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AIMOST REGULAR OPERATORS AND INTEGRAL OPERATORS
ON REARRANGEMENT INVARIANT p-SPACES OF FUNCTIONS, 0Lp<1l

Nicolae Popa

This paper is divided in two sections, In the first one we in-
troduce the almost regular operators and some related classes of o-
perators on a function p-space, O0<p <l. A characterization theorem
for the almost regular operators on a rearrangement invariant p-spa-
ce X of functions, such that 1< Py$Ay<oo is given, This theorem
extends Theorem 2,1 Cll] stated and proved 1only for X=Lq, l<q <eo,
The interest of almost regular operators is mainly due to the fact
that both classes of regular and of integral 'opei-'étors are included
in the former one, We extend in the second part of the paper Corol-
lary 4,2 -[l]] (see also [6]) in the setting of p-Banach function spa-
ces, Finally we get ahother(simpler)proot of Theorem 2,4-[2]in the
particular case of a rearrangement invariant Banach space X of func-
tions,

1, Almost regular operators on rearrangement invariant
p-spaces of functions, O<p<l.

In this paper we deal with operators defined on a rearrangement
invariant p-space X of functions, 0<p <1,

First we recall the necessary definitions, (See [_10]).

In what follows without contrary mention all the spaces will be
real spaces.,let pa real number such that O <p<1l.

We consider a p-Banach lattice X of functions on I=E0,];| which
fultills the following conditions,

1) The functions of X are p-integrable (with fespect to Lebes-
gue measure u ).

2) If feX and geLo(I) (the space of all Lebesgue measurable
functions on I) such that |g|<Ifl p-a.e., then it rollows that geX
end ((glly&liflly o

3) The characteristic functions XA belong to X for all A< I
such that p(A)<eo.

4) The p-norm (l:t‘llx of X is p-convex, i,e, the [-measurable

This paper is in final form and no version of it will be submitted for publication elsewhere.
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n
1/p
function ( £ l ) belongsto X for fl,...,f eX and moreover
=

n
(*) n(rm py*/ (Z;uf I p)

5) (The Riesz-Fischer condltlon) . If fl, coe ,fn, .o .*ére elements

of X and if Z £ |[ 1(<°°. y then ..he p-—measurable :f‘unctlon

e

/p , _
( E |f (t)]P) belong;,to X,
1=

Such a space. X is’ called a p-Kothe -space of functlons. O<p<l

The condltlon 4) is the most 1mportant one, It. 1s automatically
fulfllled for p = 1., &1so the Rlesz-Flscher condition is a- .consequen-
ce of the inequality (*)- for p = 1, ThlS poss:.bTe implication for '
O<p<l is unknown to the another, = :

Let X be a p-Kbthe space ‘of functions on I, We denote by X(p)
the set fx : I —R ;- such that ‘the functlon t —-ox(t)
= |x(t)] /p sgn x(t) belongs to X} . Endowed w1th the pomtw1se order
and the norm llxll(p) -l(lx’l l[x ’ X p) becomes a hothe space of func-
tions on I, i.,e. a 1-K8the space of functlons onI.

Now let X be a KSthe space of functlons on I. We denote by x(P)
the set {x : I = R; such that the function xP belongs to 1(}

We consider for xe){(p) the p-norm

'-uxn(p)‘- =HlXIpﬂ

Then A(p) becomes a p-Kothe space of functions on Lo
" Now we can consider the K6the dual of )(( )? [X(p)) {g':I - R;
1 B
such that. S | £(t)g(t)]dt < ee for all fex(p)} .
. o :
. t '
We introduce on [X(p)J the norm

_ 1 :
gll ¢ = sup f(t)g(t)]at.
“. ufﬂpél é l !

