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On some convexity prorerties of Musielak-Orlicz spaces

by

Anna Kamiriska

Abstract. It is shown here that geometrical properties such as
rotundity,local uniform rotundity,uniform rotundity in every direction,
are equivalent in the Musielak-Orlicz spaces equipped with Luxemburg

norm, if the measure is atomless,

introduction, This paper is a continuation of the investigations

concerning ine geometricaL properties in the space of Orlicz type
(e.g. 2] ,‘[3] » [4], Cé] » [1], [8]). Here we are interested in
such propérties as uniform rotvndity in every direction and local
uniform rotundity in the generalized Orlicz spaces,called Musielak-Or-
licz spaces.We are finding tests for thesc properties.The problem con=-
cerning the'local uniform rotundity of the Orlicz space was soived

in [8], either in the case of atomless measure or in the case of

a -sequence space, Now,we recall the needed definitions and notations.

We say that a Banach space X is locally wuniformly rotund (LUR),DO],

if for each € >0 and each y ¢ X with (lyll = 1 there is a J(y,{) >0
such that if xeX with [ix|] = 1 and {lx - yll >¢ o then ||(x~+ ¥)/2 ” <
g 1= d(x5).

A Ranach space X is unifoir.iiy rotund in every direction (URED),
(13,010, if for each €>0 and nonzero z €X there exists §(z,€)> 0
such that if x and y belong to X with fIxll=flyll'= 1. fIx = y| >¢
and x - y =%z for some o< € R,then f[(x + yy2ll & 1 - §(z,E) .

4% 1is known,by the paper [1], that the property URED is equivalent to
the following on.e:'

For each .non‘zero z in X there. s a positive number &§(z) such that
if xeX with fIxlig 1 and fIx + z]l¢ 1 chen (I x + %z“ < 1-80z).

In the sequel we shall use this definitlu:.. The above mentioned and
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other convexity properties ' e.g. midpoint local uniform rotundity
- (MLUR) are given and.qxactly g?(amined in [10];H&z:re‘.,let us nors
that LUR - MLUR—> R and URED%R. Now,we introduce Some notions joined
_with Musielak-Orlicz spaces (for details see [9]) .Let T,Z,F. be
a measure space,where T is.an arbitrary set, 2, a G -algebra of subset
of T and /u,- a nonnegative,complete,atomle:ss'measure defined on X .
All subsets of T appearing in this note are measurable,i.e/they belong
to 3 . By M denote a set of a]l/u-measurable functions x: T— R ,
The functions different only oh a nvll set are considered as identical
Let (¢ : RxT -[0,+®) be a convex,even function of u, ¢(0,t) = O
outside of some null set a’nd let it be a /u—measurable function of ¢- I
for all u € R .For fixed t6T,such functions are usually called Yoér;g
or Orlicz functions.The Musielak-Orlicz space Ltp is the subset of a‘(ﬂ
such that I(P(Ax) - STYO x(t), t)d/L < ® for some A>0 dependent on
x. The functional llxM.P- inf {G)O. I‘P(X/E) < 1} is a norm in
this space,usually called Luxemb@rg norm,We s3ay that lf satiafies -
the condition 'Az,if there are & constant k>0 .and a nonnegative
function h,such that: 5'1‘ h(t)dp < © and ¢ (2u,t) g k@(u,t) *.h'(t.)
for a.e. t¢T. Let us note that in this condition,if cp(u,t)) 0: ro;
u ¢ O then the function h may be chosen in such a way that the inte<
gral S'I' h(t)dp is a,fb;,trarily small (4] . Recall that the fvnction
¢ is strictly convex a,e. in T if :or all u,v, ,(3 € .R such that
«,p.> 0 and o€ +.p"'- 1 we have @ (G u + pv,t)<ocq>(u t) ¢
p(v,t) for each t outside of some null set, We formulate the notiox
of LUR and URED for modular Iq, in the space L‘? ,replacing the spa.oo
Lby L ¢ and the norm by the modular,in suitable definitiona.ror in-
stance,we say that I‘P is uniforml_" rotund in evcry'direction in the

space Lq, ‘yif for each nonzero ,‘z'e I‘\‘f’ there exists S(z)) 0 such that
\ ; ) . 1 ' -
If xeLy and I, (x)<T and‘ Ig(x +2)g1 then L + zz) <1 -8(z).
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0.1.Theorem [2],[3]. The space I.(P is rotund iff ¢ is strictly.

