Anna Kamińska

On some convexity properties of Musielak-Orlicz spaces

In: Zdeněk Frolík (ed.): Proceedings of the 12th Winter School on Abstract Analysis, Section of Analysis. Circolo Matematico di Palermo, Palermo, 1984. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento No. 5. pp. [63]--72.

Persistent URL: http://dml.cz/dmlcz/701816

Terms of use:

© Circolo Matematico di Palermo, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

On some convexity properties of Nusielak-Orlicz spaces
by
Anna Kamińska

Abstract. It is shown here that peometrical properties such as rotundity, local uniform rotundity, uniform rotundity in every direction, are equivalent in the Musielak-Orlicz spaces equipped with Luxemburg norm, if the measure is atomless.

Introduction, This paper is a continuation of the investigations concerning the geometrical properties in the space of Orlicz type $(e . E \cdot[2],[3],[4],[6],[7],[8])$. Here we are interested in such properties as uniform rotundity in every direction and local uniform rotundity in the generalized Orlicz spaces, called Musielak-Orlicz spaces. ${ }^{\prime}$ e are finding tents for these properties. The problem concerning the local uniform rotundity of the Orlicz space was sozved in [8], either in the case of atomless measure or in the case of a sequence space. Now, we recall the needed definitions and notations.

We say that a Banach space X is locally uniformly rotund (LLR), [10] if for each $\varepsilon>0$ and each $y \in X$ with $\|y\|=1$ there is a $\delta(y, \varepsilon)>0$ such that if $x \in X$ with $\|x\|=1$ and $\|x-y\| \geqslant \varepsilon$, then $\|(x \backslash+y) / 2\| \leqslant$ $\leqslant 1-\delta(x, \varepsilon)$.

A Ranach space X is unifolaiy rotund in every direction (URED), $[1],[10]$, if for each $\varepsilon>0$ and nonzero $z \in X$ there exists $\delta(z, \varepsilon)>0$ sucn that if x and y belong to X with $\|x\|=\|y\|=1$. $\|x-y\| \geqslant \varepsilon$ and $x-y=\alpha z$ for some $\alpha \in R$, then $\|(x+y) / 2\| \leqslant 1-\delta(z, \varepsilon)$. AT. is known, by the paper [1], that the property URED is equivalent to the following one: •

For each nonzero z in X there, s a positive number $\delta(z)$ such that if $x \in X$ with $\|x\| \leqslant 1$ and $\|x+z\| \leqslant 1$ when $\left\|x+\frac{1}{2} z\right\| \leqslant 1-\delta(z)$. In the sequel we shall use this definitiun. The above mentioned and