Hence [X(p) / becomes a K8the space of funotioxllls on I, . ‘

Then X i7 a vector sublattice of X" := {Lx(p)J j(P) but gene-
rally it is.not a p-Banach subspace of it, : -

A p-K8&the space X of functions on I is called a rearrangement
invariant p-space of functions (briefly r.i,p-space) if the following
conditions hold,
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1) For every £€& X and every measure preserving automorphism
%: I —> I the function fo% belongs to X and moreover [fo B“X = [fly.
2) X is a p-Banach subspace of X" and X is either maximal i,e.
= X", or minimal i.e, the subspace of all simple p-integrable func-
tions is dense in X,
3) We have the canonical inclusions
Leo(0,1)€X Ly (0,1)

such that the norms of these maps are less than 1, (We denote by JTI
the expression supiﬂT x|; uxily < 1} , wnere T : X —3 Y is a linear and
bounded operator acting between the p-Banach spaces X and Y).

More details about r.i, p-spaces may be tound in’ ClOJ.

We recall now the definition of Boyd indices or a r.i.p-space X.

For 0<s< o2 we define the operator D as follows, For aevery
measureble function £ on [0,1], put

f(t/s) tgmin (1,8)

(Dsf)(t) = :
0 s<tsl,

Now we can define the so-called Boyd indices Pys» Qx

= lim —0Z8 _ gy, logs

p
X 8- logl(Dsllx s>l logllDallx
ay = 11m log 8  _ su log s

P
8—0" logliDglly O<s<l logIlDBIIx

It is known ELOJ that p ¢Py<qy < oo-

A For two topological vector spaces X and Y we denote by i(x, Y)
the space of all bounded linear operators from X into Y and by Z(X)
the space L(X,X).

In what follows X will be a r,1, p-space, O0<p<1l, such that
1< Py &Qy < o=

Let EcI be a measurable subset., Then by XE T we denote the o=
perator £ —>X T(f) defined for feX.

For T¢L(X) we put (if it exists) [T If = 25_ |Tg], where Og
£f€X the supremum being calculated in L, &= L I).

If (E ) =1 is an increasing aequence of meaaurable subsets of I

such that \JEn = I, then we say that (E; )
n

n=1 is an exhaustive se-
quence,

Now let T&{(X)s T is called an almost regular operator if there
exists an exhaustive sequence (En} 21 such that IXE“T'G LX),

In this definition we assume implicitely that the pointwise su-
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premum sup [Tg| exists as a measurable function on I for <sfeX,
181sT
Consequently, if Tef(X) is an almost regular operator then
Ja Tef(x,Lo) ia a regular operator (that is [jo Tle i(x,Lo)), where
Ji X—» Lo is the ceanonical injection,

Moreover |jo T| is an order continuous operator, that is if
f40 in X then |joTIf O in L . Since X is en order continuous p-Ba-
nach lattice (that 1s if £ 4.0 then £ alx 7° —» 0) having nontrivial Bo-
¥4 indices, then for a sequence f .LO in X 1t follows that llfnﬂx o,
which in turn implies that [JoTlf 520 in L. But [joTIf )& eLo,
hence g = 0,

Then it follows thad je T is a difference of two posiiive and
order continuous operators from X into Ly

So we have proved the following result,

Lemma 1, Let X be a r,i, p-space of functions on I such that
le Py € Qy< o0 and let TeL(X)-be an almost regular operator, Then
JeT = Uy - U,, where U;,U, are positive and order continuous opera-
tors from X into Lo'

The converse of Lemma 1 is also true for X = L_, 1l<q< 2 and
this is nothing else then Nikishin's Theorem. (See Thm.4 [8]).

For a general r,i, p-space X a weaker result holds,

Proposition 2, Let X as in Lemma 1 and let Te £(X) such that
joT = Uy - U,, where U;,U, are positive operators in i(X,Lo). Then
for every &£>0 there exists a measurable subset EcI such that
WE) ¥1 -€ end | X T [eZL(X).

