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Received 15 March 1989 

It was shown by N. V. Zhivkov and the author that every lower semicontinuous function on an 
Asplund space is £-subdifferentiable at the points of a dense set of its domain, where for e it can 
be taken an arbitrarily small positive number. Here we show that the same holds also with e = 0. 
Previous results of the author on trustworthiness can be improved in a similar way. In proofs a new 
variational principle of Borwein and Preiss is used. 

Let (X, || •[[) be a Banach space with dual X*, f:X -> (— co, +00] a function, 
xeX9 withf(x) < +00, and e = 0. We define [7] 

$;f(x) = {£eX*: liminf [f(x + u) - f ( x ) - <C, ft>]/||ft|| = - a } , 
ll*ll-o 

d;f(x) = {CeK*: liminf [f(x + ft) - f ( x ) ] / t = <£ ft> - *\h\ 
u-*h 

no 
for all ft e X} , 

where <C, ft> means the value of C at ft. If <£~ f(x) (d~f(x)) is nonempty we say thatf 
is Frechet (Dini) esubdijferentiable at x. If e = 0 we simple speak about Frechet 
(Dini) subdifferentiability. 

The papers [6], [4], [5] deal with e-subdifferentiability for e > 0. The proofs are 
based, among other things, on the Ekeland's variational principle [3, Theorem 1], 
which roughly and incompletely sounds as: Every lower semicontinuous function 
bounded from below is supported by a shift of the function ft h-> — e||ft||. 

In the meantime there has appeared a very interesting smooth variational principle 
due to Borwein and Preiss [1], [8, Theorem 4.3]: 

Theorem 0. (Borwein, Preiss). Let g:X -> (—00, +00] be a lower semicontinuous 
function bounded from below, let e > 0, X > 0 be given, and take x0eX such that 

g(x0) < mig + e. 

*) Sibeliova 49, 162 00 Praha 6, Czechoslovakia 
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Then there exist sequences {fin}, with \in ^ 0, \i± + \i2 + ... = 1, and {v„} <= X, 
with v„ -> v eX. such that 

*(*) + 4 I lt»I* - ».ll2 = *(«) + 4 X A.I> - ».P / " fl// * e * 
A / i = l / , w = 1 

awd 

||x0 - vH < X, g(u) < inf g + e . 

Moreover, if X admits an equivalent Frechet (Gateaux) differentiate norm, then 
&o 9(v) (^O9(V)) *S nonepty and contains a £ with ||£|| ^ 2E\L 

In [1] there are mentioned some easy consequences of this result. Let us recall one, 
perhaps the most important, of them: 

Corollary 0. IfX has a Frechet (Gateaux) differentiate norm, then it is an S0 — 
space (a WS — space), that is, for every lower semicontinuous function f: X -+ 
-»(—oo, +oo] the set of points (v,f(v)) where $0(v) (d0(f(v)) is nonempty is 
dense in the graph {(v,f(v))' veX,f(v) < +00} off. 

Having such a nice variational principle, theorems from [6] [4] and [5] call up 
immediately to an improvement. In fact, e-subdifferentiability can be replaced by 
subdifferentiability. In this note we will formulate strenghtened versions of these 
results and provide sketchs of proofs. 

Theorem 1. A Banach space is Asplund (if and) only if it is an S0 — space. 
If X is separable Asplund, then it admits an equivalent Frechet differentiate 

norm [2, p. 118] and so Corollary 0 applies. For the proof in the case of a non-
separable Asplund space we need a separable reduction formulated in the next 

Lemma 1. Let Y0 be a separable subspace ofX, letf: X -> (— 00, +00] be a func
tion locally bounded from below and let e ^ 0. 

Then there exists a separable subspace Y0 a Y cz X such that $~ f(x) #= 0 
whenever xe Y and $~(f\Y)(x) =# 0, where f\Y denotes the restriction of f to the 
subspace Y. 

The proof proceeds similarly like in [6] (where e > 0) when replacing [6, Lemma] 
by a more general: 

Lemma 2. Let f: X -> (— 00, +00] be a function, x e domf, and s ^ 0. 
Then <P~ f(x) =# 0 if and only if there are c ^ 0 and a sequence {Sj} of positive 

numbers such that 

m kj r- / 1 \ "1 m ky 

ZPJZ «yi /(* + *,,) + (« + -) ||M = f(x) - c\\ £ p„ I «,,h,,|| 
j=i *=i L V JJ J J=I '=1 

whenever h,,e <5,.BX, ccJt = 0, 1 = 1,..., fe,, txn + ... + <xJkj = 1, kj = 1, 2 , . . . , 
Pj = 0,j = l,...,m,p1 + ... + pm = l,m = 1 ,2, . . . . 
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Here Bx means the unit ball in X. The proof is omitted because Lemma 2 is in 
fact a consequence of Lemma 6. It should be noted that the most important case is 
when g = 0. And since [6, Lemma] does not cover this case we needed the new lemma. 