This paper is in final form and no version of it will be submitted for publication elsewhere.
other convexity properties e.g. midpoint local unirorm rotundity (MLLR) are given and exactly examined in [10]:Here, let us nots. that LUR \rightarrow MLUR $\rightarrow R$ and URED $\rightarrow R$. Now, we introduce some notions joined with Musielak-Orlicz spaces (for details see [9]). Let T, Σ, μ be a measure space, where T is an arbitrary set, $\Sigma a \sigma$-algebra of subset of T and μ - a nonnegative, complete, atomless measure defined on Σ. All subsets of T appearing in this note are measurable, i.e; they belong to Σ. By \mathcal{M} denote a set of all μ-measurable functions $x: T \rightarrow R$. The functions different only on a null set are considered as identical Let $\varphi: R \times T \rightarrow[0,+\infty)$ be a convex, even function of $u, \varphi(0, t)=0$ outside of some null set and let it be a μ-measurable function of t for all $u \in R$. Por fixed $t \in T$, such functions are usually called Young or Orlicz functions.The Musielak-Orlicz space L_{φ} is the subset of \mathcal{M} such that $I_{\varphi}(\lambda x)=\int_{T} \varphi(\lambda x(t), t) d \mu<\infty$ for some $\lambda>0$ dependent on x. The functional $\|x\|_{\varphi}=\inf \left\{\varepsilon>0: I_{\varphi}(x / \varepsilon) \leqslant 1\right\}$ is a norm in this space, usually called Luxemburg norm. We say that φ satisfies the condition Δ_{2}, if there are constant $k>0$ and a nonnegative function h, such that. $\int_{T} h(t) d \mu<\infty$ and $\varphi(2 u, t) \leqslant k \varphi(u, t)+h(t)$ for a.e. $t \in T$. Let us note that in this condition, if $\varphi(u, t)>0$ for $u \notin 0$ then the function h may be chosen in such a way that the integral $\int_{T} h(t) d \mu$ is afbitrarily small [4]. Recall that the function φ is strictly convex. a, e. in T if for all $u, v, \propto, \beta \in, R$ such that $\alpha, \beta \geqslant 0$ and $\alpha+\beta=1$ we have $\varphi(\alpha u+\beta v, t)<\alpha \varphi(u, t)+$ $\beta \varphi(\nabla, t)$ for each t outside of some null set. We formulate the notion of LUR and URED for modular I_{φ} in the space $L \varphi$, replacing the space X by $L_{\varphi} \varphi$ and the, norm by the modular, in suitable definitions.for instance, we say that I_{φ} is uniforml. rotund in every direction in the space L_{φ}; if for each nonzero $z \in L_{\varphi}$ there exists $\delta(z)>0$ such that if $x \in L_{\varphi}$ and $I_{\varphi}(x) \leqslant 1$ and $I_{\varphi}(x+z) \leqslant 1$ then $I_{\varphi}\left(x+\frac{1}{2} z\right) \leqslant 1-\delta(z)$.
0.1.Theorem [2], [3]: The space $I \varphi$ is rotund iff φ is strictly convex a.e. in T and satisfies the condition Δ_{ρ}.
0.2.Theorem [5]. The modular convergence is equivalent to the norm convergence in $\mathrm{L} \varphi\left(\right.$ i.e. $I_{\varphi}(x) \rightarrow 0 \Leftrightarrow\|x\|_{\varphi} \rightarrow 0$) iff φ satisfies the condition Δ_{2} and $\varphi(u, t)>0$ for $u \neq 0$ outside of some null set.

Instead of the last condition in this theorem, we often write that φ vanishes only at zero.The proofs of the next two lemmas will be omitted, because applying Theorem 0.2 , they are similar to that of Lemma 1 in [6] (see also th. 1.11 in [4]) and Lemma 0.2 in [8].
0.3 Lemma. The space L_{φ} is locally uniformly rotund [uniformly rotund in every direction] iff the modular I_{φ} is locally uniformly rotund [uniformly rotund in every direction] φ satisfies the condition Δ_{2} and φ vanishes only at zero.
0.4.Lemma. If φ satisfies the condition Δ_{2} and φ vanishes only at zero then for every $\varepsilon>0$ there is a $\delta>0$ such that for all $x \in L_{\varphi}$ and $X_{\in} \in\left\{z \in I_{\varphi}:\|z\|_{\varphi} \leqslant 1\right\}$ the condition $I_{\varphi}(x-y)<\delta$ implies $\left|I_{\varphi}(x)-I_{\varphi}(y)\right|<\varepsilon$.

Results.

1. Lemma. If φ is strictly convex a.e. in T, then for every $\varepsilon>0$ and $d_{1}, d_{2} \in(0, \infty), d_{1}<d_{2}$, there exists a measurable function $p: T \rightarrow(0,1)$ such that

$$
\varphi((u+v) / 2, t) \leqslant(1-p(t))(\varphi(u, t)+\psi(v, t)) / 2
$$

for a.e. $t \in T$, if $|u-v| \geqslant \varepsilon \max \{|u|,|v|\}$ and $\max \{\varphi(u, t), \varphi(v, t)\} \in\left[d_{1}, a_{2}, J\right.$.