(We recall that UX, meens the operator defined by £ —» U(Xef) for
re X, Moreover by Thms, 1,8 end 1,7 - [_4] every positive operator on
X is continuous),

Proof, Obviously it is sufficient to prove the result for posi-
tive operators only,

Let r,q be positive numbers such that l¢ Q<Py€Qp< oo ,

Then it is known that L, is canonically embedded into X and X
is canonically embedded into L. (See [10]). Consequently j o T acts
as a positive continuous operator from L, into L. (0f corse here is
an often used abuse of notation), By Nikishin's Theorem (Thm.4 - (8])
we get a measurable subset K< I such that ]-l(F) 21 - £/2 and

1) Xp tel(Ly).
Let's remark that by above inclusions the Kéthe dual X' is non-

1
trivial (i.e. X' := {g t I — R H S‘g(t)r(t)‘dt<cﬂ for every
[¢]
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fexy# {0}) and let's denote by T' the formal K3the adjoint or T.

Now let GEI be a measurable subset such that p(G)21 -5/2 and
(X; T)(1)€Lg,. Then X, T€L(Ly) (ogain we deal with an abuse of no-
tation) and by the proof of Lemma 1 it follows that jeo T is an order-
continuous operator from X into Ly which in turn implies that xsT is
an order-continuous operator on L., too,

Then T'X, = (for)-e;e(Ll) and j'o (T-zG)e,,f(Lq, » L)), wnere
j*' : X* —> L is the cenonical inclusion and 1/q' + 1/q =1,

Again by Nikishin's Theorem we get a measurable subset HgI
such that F(H) 21 - £/2 and such that

(2) Xl Xy ed(Lyo).
Since Lq’ is a reflexive space then
(3) ZyT A€ (L)

By (1) and (3) and applying Theorem 7 - [10] (which extends
Boyd's Interpolation Theorem at the p-Banach function spaces setting)
we get a measurable subset ECI such that p(E)} 1l -&€ and such that
X T eL(X).

I don't know if Nikishin's Theorem can be extended for a gene-
ral X,

So in the cese X = L , legq<oo , Te&(X) is an almost regular
operator if and only if 1j oTle&(X, Lo).

In view of Lemma 1 it is natural to introduce a now notion,

Let Te&(X) such that joTéa((X,Lo) be a regular operator.Then
we call T a Lo-regular operator on X, =

Hence the almost regular and Lo-regular operators on L_,
l<q< oo , coincide, The coincidence for a general X is still open,

It is natural to ask about the relations between various clas-
ses of operators on X,

For instance it is obvious that the regular operators are al-
lways almost regular operators, consequently they are Lo— regular o-
perators,

But the converse is not true, We recall that an integral ope-
rator Te(X) is an operator given by the formula

1
T x(8) = S K(s,t)x(t)dt
)

tor every x eX, where K(s,t) is a real valued measurable function de-
fined on Ix I,

Then there exists an integral and non-regular operator T on Ly
(see [4]). Nemely T is given by the kernel
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_ E(s) ?(
n=l  Vu(E))

where (E ) n=1 is a sequence of pairwise disjoint subsetsof I such

K(s,t) =

that ;VT‘(En < oo, and (tP,_):;l is a complete orthonormal system
in L,.

Another example of such integral operator is to be found in[5].

On the other hand every integral operator T on L, is Lo-reguler
(see for instance Lemma 1,6 - [47]). By the proceding remarks T is al-
80 an almost regular operator on L2.

Hence the class of regular operators is strictly included in the
class of almost regular or in the class of Lo-regular operators,

Moreover the class of integral operators is included in the
class of L -regular operators. This inclusion is also strict since
the identity operator Iei(LZ) is obviously a Lo-regular operator but
not an integral operator, (See Theorem 8,5 - [3]).

The class of L, -regular (almost regular) is not too large as the
following example shows.

Example 3, There exists an operator Tei(Lz) which is not a L -
regular (hence is not an almost regular) operator,

Proof, Let tirst (cn)nézefz(z) a sequence such that

E lepllcos 2wnt| is divergent for almost every te (0,1].
ne?
Such a sequence exists by a theorem ot A,N.Kolmogorov (see [9],

P.64). Let now fe€L,(R) defined by
t'(t) = le | for t e(n,n+l], nea,
Then we consider U : L,R) — L2(I) given by the formula

n+l

[u@ ] () = ;L; ( é g(x)ax)cos 2qtp

wiere geLz(lt{) and t€ I, Then

(* Uj(£) =
) 13 oU| s l; Sg(x)dx)cos 2ant|»

n+l

> sup E é g(x)dx|lcos 2mt| = ; } £(x)dx) [ cos 2mt| =
181&f
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=z legl » |cos 2mt] = ce
ne
fOI‘ aoe‘ tC‘I.