convex a.e., in T and satisfies the condition A,.
0.2.Theorem [5] .The modular convergence is equivalent tq the.
norm convergence in I“P (i.e.’ Ilp(x)—>0<=>l|xuq, -> 0) iff ¢ satisfies
the condition A2 and Lf)(u,t)) O for u $ O outside of some null set,
Instead of the last condition in this theorem,we often write that
q) vanishes bnly at zero.The proofs of the next two lemmas will be
omitted, because applying Theorem Q.2,they are similar to that of
tenma 1 in [6] (see also th.1.11 in [4]) and Lemma 0.2 in [8] .
0.3.Lemma., The space I‘({J is locally uniformly rotund [uniformly
rotund in every dir’ection] iff the modvlar I\P is locally uniformly
rotund [uniformly rotund in every direction] , t{’ gsatisfies the condi-

tion A, and ¢ vanishes only at zero.

0.4.Lemma, If (p satisfies the condition & , and P vanishes only
at zero then for every £ >0 there is a & >0 such that for all xe L‘f
and y_e{z er: llz",‘og 1} the condition AI?(x - y) < § 1implies
|1\> (x) - Icp(yn <t .

Results,

1.Lemma,If ¢ is strictly convex a.e. in T,then for every £ > O

and d,,d, & (0,w),d,< d,, there exists a measurable function p:T=(0,1)

such that

@(u+v)/2 ,t) (1 -p®) (@u,t) + @ (v,1))/2
for.a.e. t€T,if |u=-Vv| 2 ¢ maf{lul,lvl} and
max 4{‘{7(u,t) ’ ({(v-,'t.)} € [dy,ay, .

Proof, By Lemma 0.5 in [8], for all t outside of some null, set
there is a number p(t) ¢ (0,1) satisfying the inequality from the thesis
S0,it is enough to show the measurability of the function p. Tet

Ay,v ® Jter v max{@(u, &) , ¢(v,t)}e [dy0d45]Y .

It is evident that this set is measurable.Let us consider the following
funcwion
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{ 2 @((u+v) /2, %)
P (u,t) + @ (v,1)
A max{tf(u,t) .‘;P(V-t)}e [d-1vd2J

Denoting by Q the set of all rational numbers we get

q(t) = sup
( u,veR

t u = v] > €max {Jul,lv/]

29 ((uev) /2y A v('c),t)
(P(uli) + ‘?(V,t)

by the definition of ALy Therefore q is measurable as the supremum
»

-

e, tlu = vl goax {Jul,lv}

of a countable family of measurable functions,which ends the proof,
since p = 1 - q.

2.Lemma, For all u,ve R, t€T, the following inequality

max {q? (v, 1), 9o, 1)y > ¢ (v/2,t)

holds.

Proof. In the case when u,v are of the same signs,the inequality
is evident. So,let uC ind v<O, If v} -u then

max {\?(u + v,t),t?(u,t)} - Lp(u,t)).(f)(—v,t) - ¢(v,t) .

flow,let v -u. If ve [-2u,-u] then =(u + v)¢ u and u >-v/2 .

So max {(p(u +v,t), cp(u,t)s - Cf’(u,t) >0 (- v/2 ,t) = t.p(v/?, yt) .

If v <-2u then -(u + v)>u and =-(u + v)>=- v/2 .Therefore the re-

quired inequality is also satisfied.Thus we proved the lemma,because

the remaining case is similar to the above one,
3,Lemma, Let ft ¢t T—= R be a family of functions with the
following properties:

19 the set functiona Vr(A) - SAILt(t)ldy. are equicontinuoua with
respect to che measure W ,i.e. for each € >0 there exist a set
T, ¢ S of finite measure s and §>0 such that
Ve (T~Tg) €€ and v (A) €€ for AcT with wA £§
for each index T,

2° v (T) - Smlft(t)ld}k 2o for sume «>O0 and each T.

Then for an arbitrary measurable function q : T->(0,m)and ¢e (o0,%)
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there exists a constant q > 0 such that
Slteldp > - ¢
for each 'C ,where Q = {ter : q() >a)

Proof, Let TE/Z’ be the set from 1° chosen for € /2 in place of ¢,
Also let Q = {t€T : q(t) > 1/nY .Since pTgsp< @ and
f\ [’I‘E/ZO(T\Q )]- ¢ then Lin ,w['rf/zn('l‘\Q )]1= 0.So,by 1°, there
is n e N such that VE[-Tg/g n ("‘\Qno) ] < ¢/2 for each T .Putting
q = 1/n0 we obtain
Solte@ldn = vi(m) = vylrespn(n ‘Qn,,)] - wl(r ) /2]

2L-¢€
N )
because v.c[('r\qno) TE/Z] < Vr(T‘Tg/z)é €/2 by 1° and
Ve (1) o€ by 2°,
4.lemma, Let z be a function with properties O<I¢(z/2) <
I\P(Zz)<m «Then there exist positive numbers c,d,§ such that
1 (z Y>$
¢ L% Xw (%)
for all x satisfying I"P (2x)&K for some k> O,where W, (x) = Wyn W and
Wy {ter /e <@((1/2) 2, t)a @(22(1),t) < )
W, = {teT : @(2x(t),t)<ay.