Proof. By Lemma 0.5 in [8], for all t outside of some null. set there is a number $p(t) \in(0,1)$ satisfying the inequality from the thesis So, it is enough to show the measurability of the function p. fet

$$
A_{u, v}=\left\{t \in T: \max \{\varphi(u, t), \varphi(v, t)\} \in\left[d_{1}, d_{2}\right]\right\} .
$$

It is evident that this set is measurable. Let us consider the following funcuion
$q(t)=\sup _{u, v \in R}\left\{\frac{2 \varphi((u+v) / 2, t)}{\varphi(u, t)+\varphi(v, t)}:|u-v| \geqslant \varepsilon \max \{|u|,|v|\}\right.$

$$
\wedge \quad \max \{\varphi(u, t), \varphi(v, t)\} \in\left[d_{1}, d_{2}\right]
$$

Denoting by Q the set of all rational numbers we get
$q(t)=\sup _{u, v \in Q}\left\{\frac{2 \varphi\left((u+v) / 2 \chi A_{u, v}(t), t\right)}{\varphi(u, t)+\varphi(v, t)}:|u-v| \geqslant \varepsilon \max \{|u|,|v|\}\right.$ by the definition of $A_{u, v}$. Therefore q is measurable as the supremum of a countable fanily of measurable functions, which ends the proof, since $p=1$ - q.
2. Lemma. For all $u, v \in R, t \in T$, the following inequality $\max \{\varphi(u+v, t), \varphi(u, t)\} \geqslant \varphi(v / 2, t)$
holds.
Proof. In the case when u, v are of the same signs, the inequality is evident. So,let $u \geqslant C$ and $v<0$. If $v \geqslant-u$ then
$\max \{\varphi(u+v, t), \varphi(u, t)\}=\varphi(u, t) \geqslant \varphi(-v, t)-\varphi(v, t)$.
Now, let $v \leqslant-u$. If $v \in[-2 u,-u]$ then $-(u+v) \leqslant u$ and $u \geqslant-v / 2$. So $\max \{\varphi(u+v, t), \varphi(u, t)\}-\dot{\varphi}(u, t) \geqslant \varphi(-v / 2, t)=\varphi(v / 2, t)$. If $v<-2 u$ then $-(u+v)\rangle u$ and $-(u+v)\rangle-v / 2$. Therefore the required inequality is also satisfied.Thus we proved the lemma, because the remaining case is similar to the above one.
3. Lemma. Let $f_{\tau}: T \rightarrow R$ be a family of functions with the following properties:
1^{0} the set functiona $V_{\tau}(A)-\int_{A}\left|f_{\tau}(t)\right| d \mu$ are equicontinuous with respect to che measure μ,i.e. for each $\varepsilon>0$ there exist a set $T_{\varepsilon} \in \Sigma$ of finite measure μ and $\delta>0$ such that $V_{\tau}\left(T \vee T_{\varepsilon}\right) \leqslant \varepsilon$ and $\quad V_{\tau}(A) \leqslant \varepsilon$ for $A \subset T_{\varepsilon}$ with $\mu A \leqslant \delta$ for each index τ.
$2^{0} \quad \gamma_{\tau}(T)=S_{T}\left|f_{\tau}(t)\right| d \mu \geqslant \alpha$ for sume $\alpha>0$ and each τ. Then for an arbitrary measurable function $q: T \rightarrow(0, \infty)$ and $\varepsilon \in(0, \infty)$
there exists a constant $q>0$ such that

$$
S_{Q}\left|f_{\tau}(t)\right| d \mu \geqslant \alpha-\varepsilon
$$

for each τ, where $Q=\{t \in T: q(t) \geqslant q\}$.
Proof. Let $T_{\varepsilon / 2}$ be the set from 1^{0} chosen for $\varepsilon / 2$ in place of ε. Also let $Q_{n}-\{t \in T: q(t) \geqslant 1 / n\}$. Since $\mu T \varepsilon_{\varepsilon / 2}<\infty$ and $\bigcap_{n \in \mathbb{N}}\left[T_{\varepsilon / 2} \cap\left(T, Q_{n}\right)\right]=\varnothing$ then $\lim _{n \rightarrow \infty} \mu\left[T_{\varepsilon / 2} \cap\left(T, Q_{n}\right)\right]=0$. So, by 1^{0}, there is $n_{0} \in \mathbb{N}$ such that $V_{\tau}\left[T_{\varepsilon / 2} \cap\left(T, Q_{n_{0}}\right)\right]<\varepsilon / 2$ for each τ. Putting, $q=1 / n_{0}$ we obtain

$$
\begin{aligned}
S_{Q}\left|f_{\tau}(t)\right| d \mu & =v_{\tau}(T)-v_{\tau}\left[T T_{\varepsilon / 2} \cap\left(T \vee Q_{n_{0}}\right)\right]-v_{\tau}\left[\left(T \vee Q_{n_{0}}\right) \backslash T T_{\varepsilon / 2}\right] \\
& \geqslant \alpha-\varepsilon
\end{aligned}
$$