Let now Y:R—>Ia measure-theoretic isomorphism, for in-

—eX cps
stance p(x) = e for xeR, (see [3]- § 6 for the definition) , ena
let’ v‘r LZ(I) —--)L2(1R) be the order isometry given by Theorem 6,1

[3'] By the relat:.on (#) the operator Tei(Lz) given by T = UVY is
not an L -reguler operator,
Another example of this kind is given by Korotkov in(4]. Korot-
kov uses the spectral theory to prove the assertion of Example 3,
Now we shall give a characterization of almost regular operators
on r.i, p-spaces of functions X, This result extends Theorem 2,1 =
(11]. First we denote by fg'e,ﬂL ) the operator defined by

poce) = £ .+ gil/”

for feL,, ne® and 1<r<oo , where g, is a densiiy (i.e, g,(t)>0
everywhere on [_o,l] end moreover llgnlll =1),

Theorem 4. Let X be a r.i, p-space such that l<py<Qy<ee for
O<p=<l. The following assertions are equivalent.

a) T is_an almost regular operator on X,

b) For all r,q such that 1<q<pxsqx<r< oes , there exists _a
sequence of densities (gn) and an exhaustive sequence (E )n-l of
subsets of I such that

fg(xEnT)(r’;)‘le L(L, (2, ap)) NLL, (YT ap)

n=1

for all 1¢8<eo0 and all neM,
Proof, a) b) The proof is very likely with the proof of The-
orem 2,1 - [11].
Let (E )"’l be an exhaustive sequence of subsets of I such that
(% T =% lrle.t(x) for all nel.
n

We denote by T —ll|7fEn'1'l[l"1 I?EnTl Then it is known ( see

[r0] - Proposition 5) that we have continuous inclusions
L, (W €X Ly (p)
such that their norms should to be less than a constant C(r,q) depend-
ing only on r and q. .
let q' and r*' the conjugate numbers of q and r and let's define
Sp ¢ (Iy), —> (L), by

s =3 [E,™]0+ & [r:w/9")]™" for b ey,
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where T  : X' —> X' is the adjoint of T, which meps the K&the dual
X' = X¥ into itself,
Then
1 1 : 1 1
1 1/r q . -/ LGS L
sy = § Shaw =g § [T M) e g §IeTO)T aes
o o

o

€3 c@m) T, + e/ ngh<

RN

N ’ Ll
€3 c@m e g+ unt/ g,
Moreover if Oghgg then 0<S,(h) < S, (g).
Let now 0<foeL1(pL) such that llfolll = 1 end let a >1 such that

(2a)Y/9<2 ana (2a)Y/T's< 2,
: - 1
Denoting by fk+1 = fo + 5 Sn(fk) for ke N we get that

1 1/r, ¢
T 8Ty ¢ oo and NE My <UL N + 55 Cry) [UE TNy +

1l/q',r* 1 q/r r'/q’
157305 s ug g + 5 o (ry (U NPT + we, 077/ <
1 L] \J
$1 + 55 ¢ (r,a) ufxug/“ + (L£ 0T /q] for all kéN,
If Sl]:p ufklll = + oo, then dividing the last inequality by

nfkul y We get

1¢—2 4+ L

1 1
+ = C,(r,q) [ + ) .
23 “1'h I-q/T I /q
(B By £, .4, ne iy

Passing to a subsequence (f) )p such that |y Y 2?0, we
obtain 1<£a and this is a contradiction, Thus sup "ékul = M(r,q)< e°.
k