Remark: If § satisfies the condition A » and vanishes oniy at
zero then the assumptions of this Lemma may recuced to O<Iq;(z)< @
and I\.P(x)\ 1.

Proof., Let us choose a measurable set B of posnwe measure
such that ‘,O(Z(t)/Z ,t)> 0 for each t e B.Then,by the well known proper-
ty of the integral,for each € >0 there exists § >0 sucn that
l,{,(z 'XA)<S implies A £ € for each measurable ACB.So,if wA »¢
then I(p(z XA) ;5 for ACB,.By the assumptions and by the choice of
B,one can find ¢ >0 such that
(4.1) m(B W) (1/4) B .

Let d be greater or equal than 4K/mB .Thus,since we have
a(BNW )d < K, 80
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(4.2) R (BAW )L (1/4) B

for each x a.atisfying I?(Zx)s K. Therefore, ,U.(B\(H‘n'lx)) £(1/2)uB,

by (4.1) and (4.2) .Hence ;L(w‘nfwan)Q(t/Z)}oB'for all considered X,
Then one can find a § > O dependent only on 2Z,chosen for (1/2)uB

in place of € ,such that I‘?(ZXW,nw,nB)?S .But this means the thesis,
because W, NW_n Bcwo(x).

Now we may formulate and prove the main theorem.

Theorem, The following conditions are equivalent
(1) the function ¢ satisfies the condition 4, and is strictly-

coﬁvex a.,e. in T,
(ii) the space L is rotund,
(iij)the space Lq,. is midpoint locally uniformly rotund,
(iv) the‘ space L‘P‘Slocally uniformly rotund,
(v) the space L‘P is uniformly rotund in every direction.

Proof. In virtue of Theorem 0.1 and general relations between
properties R, LUR, MLUR, and URED it is enough to show the j:mplica-
tions (1) -» (iv) and (1) - (v) . .

(i)=(iv), Let €>0 and ye Ly be given such that Iy(y) = 1.
Consider the set of all x for which Iq,(x)'- 1 and Iq,(x -y)2¢€ .
Since every strictly convex function 9 vanishes only at gero,ao
by the supposed A 2-conhition,there exist a constant k and a non-
negative function h such thatu
(1) Spn()ap <(1/16) € ana @(2u,t) ¢ k @(u,t) + h(t)
for a.e. t €T.Next, we find constants CqsCy such that ¢2> c,> 1 and
(2 Sp @Gy, t)ap <(1/64k)e  and

T, - {te'Ts P(y(),t) < 1/egv ¢ (3Ct), ) > ¢y},

(3)  ey/e, s(1/32) €. 4

Let S be from Lemma 0.4 chosen for (1/74x) ¢ in place of ¢ .Moreover,
let p be the function from Lemma 1" for &§/4 , /ey , ¢, in place of
€,4y 4 d,.There exists c5 >0 such that .
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(4) . STZcp(y(t),t)dp. ((1/64k) g ,

where T, = {t€T : pt) < ci}; ,putting in Lemma 3.f,t(t'j - q)(y(.t).t).
Let T, = {t€T : @(x(t),%)> c,} Denote 7 (x) as T~(T,Uur,uT ).
It means that
L T (x) ;1161' 2 1/e, < @ (3(t),t)g ¢1}n{tew BIOPY Y
niteT : (P(x(t)_,t)ch} . '

It will be shown that

(5) ?((x - X (x))

for all considered x,In order to do this,it is enough to study

a subset of such x for which Iq,((x - Y)XT (x))<(3/4)g Then, in-virtue
of the assumption I(P(x -y))¢ ,we have I ((x - NXqp UT,UT] Nra)e
We have also ST\(’I‘ uT )\f'(y(t) t)dp, 1,;,(*r \(T v 1,)) < c /c <

< (1/321;)& by (3) and facts such as c, uT <1 and I(P(x) -1,
However ST1uT2(P(y(lt),t)d/L$ (1/32x)¢ ,by (2) and (4) ,20

(6) I(P(yXT1vT2uTx)g(1/16k)E .