because $V_{\tau}\left[\left(T \backslash Q_{n_{0}}\right) \backslash T_{\varepsilon / 2}\right] \leqslant V_{\tau}\left(T \backslash T_{\varepsilon / 2}\right) \leqslant \varepsilon / 2$ by 1^{0} and $V_{\tau}(T) \geqslant \alpha$ by 2°.
4. Lemma. Let z be a function with properties $0<I_{\varphi}(z / 2)<$ $<I_{\varphi}(2 z)<\infty$. Then there exist positive numbers c, d, δ such that

$$
I_{\varphi}\left(z \chi_{W_{0}(x)}\right)>\delta
$$

for all x satisfying $I_{\varphi}(2 x) \leqslant K$ for some $K>0$, where $W_{0}(x)=W_{1} \cap W_{x}$ and

$$
\begin{aligned}
& W_{1}=\{t \in T: \quad 1 / c \leqslant \varphi((1 / 2) z(t), t) \wedge \varphi(2 z(t), t) \leqslant c\} \\
& W_{x}=\{t \in T: \quad \varphi(2 x(t), t) \leqslant d\} .
\end{aligned}
$$

Remark: If φ satisfies the condition Δ_{2} and vanishes only at zero then the assumptions of this Lemma may reduced to $0<I_{\mathcal{Y}}(z)<\infty$ and $I_{\varphi}(x) \leqslant 1$ 。

Proof. Let us choose a measurable set B of positive measure such that $\varphi(z(t) / 2, t)>0$ for each $t \in B$. Then, by the well known property of the integral, for each $\varepsilon>0$ there exists $5>0$ such that $I_{\varphi}\left(z \chi_{A}\right)<\delta$ implies $\mu A<\varepsilon$ for each measurable ACB.So, if $\mu A \geqslant \varepsilon$ then $I_{\varphi}\left(z \chi_{A}\right) \geqslant \delta$ for $A \subset B$. By the assumptions and by the choice of B, one can f ind $c>0$ such that

$$
\begin{equation*}
\mu\left(B \backslash w_{1}\right) \leqslant(1 / 4) \mu B \tag{4.1}
\end{equation*}
$$

Let d be greater or equal than $4 \mathrm{~K} / \mu \mathrm{B}$. Thus, since we have
$\mu\left(B \backslash W_{x}\right) d \leqslant K$, so

$$
\begin{equation*}
\mu\left(B \backslash W_{x}\right) \leqslant(1 / 4) \mu B \tag{4.2}
\end{equation*}
$$

for each x satisfying $I_{\varphi}(2 x) \leqslant K$. Therefore, $\mu\left(B \backslash\left(W_{1} \cap W_{x}\right)\right) \leqslant(1 / 2) \mu B$, by (4.1) and (4.2). Hence $\mu\left(W_{1} \cap \mathcal{N}_{x} \cap B\right) \geqslant(1 / 2) \mu B$ for all considered $x_{\text {. }}$ Then one can find a $\delta>0$ dependent only on z, chosen for ($1 / 2$) $\mu \mathrm{B}$ in place of ε, such that $I_{\varphi}\left(z^{z} \chi_{W_{1} \cap W_{x} \cap B}\right) \geqslant \delta$. But this means the thesis, because $W_{1} \cap W_{x} \cap B \subset W_{0}(x)$.

Now we may formulate and prove the main theorem.
Theorem. The following conditions are equivalent
(i) the function φ satisfies the condition Δ_{2} and is strictly, convex a.e. in T ,
(ii) the space L_{φ} is rotund,
(ii) the space $L \varphi{ }^{\text {is }}$ is midpoint locally uniformly rotund,
(iv) the space L_{φ} locally uniformly rotund,
(v) the space ${ }^{L} \varphi$ is uniformly rotund in every direction.

