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The Sums of Closed Subspaces in a Topological Linear Space 
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In this paper we collect some results concerning the structure of closed subspaces 
in a topological linear space. We establish some relations between algebraical 
properties of this structure and the topology of the space. 

Throughout the paper, let X be a real HausdorfT topological linear space with 
a topological dual X*.Let L(X) denote the set of all closed subspaces of X. By an 
(algebraical) sum A + B of subspaces A9 B e L(X) we mean the set {x + y | x e A, 
yeB}. Our starting point is the following question: When is the sum of two closed 
subspaces again a closed subspace? For example, it is well known that the sum in 
question is closed provided at least one of the summands is finite-dimensional. In 
this connection there is an interesting theorem of V. I. Gurarii and H. P. Rosenthal 
(see e.g. [10]). 

Theorem 1. Let X be a Banach space and E9F e L(X). If any closed subspaces A 
and B of E and F, respectively, are finite-dimensional, then E + F e L(X). 

We restrict now attention to spaces in which every sum of finitely many closed 
subspaces is a closed subspace. 

Definition 1. X is said to be modular if E + F e L(X) for all E9 F e L(X). 
As G. W. Mackey proved ([8]), X is modular if and only if the set L(X) equipped 

with the set inclusion forms a modular lattice. This assertion justifies the terminology 
used in definition 1. Important example of modular space is the locally convex direct 
sum of any system of one-dimensional spaces ( © Ra9 where Ra = R for every otel) 

ael 

and the product of this system ( ["J Ra9 where Ra = JR for every a el). Indeed, the 
ael 

space © Ra has the strongest admissible locally convex topology. So every linear 
ael 

subspace of © jRa is closed and the modularity follows immediately. According to 
ael 

a canonical duality between spaces © Ra and J"J Ra9 the lattices L( © -Ra),L( Y\R a) 
ael ael ael ael 
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are dual isomorphic (dual isomorphism is given by the polars). Consequently, the 
product Y[ ^a is modular, too. On the other hand, there are many examples of 

ael 

non-modular spaces. A classical theorem of G. W. Mackey ([8]) says that a normed 
space is modular if and only if it is finite-dimensional. In the first part of this paper 
we summarize some results extending this Mackey theorem ([4]). A space X has 
a Hahn-Banach extension property (abb. HBEP) if the following version of Hahn-
Banach theorem holds: Every linear form continuous on a given closed subspace 
of X has a continuous extension over the entire space X. Let us remark that there 
are many non locally convex spaces with HBEP [2, 5]. Following Wilbur [12], we 
say that X is total if X admits a continuous norm. The following theorem characterizes 
bounded subsets in some modular spaces. 

Theorem 2. Let X be a modular space satisfying the following conditions: 

(1) X has a HBEP, 

(2) there is a weaker locally convex metrizable topology on X, 

(3) if M e L(X) is infinite-dimensional then the Mackey topology T(M, M*) is 
strictly stronger than the weak topology cr(X, X*). 

Then every bounded subset of X is finite-dimensional (i.e., it is contained in some 
finite-dimensional space). 

So, modularity of X implies in this case some topological properties such as 
quazicompleteness, semicompleteness and semireflexivity in a locally convex case 
(for precise definitions, see [11]). 

We intend to prove Theorem 2 in a subsequent paper, the proofs of the following 
results may be found in [4]. 

Corollary. 1. Total modular locally convex space has only finite-dimensional 
bounded subsets. 

Making use of the foregoing corollary, we obtain the following consequences 
giving a lucid characterizations of modular spaces in some typical situations. 

Theorem 3. Total bornological space X is modular if and only if it is isomorphic 
to any locally convex direct sum © Ra, where Ra = R for every cue I. 

ael 

Let us now consider total metrizable locally convex modular spaces. According 
to the Baire category theorem, all metrzable locally convex direct sums of real lines 
are finite-dimensional, so, using Theorem 3, we have the following corollary. 

Corollary 2. The only modular total metrizable locally convex spaces are finite-
dimensional spaces. 

From this point of view the foregoing results can be interpreted as a generalization 
of Mackey theorem. 

In the second part of this paper we shall deal with a modular F-space. By an F-space 
we mean a complete metrizable topological linear space. First we need to introduce 
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some notions. A space X is called minimal if there is no HausdorfF linear topology onX 
strictly weaker than the original one, and it is called q-minimal (quotient-minimal, see 
[1]) if all its HasudorfF quotients are minimal. Trivial examples of minimal spaces 
are finite-dimensional spaces and their products. As known, a locally convex space X 
is (quotient-) minimal if and only if X is isomorphic to the product of real lines, 
(see [1, 9, 11 p. 191]). A sequence (xn) in X is said to be M-basic sequence [6, 7] if 
there is a sequence (xn) in the dual space sp {xn \ n e N } * such that xn(xm) = Sn)tn 

for every n, m e N and moreover f) Kerx* = {0} (i.e., the sequence (xn) is total 
neN 

on sp {xn | n e N}*). An M-basic sequence is called regular if there is a neighbourhood 
U of 0 such that xn$U for all neN. Deep theorem of N. J. Kalton [6] says that 
every nonminimal F-space contains a regular M-basic sequence. We need the fol
lowing theorem of L. Drewnowski [1] which generalizes Theorem 1. 

Theorem 4. Let X be an F-space and let E, F e L(X). If any isomorphic closed 
subspaces A and B of E and F, respectively, are q-minimal, then E + F e L(X). 

The following interesting theorem of A. Martineu characterizes modular Frechet 
spaces. 

Theorem 5. A Frechet space is modular if and only if it is minimal. 
Let us present here the proof of the non-locally convex version of Theorem 5. 

Theorem 6. An F-space is modular if and only if it is q-minimal. 

Proof, Let X be a modular F-space. First we prove that X is minimal. If, on the 
contrary, X is not minimal then X contains a regular M-basic sequence (xn). Put 
un = x2w_ i and choose a sequence (vn) such that for every n e N we have 

sp {uU9 vn} = sp {x2„-l9 x2n} and Q(U„ - vK9 0) < 1/n , 

where Q is a metric inducing the topology of X. 
Put A = sp {un | n e N } , B = sp {vn \ n e N } . Making use of the properties of 

M-basic sequences, it can be shown that A n B = {0}. Then we can define the 
mapping p: A + B -> A by putting 

p(x + y) = x for every x e A , y e B . 

The mapping p is not continuous, because lim un — v„ = 0, while the sequence (un) 
n->oo 

is bounded away from zero ((xn) is regular). Since p is a closed mapping, we see, 
according to the closed graph theorem, that the space A + B is not complete. Thus 
A + B $ L(X), which is a contradiction. 

Because every HausdorfF quotient of modular F-space is again a modular F-space, 
the preceding considerations implies that X is ^-minimal. 

The reverse implication in Theorem 6 follows easily from Theorem 4 and the fact 
that every closed subspace of a-minimal space is again ^-minimal [1, Prop. 3.1 (a)]. 

A crucial problem in the theory of basic sequences in F-spaces is the following 
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problem [6]: Are there some non locally convex q-minimal F-spaces? If the answer 
is no, as some results indicates [6, 7], then by Theorem 6, the only infinite-dimensional 
modular F-space is the space of all sequences (with the product topology). 
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