"By Fatou's Lemma it follows that fk is norm-convergent to £ o=
= e;p fi €L, (B). Consequently

n
and
Sn(fn) <af®,
Put
e
B gty
Then,

1 [ ' '
To(en ") < (25, (g,)) Y9 2622, ma(el/ V) < (25,(g, )/ s 28X/,
If (f1<£1 then
n -1 M n,-1 —~ "1/ 1/
|Pat®s (£ Ol sipgie T (P~ @) =11%g Tile™? 1, (6 )<
s2h|x TI- 1
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and
lpp: g 7 (ghotols Rzl =
=% THER "1y (g9 s 2K T
Consequently n(X? T) ( n)-l and n.( RN n')-l na
q fq l’n fr S’r Hn fq P
Lo (8,dN) into L,(g dn) and Lw(gg/r dp) into itself, (Obviously
gg/re Ll(]-c) and thus gg/r Il gg/r" -1 is a density for neW).
. n n,-11! _ ool vl
since [(0) (% T (1) 1 = e (7 D (g5 then
fﬁ"fE T)(g);l)'le I(Ls(gndrt))nx(LS(gg/rdH)) where s is equal either
n
with 1 or with + oo ,
By Riesz-Thorin interpolation theorem it follows that
Pa®p T (P €L (Ly (g apNL(L, (e 7apw) for all s, Lsseo.,
n .
b)=>a) since [pf(Xg T) () €Ll (8,010)NL(Ly 8/ “ap) tor
s=1 or 8 = +00 (L (L, (dy)) and (L (av)) are Benach lattices) then
by Riesz-Thorin interpolation theorem it follows that
[ fﬁ"‘EnT’ (PR Y e L1, (g,a)NZ (L, (8Y Tap))
for all 1$s8<£ o , Particularly
PR (% D (FD M e L1, (g,800) (1)
n
Then
(P 1 P TP HIgR e L1 (). (2)
Indeed, for 0<f eLr(l“") we have Sfr-g;l'lgn dpe = Sfr dl"' < co
thus fg;l/ reLr(gndl-t). It follows that

n,-1, n ny-1; n ny -1 n -
P2 1pq X D PR TIPRE) = (P Inp P! fq TN =

- g1/r-1/q. sup |Th|7(En.

n lhisf

=1/ .
By (1) we have XEn.gn q .lgl,ng [ThleL,.(g, dp), that is

n,-1 n -1,.n : 1/r-1/q
P ™ pq (xEnmf’;) [pp(f) = & ‘e 1Tl e ()
for all Osfel, (p.
On the other hand we have

1Pat%s D @0 ety &Y™ ap). (3)
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Now we shall show that
()~ ,quE T) (¢ pre Ly ())- (4)
It is clear that fg, leL (gnQ/r dr«)for O<fel (fL), thus
Wq(xE D™ - (fg_l/r)eL (8, oz dp). Then it follows that
l/q. sup [Th| 1 (97 4, that is g7 « sup IThl € L ().«
8, lhlup [ XEne 1 XE P p
Using Theorem 7 - [10_], by (2) and (4), it follows that
"llfg(iEnT)(fr pRed.

Hence gl/r l/q 1” 'l‘lfeX for any O <f € X, Denote by Eln the
?

oo
set {teEn ;g (1)< mi . Then gl Enm = En and
wl/T Mz riee g™ Mg, iTi()ex
n,m n,m

for all 0 feX.
‘Thus Z'E |T|(£f)€X for all n,melN and for all O ¢f€X,
n,m -

If Fk = U E o for ke N then (Fk);::l is an exhaustive
n+mngk+l o, B
sequence of subsets of I and
Xp 1TIE)S Ay ITh(E)ex
k n+mgk+ n,m

for all 0<feX and all ke,
1t follows that {x; T| =Xy |T|€L(X) for all keW, that is it
k k

follows that T is an almost regular operator on X, .