Next we approach a trustworthiness. This concept means that a very rough (fuzzy) 
analogy of a Moreau-Rockafellar theorem [8, Theorem 3.23] holds. It proves that 
the trustworthiness depends on the properties of the space in question; more precisely: 

Theorem 2. A Banach space X is an S0 — space (a WS0 — space) \if and~\ only 
if it is trustworthy (weak trustworthy) in the sense that for any two lower semi-
continuous functions fl9f2'. X -> (— GO, +oo], for any zeX9 any e ^ 0, S > 0, 
and any weak* neighbourhood V of the origin in X* the following inclusion holds 

* f ( A +/a) (*) c U { * o 7 i W + *o/a(*2): * ,< -*, |z f - z\\ < 5, 

\f(Zi) - ft(z)\ <5, i = l,2}+sBx+V 

(the same inclusion with <P~, &Q replaced by d~, d0 respectively). 
The proof proceedes like that of [5, Theorem 1]; the only difference is that [5, 

Lemma 2] should now be replaced by 

Lemma 3. Let X be an S0 — space (a WS0 — space), let fl9f2: X -> (— oo, oo] 
be two functions such that their sumf1 + f2 attains sharp local minimum at some 
zeX and let 5 > 0 be given. Suppose moreover that the function f2 is compact 
near z in the sense that the sets {xez + dBx:f2(x) ^ i*} are norm compact for 
all real t. 

Then there exist zl9 z2e z + 5BX, with \fj(zj) — fj(z)\ < S, j = 1, 2, such that 

0 e *o /i(*i) + *o fifa) (0 e 3o/i(*i) + Sofiki)) • 
The proof is almost identical with that of [5, Lemma 2]. The only substantial 

change is that the convolution f of f1 andf2 is now defined by 

f(x\ = / i n f {/i(x + y) + fi{z + y): y e SBx} ^ xeze5Bx 

^ ' \ + oo otherwise . 

An analogy of [4, Theorem 4], see also [5, Theorem 2], exists too: 

Theorem 3. X is an Asplund space (if and) only if it is trustworthy in the fol
lowing sense: for any e ^ 0, S > 0, y > 0, for any functions fl9 ...,fn:X -> 
-> ( - c o , +oo], n ^ 2, and for any zeX such that f1 is lower semicontinuous and 
fn •••>/» are Lipschitz in a neighbourhood of z the following inclusion holds 

* f (/. + • • • + L) (-) <= U {#o / i ( - i ) + • • • + *o / . ( - . ) : / ; " + ^5X , 

l/X-y) ~ /i(2)l < «5 » j=h...,n} + (s + y)Bx. 

Corollary 1. If X is Asplund, f:X -»(—oo, +00] lower semicontinuous, zeX, 
and e >, 0, 5 > 0, y > 0, then 

* f /(«) c U {*o / (*) : * 6 2 + 5BX, \f(x) - f{z)\ < 6} + (e + y) Bx . 
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Theorem 3 can be easily obtained, see the proof of [5, Theorem 2], from the next 

Lemma 4. Let X be an Asplund space, let <5, y > 0 and let fl9 . . . , /„ : X -> 
->( —oo, +oo] , n ^ 2, fee functions such that f1 is lower semicontinuous and 
fi> •••»/« are Lipschitz in a neighbourhood of some zeX. Finally assume that the 
sumfx + ... + /„ attains local minimum at z. 

Then there are Zj + z + SBX9 with \fj(zj) — fj(z)\ < 59 j = 1, . . . , n9 such that 

Oe * o / i ( z i ) + - . + *o/ . (* . ) + yBx • 

However we have not succeeded in proving this lemma by imitating the way used 
in the proof of [5, Lemma 3]. So we proceed like in [7] and [4]. First we consider X 
with Frechet differentiable norm. Then a method from [7, Lemma 2] can be adapted 
when replacing the Ekeland's principle by the principle of Borwein-Preiss. Second, 
remarking that a separable Asplund space admits an equivalent Frechet differentiable 
norm, we can obtain the statement of Lemma 4 with help of a separable reduction 
formulated in the following. 

Lemma 5. Let Y0 be a separable subspace of X9 let fl9 . . . , /„: X -> (— oo, +oo ] 
be functions locally bounded from below and let el9..., en ^ 0 be given. 