Proof. In virtue of Theorem 0.1 and general relations between properties R, LUR, MIL:R, and LRED it is enolugh to show the implications (i) \rightarrow (iv) and $(i) \rightarrow(v)$.
(i) \rightarrow (iv). Let $\varepsilon>0$ and $y \in L_{\varphi}$ be given such that $I_{\varphi}(y)=1$. Consider the set of all x for which $I_{\varphi}(x)=1$ and $I_{\varphi}(x-y) \geqslant \varepsilon$. Since every strictly convex function φ vanishes only at zero,so by the supposed Δ_{2}-condition, there exist a constant k and a nonnegative function h such that
(1) $\int_{T} h(t) d \mu<(1 / 16) \varepsilon$ ana $\varphi(2 u, t) \leqslant k \varphi(u, t)+h(t)$ for a.e. $t \in T$.Next, we find constants c_{1}, c_{2} such that $c_{2}>c_{1}>1$ and
(2) $\int_{\mathrm{T}_{1}} \varphi(\mathrm{r}(\mathrm{t}), \mathrm{t}) \mathrm{d} \mu<(1 / 64 \mathrm{k}) \varepsilon \quad$ and

$$
T_{1}=\left\{t \in T: \varphi(y(t), t)<1 / c_{1} \vee \varphi(y(t), t)>c_{1}\right\} .
$$

(3) $o_{1} / c_{2} \leqslant(1 / 32 k) \varepsilon$.

Let δ be from Lemma 0.4 chosen for $(1 / 4 k) \varepsilon$ in place of ε.Moreover, let p be the function from Lemma 1 for $\delta / 4,1 / c_{1}, c_{2}$ in place of $\varepsilon, d_{1}, d_{2}$.There exists $c_{3}>0$ such that

$$
\begin{equation*}
\int_{T_{2}} \varphi(y(t), t) d \mu<(1 / 64 k) \varepsilon, \tag{4}
\end{equation*}
$$

where $T_{2}=\left\{t \in T: p(t)<c_{3}\right\}$, putting in Lemma 3, $f_{\tau}(t)-\varphi(y(t), t)$. Let $T_{x}=\left\{t \in T: \varphi(x(t), t)>c_{2}\right\}$. Denote $T_{0}(x)$ as $T\left(T_{1} \cup T_{2} \cup T_{x}\right)$. It means that

$$
\begin{aligned}
T_{0}(x)- & \left\{t \in T: 1 / c_{1} \leqslant \varphi \cdot(y(t), t) \leqslant c_{1}\right\} \cap\left\{t \in T: p(t) \geqslant c_{3}\right\} \\
& \cap\left\{t \in T: \varphi(x(t), t) \leqslant c_{2}\right\} .
\end{aligned}
$$

It will be shown that.

$$
\begin{equation*}
I_{\varphi}\left((x-y) \chi_{T_{0}(x)}\right) \geqslant \delta \tag{5}
\end{equation*}
$$

for all considered x. In order to do this, it is enough to study a subset of such x for which $I_{\varphi}\left((x-y) \chi_{T_{0}(x)}\right)<(3 / 4) \varepsilon$. Then, in'virtue of the assumption $I_{\varphi}(x-y) \geqslant \varepsilon$, we have $\left.I_{\varphi}\left((x-y) \chi_{T_{1} \cup T_{2} \cup T_{x}}\right)\right\rangle(1 / 4) \varepsilon$ We have also $S_{T_{x}\left(T_{1} \cup T_{2}\right) \varphi(y(t), t) d \mu \leqslant c_{1} \mu\left(T_{x}\left(T_{1} \cup T_{2}\right)\right) \leqslant c_{1} / c_{2} \leqslant}$ $\leqslant(1 / 32 k) \varepsilon$, by (3) and facts such as $c_{2} \cdot \mu T_{x} \leqslant 1$ and $I_{\varphi}(x)-1$. However $\int_{T_{1} \cup T_{2}} \varphi(y(t), t) d \mu \leqslant(1 / 32 k) \varepsilon$, by (2) and (4), so

$$
\begin{equation*}
I_{\varphi}\left(y \chi_{T_{1} \cup T_{2} \cup T_{x}}\right) \leqslant(1 / 16 k) \varepsilon . \tag{6}
\end{equation*}
$$