We can strengthen the implication a)=»b) for the regular ope-
rators as follows,

Corollary 5, Let X be a r,i, p-space of tunctions on I = [_O,l]
such that l<px5

qy <o°

If T is a regular operator on X tnen we have the following as-
sertion: for every r,q such that l<q<pX5 Qg <T<eo there exists a
density g such that

-1 q/r
§ f(fr) e LiLg(8dp) NLALg (e ap ))
for all s such that lgss .
Proof. Simply replace T, by T =l (ot IT| in the proof of

a)==>b) of Theorem 4, Then we get a density g with required proper-

ties instead of a sequence (gn);:l -
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2, Integral operators on rearrangement invariant p-spaces of
functions on [0,1], for 0<p sl.

In this section we deal with integral operators on a r.i,p-spa-
ce X, such that l<px<qx<°o-

It is to be mentioned that Korotkov has showa that integral ope-
rators on L, cannot constitute a left ideal. (See Example 4.12- 4D,
but the question if they constitute a right ideal remains still open,

In what rollows we are interested to give some compactness cri-
teria for integral operators on rearrangement invariant p-spaces or
tunctions on I, for 0 <p<l, extending the previous kmown result in
the Banach function spaces setting. (See [_6J- p.l56, where a similar
compactness criterion for Banach frunction spaces is stated without
proof). :

First we give without proof an easy extension of Theorem 1,3.
10 - LbJ. The sole ditference in the proors appears only in the use
of Theorem 7 - [10] instead of Riesz-Thorin interpolation theorem,

Theorem 6, Let X be a r,1, p-space or functions on I and let r,q
real numbers such that 1<q<pygqy<r<ee . _I;;'TGI(Lr)ﬂi(Lq) and
it 1 is moreover a compact operator on L, then TeX(X) and T is a
compact operator on X.

The following theorem extends Theorem 4,1 - [11:] in the p-Banach
functions spaces setting, See also Theorem 3,2 - [4].

Theorem 7, Let X be a r,i, p-space of functions on I such that

l<pysqy<oo and let TeL(X) an integral operator,

Then there exists an exhaustive sequence (En);l such that

'xEn TxEn is a compact operator on X for every nelN.

Proof, Let's assume first that T is a regular operator on X, By
Corollary 5 it follows that, for 1< Q<PySQqy <Tr< oo, there exists
a density g such that

-1 _ -1 q/r
P ITHP ™ = Ify TP led(Lg (gaINL(L, (VT ap)) for Lsss oo,
Since T is an integral operator then by Lemma 3.1 - [11] it fol-
. - -4 -]
lows that there exist the exhaustive sequen;e (Fnl)n=1' (Fga)mlsmh
-1 - : T
that |p T(p.) |xpn1ei‘1'1(5dt‘))' 1PgT(Fr) lXFnzéi,(Ll (&V* ap))

and moreover these operators are compact for all nel,
Using Theorem 2,5.10 - [5] it follows easy {hat there exists an
exhaustive sequence (Fn);l:l such that Wq T(fr)- (an is a compact

operator on the both spaces I, (gdn) and L]_(g“]/r ap).
since [ T(fr)-llené LAy (gaIN L (Ly(eVTap)) for all Lescw
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and let ng N. Theorem 1.3.10 - [5] shows us that P TIF (f’r is

a compact operator on the spaces Lr(gdp) and Lq(gQ/r ap for all ne,
Further reasoning as in the proof of implication b)=3a) of Theorem 4
it follows that gl/r -/q T xg is a compact operator on the spaces Lr
and L_ for all nelN. Using agam Theorem 2,5,10 -~ [5] we get an ex-
haustive sequence (En)n—l such that XEn TXEn is a compact operator on
Lr end L for all nel.

By Theorem 6 we get now taat XE TXE is a compact operator on
X for every nelN,

Let now Te(X) be an integral operator, Since by Theorem 3,1,-
[11] Tis a L o-Tegular operator, then by Proposition 2 there exn.ste
an exhaustive .sequence (E, ) 1 Of subsets of I such that l‘XE Trﬁnié

n

€L(X). By the first part of the proof there exists an exhaustive se-
quence (F_ ) 2y such that KF T}i‘ are compact operators on both spa-

ces L, and Lq for all neW, By Theorem 6 it follows that XF TZF are
n “n

compact operators on X for every nefN. g

We give now the compactness criterion extending Corollary 4,2,
-(11]. see also [6] - p.156,

Theorem 8, let X be a r,i, p-space on functions on I, such that
l<py<qy<oco and let TeL(X) be an _integral operator.

