cM 'Y(Ll) = {.'-1 \Lic'-t-:‘ ""P‘(()

are fundamental maps in twistor theory. They are used in Penrose
transform, Ward”s correspondence and for nonlinear gravitons ([‘I])

2. Space € Q of complex quaternions.

From the analysist$ point of view, the main reason why to in-
vestigate the algebra € @ is the fact that both possibility
for reqular functions are (as mappings from W, to Ry ) real-
analytic. But, in a sense, it is the nonsense to consider only
such mappings for it is well-known that many vital informations
on them are hidden in its holomorphic extensions to the maps
from €Q to CQ . So it is natural to consider holomorphic ex-
tensions of regular functions of quaternibn variables as the ba-
sic notion of ‘quaternion analysis’. To have better impression on
the physical meaning of propertises of, the basic algebra €@ , let
us consider first some of its algebraic properties in more details.

We have two natural conjugations in C@Q :
4= Qo-tu-ince- bs g
q% - qo"de' *kqf*isq:
\al*=q.qfe € (q,q,)"= Qs 9 - .
The algebra €Q 4is no more a field: q"i exists iff I‘IP*OJ q-"'l-:—li
Let us denote N=4{q] lq["'-O}.

Sometimes it is useful to work in a special representation of CQ:

%€¢Q <> [ = q4-06q,-i6:q.L-LC3q3=

Qe-iqy ‘!z"‘-ﬂa]
. . 2, C
[q-..-tqu atiasd € L@ ),

lalPs dik @) | Q™ ~ Hemidion corjugolion
The standard ph sical interpretation of L@ is (M)

"

q.c €M &> G, = Goatyqq+ihada+iiads
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Lorentz croup action on (R is described by ( [1] ):
q — Aq'B ) [N \B\"-4 ... complex Lorentz group

q — Aq A-]-l) \A\" v real Lorentz group
(binkowski spece M 1is invariant subspace)
The basic structure of any ring is the set of its ideals.
The ring €& is not commutative, so we have two sets:
¥, ... the set of all nontrivial left ideals L.,
R ... the set of all nontrivial right ideals R.
The following properties can be proved for X2 . R :
Ay dwmel=2
2)yLeg ... LeN=<£q|laf=q}
3) ¥xeN ... Ly={axlqecalel
k) eden Ly=ly or Lxaly={c}
5 ¥V LEL AxeN ... L=ly
G N=YlL=OR = LR, dim LAR =1

ReR
In the representatiom ““'

x€N ¢=> det (X3 =0 &> Kl = [:: bb'] [t}@[a! v]
Lo =4s1 &= [n]@[“ “l; hreq)

Ly =Ly, = ay 51"4:. B:.'
So the suitable parametr set for & is PY(R) (for any R eR ).
The numbers [o!,b'] are homogeneous coordinate on T4 (R).
Consider now a function {: €@ ~» (@ . What is the physi-
cal interpretation of left and right ideals in this situation:
&) on the left - in Minkowski space, where fields are living:

then

L. &> oL - planes (i.e. self-dual planes in €M )

R &> A - planes (i.e. antiself-dual planes in €M )

/5} on the right (values of the field):

The mappings q+> Aq i q+— qA“
are spinor representation of Lorentz group, but they are reducible.
It is easy to see that the left (right) ideals are just invariant
subspaces of these representations. Hence | €¥ can be identified
with spinor space S ; Re€ R can be identified with S' .
Hence the special functions 1: €@ 5 LcCR
$: @ — R cCx

can be interpretes as spinor fields.
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The basic differential cperators P, , P, from sec. 1

can be
extended to holomorphic mappings from

CQ to €R . After restric-
tion to real Minkowski space ™M & &M nice physical interpretation

can be given to these operators. The operator D 1is nothing

else than the Penrose’s twistor operator ( [4l), the operator D,
can be identify with usual (Weyl or Dirac) differential operator v:
( L4)) for massless fields. Doing analysis in €@ there are possi-
bilities to mix together informations from both quaternion and
complex cases. This can help to solve ‘some problems of (real) qua-
ternion analysis (especially connected with singularities of re-

gular functions - see [S] ), moreover it can help in future to
clarify some physical problems as well, '

3. The projective space W4 (CQ) .
The main problem in quaternion analysis is to create a suffi-
ciently rich class of quaternion manifolds. The Fueter’s regular

functions are not closed with respect to composition, so they
can’t be used as transition functions.

Looking for some models for future manifolds the best ( and
simplest) ones are the projective spaces. While the space W4(Q)
is well-known,standard and gives no new insight, there is an unex-

pecting surprise hidden in the complex-quaternion version ‘W‘CCQ)
of it.

Let us define A

v.(ca)= [caxcaltos) /o
[ q) ~ [adal) &> Taecq, Int 4o

[CAR R PR CTP I Te \ B
The space P,(€Q) is a topological space (with the factor-topo-

logy). We shall devide it into two parts
A=3BuvC

= {leaxcain Y (Lalj v {& S N[00}

where

But after some effort we find that

BT EW , €/~ = BCo)

)
so

RU(®) = TR U P (0)-

The topology in the whole P4(€) is nonstandard, it is not Hausdorgf,
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we can prove the following f-cts on this topclogy:

1) For every @ .¢ ‘B/\, ZCM

it holds that etos()= BY¥ (). / r\l
2) For every 3€C/s "-"P:; hs i -
it holds that
NG = guf(y).
O open, pco

If we restrict the topology only on €M (or T3(C) ),
we shall recover the usual topology on them. So ‘strangeness’
of the topology is just describing twistor correspondences ¥, W
between ET‘A_ anz 'g(() . The character of the topolo-—
gy is very closed to Zariski topology from algebraic geometrye.

If we now reconsider the rroblem of a notion of complex-guater—
nion manifolds, we should (with this basic example in mind) take
open subsets of P CCQ) with their strenge torology as local mo-
dels and glulng them together properly to find a new notion of
such, highly ncnstandard, manifold. .

We hope to return to these interesting questions elsewhere,
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