Hence
$(1 / 4) \varepsilon<I_{\varphi}\left((x-y) X_{T_{1} \cup T_{2} \cup T_{x}}\right) \leqslant(k / 2) I_{\varphi}\left(x X_{T_{1} \cup T_{2} \cup T_{x}}\right)+(3 / 32) \varepsilon$. -Therefore

$$
\begin{equation*}
I_{\varphi}\left(x{ }^{\prime} X T_{1} \cup T_{2} \cup T_{x}\right) \geqslant(5 / 16 \mathrm{k}) \varepsilon . \tag{7}
\end{equation*}
$$

Then $I_{\varphi}\left({ }^{y} \chi_{T_{0}(x)}\right)-I_{\varphi}\left(x \chi_{T_{0}(x)}\right)>(1 / 4 k) \varepsilon$, in virtue of the define ion of $T_{0}(x)$ and (6) and (7) .Now, applying lemma 0.4 we get (5). Let

$$
T_{3}(x)=\left\{t \in T_{0}(x):|x(t)-y(t)| \geqslant(\delta / 4) \max (|x(t)|,|y(t)|)\right\} .
$$

Since $/ c_{1} \leqslant \max \{\varphi(x(t), t), \varphi(y(t), t)\} \leqslant c_{2}$ for $t \in T_{0}(x)$, then $\varphi((x(t)+y(t)) / 2, t) \leqslant(1-p(t))(\varphi(x(t), t)+\varphi(y(t), t)) / 2$ for $t \in T_{0}(x)$, by Lemma 1 and the choice of the function p. Howe ${ }_{0 .}$. $p(t) \geqslant c_{3}$ for $t \in T_{3}(x)$, so
(8) $\quad I_{\varphi}((x+y) / 2) \leqslant 1-\left(c_{3} / 2\right)\left(I_{\varphi}\left(x X_{I_{3}(x)}\right)+I_{\varphi}\left(y X_{I_{3}(x)}\right)\right)$.

Using the definition of $T_{3}(x)$ and the inequality (5) it is easily obtained that $I_{\varphi}\left((x-y) \chi_{T_{3}(x)}\right) \geqslant \delta / 2$. Now, let us choose a new constant k_{1} and a nonnegative fanction h_{1} such that $S_{T} h_{1}(t) d \mu \leqslant \delta / 4$ and $\varphi(2 u, t) \leqslant x_{1} \varphi(u, t)+h_{1}(t)$ for a.e. $t \in T$.Then
$I_{\varphi}\left(x \chi_{T_{3}(x)}\right)+I_{\varphi}\left(y_{.} \chi_{T_{3}(x)}\right) \geqslant\left(2 / k_{1}\right)\left(I_{\varphi}\left((x-y) \chi_{T_{2}(x)}\right)-S_{T} h_{1}(t) d \mu\right.$ $\geqslant \delta / 2 k_{1}$.
Therefore $I_{\varphi}((x+y) / 2) \leqslant 1-c_{3} \delta / 2 k_{1}$, by (8), where the constant $c_{3} \delta / 2 k_{1}$ is dependent only on y and ε. This proves, in virtue of Lemma 0.3, the local uniform rotundity of $L \varphi \cdot$
(i) $\rightarrow(v)$. Let $z \in I_{\varphi}, z \neq 0$ and x be such that $I_{\varphi}(x) \leqslant 1$ and $I_{\varphi}(x+z) \leqslant 1$. The functions z, x satisfy the assumptions of Lemma 4 (see also Remark). Then, there are constants $c, d>0$ and $\delta \in(0,1)$ such that
(9) $\quad I_{\varphi}\left(z \chi_{W_{0}(x)}\right)>\delta$
for arbitrary x satisfying $I_{\varphi}(x) \leqslant 1$, where $W_{0}(x)$ is the same set as in Lemma 4.There exists a function $p: T \rightarrow(0,1)$ chosen by Lemma 1 for $\delta / 4,1 / c,(c+d) / 2$ in place of $\varepsilon, d_{1}, d_{2}$. The familv of functions $\left\{\varphi\left(z(\cdot) \chi_{W_{0}}(x)^{(\cdot)}, \cdot\right):{ }^{\cdot} I_{\varphi}(x) \leqslant 1\right\}$ satisfies the assumptions of Lemma 3, because (9) holds, $w_{0}(x) \subset W_{1}$ and $\mu W_{1}<a$ Then, there is a positive number p such that