Hence

(1/74)e < I(?((x - 9y T,u'r'gu.wx) < (1:/2)1‘?(,:7(1(1 U’T-zu Tx) +G/32)e .
-Therefore

™ To(xa gy, ) 36/160) € -

Then I?(YXTO(,x))" Iq,(x XTO(X))'>(1/4k)g ,in virtue of the defini
tion of T (x) and (6) and (7) .Now,applying lLemma 0.4 we get (5) .

Let

Ty(x) = {86 T,() [ x(3) - y(¥) | > (§/4max (k¢a)l, [y (D))

Since '/c.‘ < max {Lp(x(t),t), (P('y (t),t)’j g c, fort e’ro(x). , then
C@((x(2) + ¥(0)72,£) < (1 - pEN(1p (x2)it) + P(Y(E),))/2

for t€T (x) by Lemma 1 and the choice of the function p.HoweVu,,

(t)>c3 for t €T (x),ao

(8) Tp((x + ’)/2)< 1= (e5/2)( Lp(x Y myex))* Iqw(’x'r (x)))
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Using the definition of .T5(x) and the inequality (5) it is easily
obtained that Iq,((x - Y)XT.’(x))') §/2 . Now,1et us choose a new

constant k1 and a nonnegatiwve frnction h1 such that
Sp hy(t)ap £ 8/4 and @ (2u,t) g X, @(u,t) + hy(t)
for a,e, t€T,Then
Ip(x ’7(1'3,.(3:))+ To (y‘.'XT3(x)) > 2) (T ((x - DYy exy) - §p ny(0)du
y S/2k, .

Therefore I(r((x +y)/2) €1 - 5§/, ,by(8) ,where the constant
c3§/2k1 is dependent only on y and € .This proves,in virtue of
Lemma 0,3, the local uniform rotundity of L‘P .

(i1)=(v). Let zelgp » 2 # 0 and x be such that I(p(x)fﬂ and.
Iy (x + z)41.The functions z,x satisfy the assumptions of Lemma 4
(see also Remark) .Then, there are constants c¢,d> Q and Se('0,1)
such that
() (e gn) >
for arbitrary x satisfying Iq,(x )<1, where W (x) is the same set
as in Lemma 4,There exists a function p : T:—)(0,1) chosen by
TLemma 1 i’or §/4 , 1/c ,(c + d)/2 1in place of € ,dy,d,.The familv
of functions iq?(z(o )XWO(X )('), <) Ilp(x)s 1} satisfies ‘the assum-
ptions of Lemma 3,because (9) holds, wO(x) < W, and /.LW1< 4 Then,
there is a positive number p such that
(10) I(p(z Xw_(x)nP ) 2(3/4) §
for all x fulfilling Iq, (x )¢ 1,where P = {teT :pP)>DP j Putting
Wa(x) = {tew'ofx) NP : | z(t)] 2(8/4) max{lz(t) + x(t)',[x(t)”'
we have
1/c £ gp(z(t)/z,t) < ma.x{q?(z(t) + x(t),t),q(x(t),t)}

< (1/72)@(22(z),t) + (1/2) @ (2x(z),t) < (c + d)/2
for all te€ Wo(x) »by Lemma 2 and definitions of W, and Wy «S6,1n

virtue of Lemma.1 and the choice of the function p, there holds

@E)/2) + x(®),t) < (1 = »p) ((p (z(t) + x(t)t) P(x(2),¥))/2
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for all. t€ w3(x) . Hence
(11)’ A I“f ((z/2) +x)<1 - (v/2) [Iq,((z + x)'X"w3(x)')§ I‘?(X'IW.s(x))]
Let the condition Az be satisfied with k,>0 and h, : ™ (0,m)
such that ST hz(t)qM < &/8 . Now, it is enough to note that the
inequalities (10) , (11) play a similar role as (5), (8) ,respectively.
Therefore,by the same technique we get Il‘,((z/Z) +x)g1 - p S /8k,
for all x satisfying I‘P (x)< 1 and I(P(z + x)g 1,where the constant
;)S/8k2 is dependent only on z.

Reniark. This theorem is a generalization of Th, 1 inl[8],where
the equivalence of the first four conditions in the case of Orlicz

spaces was proved,But the implication (1)=(v) is new,even for Orlicz

spaces.,
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