Then there exists a separable subspace 70 c Y c X such that 

Oe$;j1(x1) + ... + $;jn(xn) 

whenever xl9 ...9x„e Yand 

Osfl-CAirHx.) + ... + *-(/. |r) (*,). 

The proof is an elaboration of that of [4, Theorem 2] (where et > 0) in the sense 
that [4, Lemma 4] should now be replaced by 

Lemma 6. Let ft: X -* (— oo, +oo] be functions, xt e domfi9 and e{ ^ 0 , i = 
= 1, . . . , n. Then 

(1) O e * - / 1 ( x 1 ) + ... + * - / . ( x . ) 

if and only if there are c ^ 0 and sequences {Stj}9 ..., {5nj} of positive numbers such 
that 

*ij 

(2) 

£ 1 A , í щji [/.(*, + hІJt) + ( в ł + i ) ЏІJt(\ = 

" , ч

 n _ 1
 ™І

 kiJ mn knJ 

IL(*.) - c s || Z ßij I щ]thф - £ ßUJ s «„,,!,„,,! 
» = 1 i = i j = i ï = l / = i i = i 

whenever h;jie8tjBx, «tJt = 0, / = 1,.... ktJ, txtJl + . . . + <xiJklJ = 1, ktJ = 1 ,2 , . . . , 
fiu = O,; = 1, ••., m„ pn + ... + p.mt = 1, m, = 1, 2 , . . . , i = 1,..., n. 
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Proof. Necessity. Let (l) hold. Let Ct e #fi~ /,(*,) be such that £i + ... + £„ = 0 
For j = 1,..., n find sequences {<5i;} of positive numbers such that 

/«(*. + Һ) - ffa) ^ <Ç„ Л> - ( Є i + 7) 

whenever ft 6 £|j£x. Then for any hijl9 <xijl9 pij9 kij9 mt as in Lemma the left hand 
side in (2) is 

= Z Z A J Z «</I[/I(*I) + <Ci, A,„>] = 
i = i j = i i = i 

n n - 1 nti kij mn knj 

= I/i(*«) " I <Ci. Z Pu Z «««*«i - I A* Z <-.A/i> ^ 
i = l i = l / = 1 1 = 1 / = 1 1=1 

the right side in (2) where c = max {|Ci||, ...» ||C»-i||}-
Sufficiency. For i = 1,..., n and j = 1. 2, . . . we define the functions (t>tJ: X -• 

-• (-co, +oo] by 

A/ft) = inf J £ a, ["/.(x, + ft,) + L + ±\ lhA ht 6 5ijBx , 

a/ = 0, / = 1,..., fc, ax + ... + 0Lk = 1, a ^ + ... + <xkhk = ft, fc = 1, 2, . . . > 

if fte*yBx, 

^y(h) = + oo otherwise. 
Clearly <£i7 are proper convex functions. It follows from (2) that 

*y(0)£/,(*,) S ^ O ) 
and 

n mi n n—1 mt mn 

Z Z fiu *./*«) ^ Z/.(*.) - c Z1Z Ai*v - Z fi.M 
i = i / = i i = l i = l / = l / = i 

for all hijGX, j = 1,..., m,-, m£ = 1, 2 , . . . , i = 1,..., n. Further for i = 1,..., m 
define 0f: X -> (—oo, oo] by 

4>t(h) = inf{J^</>lV(fty): ftyeK, j», = 0, ; = l , . . . ,m , 
I=i 

0i + ••• + ftn = 1, JMi + ••• + Pmhm = h,m = 1,2,. . .}, fteK. 

Then the last inequality yields <̂ (0) = /(*,) and 

Z Uht) * Z <£,(o)) - c"zV.- - Ml 
i = l i = l i = l 

for all ht h„eX. It follows by [4, Lemma 2] that 

Oea^(0) + ... + #„(0). 
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Here 3<£; means the usual subdifferential of <f>t known from convex analysis. Now 
in order to show (1) it suffices to remark that 

So let Ct e d(j>i(0). Then for h e SijBx by the definition of <$>i} and (j>t we have 

fi(x{ + h) + L + -)lh\\^ ^(h) > <f>i(h) g 

k<l>i(o) + <Ci,hy=fi(xi) + <Ci,hy 
and hence 

lim inf [/,(*. + h) - /,(*,) - <C„ h>]l\\h\\ ^ - L + *) 

for ally = 1, 2, Therefore d lies in ^e" /,•(*,). 

Remark. We confess that new ideas in this note can be found only in Lemma 2, 
eventually in Lemma 6. 
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