$$
\begin{equation*}
I_{\varphi}\left(z \chi_{W_{0}}(x) \cap P\right) \geqslant(3 / 4) \delta \tag{10}
\end{equation*}
$$

for all x fulfilling $I_{\varphi}(x) \leqslant 1$, where $p-\left\{t \in T: p^{\prime}(t) \geqslant p\right\}$. Putting $W_{3}(x)=\left\{t \in W_{0}(x) \cap P:|z(t)| \geqslant(\delta / 4) \max \{|z(t)+x(t)|,|x(t)|\}\right.$ we have

$$
\begin{aligned}
1 / c & \leqslant \varphi(z(t) / 2, t) \leqslant \max \{\varphi(z(t)+x(t), t), \varphi(x(t), t)\} \\
& \leqslant(1 / 2) \varphi(2 z(t), t)+(1 / 2) \varphi(2 x(t), t) \leqslant(c+d) / 2
\end{aligned}
$$

for all $t \in W_{0}(x)$, by Lemma 2 and definitions of W_{1} and W_{x}. Sio, in virtue of Lemma 1 and the choice of the function p, there holds

$$
\varphi((2(t) / 2)+x(t), t) \leqslant(1-p)(\varphi(z(t)+x(t), t)+\varphi(x(t), t)) / 2
$$

for all. $t \in W_{3}(x)$. Hence
(11) $I_{\varphi}((z / 2)+x) \leqslant 1-(p / 2)\left[I_{\varphi}\left((z+x) \chi_{W_{3}(x)}\right)+I_{\varphi}\left(x \chi_{W_{3}(x)}\right)\right]$ Let the condition Δ_{2} be satisfied with $k_{2}>0$ and $h_{2}: T \rightarrow(0, \infty)$ such that $S_{T} h_{2}(t) d \mu \leqslant \delta / 8$. Now, it is enough to note that the inequalities (10) , (11) play a similar role as (5) , (8) ,respectively. Therefore, by the same technique we get $I_{4}((z / 2)+x) \leqslant 1-p \delta / 8 k_{2}$ for ald x satisfying $I_{\varphi}(x) \leqslant 1$ and $I_{\varphi}(z+x) \leqslant 1$, where the constant $p \int / 8 k_{2}$ is dependent only on z.

Keliarik. This theorem is a generalization of Th. 1 in [8], where the equivalence of the first four conditions in the case of Orlicz spaces was proved. But the implication $(i) \rightarrow(v)$ is new, even for orlicz spaces.

References

[1] M.M.Day,R.C.James, IS.Swaminathan, Normed linear spaces that are uniformly convex in every direction, Canad.J. Math., 28(6), (1971) 1051-1059.
[?] R.Fennich, Strict convexité de la norm modulaire des espaces integraux de type Orlicz et Δ_{2}-condition, Travaux du Seminaire d'Analyse Convexe 10, Perpignan, fasc. 1 (1980) .
[3]. H.Hudzik, Strict convexity of Musielak-Orlicz spaces with Luxemburg 's norm, Bull.Acad. Polon.Sci. 39, No.5-6(1981) , 235-247.
[4] \qquad Uniform convexity of Musielak-Orlicz spaces with Luxemburg a norm , Comment. Math., 23,1 (1983) ,21-32.
[5] A.Kamińska, H. Hludzik, Some remarks on cunvergence in Orlicz space, Comment.Math., 21 (1979), 81-88.
[6] A.Kamińska, On uniform convexity of Orlicz spaces, Proc.Konink. Nederl, Ak. Wet.Amsterdam, A 85(1), (1982) , 27-36.
[7] \qquad Strict convexity of sequence Orlicz-Musielak spaces with Orlicz norm, J. Func. Anal., 50, No 3 (1983) , 285-305.
[8] A.Kamińska, The criteria for locel uniform rotundity of Orlicz spaces,Studia Math., in the press.
[9] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics 1034, Springer-Verlag 1983.
[10] M.A.Smith, B.Turett, Rotundity in Lebesque-Bochner function spaces, Tran.Am.Math.Soc., 251, No1 (1980), 105-118.

INSTITUT OF MATHEMATICS
A.MICKIEWICZ UNIVERSITY

POZNAN, POLAND