Then T is compact if and only if limﬂKEn T'!,f(x) = 0 for every

decreasing sequence of subsets (En}:: 1 such that ﬂ E, = .
n=1
Proof, Let T be a compact operator on X, Since .L<pxsqx<~ the
Haar system is en unconditional basis in X, (See Theorem 13 ~[10]).

By Mazur-Phillips'Theorem, also true for p-Banach spaces ( see

-[7]) it follows that 1lim Ti = 0 for every sequence
[7] W0 1B, Theco
(E, )%°. of dyadic intervals, Hence lim [ | = 0 for every
nn=l (E )0 o oK)
(-]

dacreasing sequence (E )n-l such that () E, = e
n=1

Ir Ell:mle Tlpxy = O (here E Vg means that E)2E,2... and

5 D%

E, = @), then by Theorem 7 there exists an exhaustive sequence
(Fn)x:l such that i(F TA is a compact operator for every nelN,
n n

i - P - P - p
Since |T }.’Fn Tanll ST an ) +|an TXFn an T|\* then
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. _ P lnrand =
nl-i"; T an Ty s 2 F:;EI} |I7<Fn Tl

Hence T is a compact operator,

As an application of Theorem 8 we give a simpler proof of Theo-
rem 2,4 - [2], however in the particular case of a r,i, Banach space
of functions X with 1« Py € Qg < oo

We consider that our proof deserves the publication because the
original proof depends on deeép results of [1].

Theorem 9, Let X be a r,i, Banach space of functions on I such
that 1<py<qy<oo.

(i) Let Tg LX) be_an integral operator, T is compact if a.
only if 1lim |[T'(f )]) = O for each norm bounded and disjoint sequen-
ce (f )rx ~1 of elements of X'.

(ii) Let Te L(X) be such that T' is an integral operator, Then
T is_compact if and only if 11m (s )ll 0 for each norm- bounded

and disjoint seguence of elements of X.
Proof,.(i) If (fn)n is as in the statement of Theorem 9,then,de-

noting E n = 8upp £, by the proof of Theorem 8 it follows that

Lim [ T'AR | = 0. Hence lim [T (t ), = O
n Bp 2(x) n n’ix
00
We shall prove that E T'XE convergw LOr every sequence of
n=

disjoint subsets (E )n =1 of I. Assume the contrary and then it would
exists f> 0 and a subsequence (m ) =1 of natural numbers such that

m.
| T'Xg Il 2»d for every jeN, that is JT* X ;rf
=m .+ n L(X') J L(X*)
J 0+l
ror jelN , where F.= U E_. But this last inequality contra-

J n=m +1 »

dicts the relation lim JT'(f )‘“X' = 0 for every norm-bounded and dis-

n
joint sequence (£, ) =1 in X .

Consequently T XF converges, Let now a sequence Fn'ua'.
n= n

©0
We denote by E, = F . \ty ., k€N, Then llT'XF =1 Z T'XE.II and for

every £>0, there exists k(&) such that k2k(€) implies that
Il’.l‘-;tF ll <s_ Hence 11m uT';(FJ I| = O ana moreover l:unﬂ?«'F Tl,t(x)

= 0, By_Thegrem 8 we get that T is a compact operator,
(ii) since T' is a compact operator on X' tror a norm-bounded

and disjoint sequence (fn)n of elements of X we have by (i) that
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lim HT*(f ), = O, and moreover lim nu1(f, )ll, = O, By the proof of

n n’*Xx n n’’X

(i) it follows that LimIRTﬂé | = 0 for every sequence Edﬁﬂ. Thus
n n £(X)

lim uT"XﬁnF = 0 and by Theorem 8 it follows that T', and hence

n Lxm)

also T, 1s a compact operator,
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