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STIEFEL-WHITNEY CHARACTERISTIC CLASSES AND 

PARALLELIZABILITY OF GRASSMANN MANIFOLDS 

VojtSch Bartik and Oulius Korbas* 

Introduction 

The solution to the parallelizability of real Grassmann mani­

folds was given in 1975 by Toshio Yoshida [l4]. Another proof is 

outlined by Hiller and Stong in [3] (see Observation, p. 367), 

The purpose of our paper is to present an independent and 

more elementary proof, showing directly that for any real Grass­

mann manifold, which is not diffeomorphic to projective space, its 

first or the second or the fourth Stiefel-Whitney characteristic 

class does not vanish. 

The Stiefel-Whitney characteristic classes from the first to 

the ninth are computed here in full generality. As a product of our 

method we obtain also some upper bounds for the span of grassman-

nians, and we prove one non-embedding theorem, 

1, Preliminaries and statement of results 

We recall that the span of a smooth, closed, connected mani­

fold M , abbreviated span M , is defined to be the maximal num­

ber of linearly independent tangent vector fields on M (see 

Thomas [ll]), If span M = n , the n-manifold M is called para-

lellizable. Obviously, M is parallelizable if and only if its 

tangent bundle, T(M) , is trivial. 

Let G^ „ denote the Grassmann manifold of all linear n, r 
r-subspaces of the real Euclidean n-space R (we shall suppose 

r>0 ), and V the canonical vector bundle over Gp (its 

total space consists of pairs (D,v) where D is an element of 

Gn and v is a vector in D ), 

Writing as usual w( e ) - 1 + wj>( £ ) +•• •+ ^ m ^ ^
 f o r t h e 

total Stiefel-Whitney class of an m-dimensional vector bundle £ 
and putting w(GR p) • w(T(Gn p)) for the total Stiefel-Whitney 

This paper is in final form and no version of it will be submitted for publication elsewhere. 



20 VOOTtzCH BARTlK AND OOLIUS KQKBA§ 

class of Gn we prove 
1.1. Theorem. Let w± abbreviate w±(yn r)GH

i(G n pjZ2) , 

and n • ̂ > ̂ n.2 , r a 2> ̂ r.2 be the dyadic expansions of n,r 
i ^ O X i £ 0 * 

respectively. Then: 

w l ( G n , r ) • V l ' 
w2(Gn.r) " (l+n

1
+r

0)
wl + no w2 ' 

w3(Gn.r) B no ( 1 + nl + ro) wl + now3 • 
w4(Gn.r) " ( nl ( 1 + r

0)
+ n2 + rl) wl + n 0

( 1 + nl + r
0)

wl w2 + ( nl + r
0)

w2 + 

+ now4 } 

w5(Gn.r) • 'n
0(

nl(1+ro)+n2+rl>"l + no ( 1 + nl + ro) wl w3 + 

+ no(nl+ro)wlw2 + now5 ; 

w6(Gn,r) " (n2+rl)(1+nl+ro)wl + no ( nl ( 1 + r
0)

+ n2 + r3) wl w2 + 

+ (ni+r0)
w?wli + n0(l+n1+r0)w1w4.+ n ^ n ^ r ^ w * + 

+ (nl+r
0)

w3 + n 0
w6 ' 

w7(Gn.r) " no ( n2 + rl) ( 1 + nl + r
0)

wl + no ( nl ( 1 + r
0)

+ n2 + rl) wl w3 + 

+ no ( rl + r
0)

wl wl + no ( 1 + ni + r
0)

wi w
5
 + n

0
( nl + r

0)
w2 w3 + 

+ n
0
( nl + r

0)
wl w3 + now7 '• 

w8(Gn,r) " (ni(1+r
0)

(n2+ri)+(1+n2)rl+n3+r2)wl + 

+ n0(n2+r1)(l+n1+rQ)w1w2 + (n1+r0)(n2+r0+r1)w1w| + 

+ n0(n1(l+r0)+n2+r1)wjw4 + n0(n1+ro)w1w| + 

+ (l+n1+ro)w1W3 + n£)(l+n1+r0)w1w6 + (l+ng+fl+n^r^r^w^ + 

+ no(nl + r0)
w2w4 + n 0

( nl + r
0)

w2 w3 + (nl + r0)
w4 + now8 •' 

w9(Gn,r) " n
0(n1(n2+r1)(l+r0)+(l+n2)r1+r2+n3)wJ + 

+ n0(n2+r1)(l+n1+ro)w^w3 + n0(n1+r0) (n2+r<J+r1)w^ + 

+ n
0

( n l + r o ) w l w 2 w 3 + n o ( 1 + n l + r o ) w l w 3 + 

+ n^n jU+r^+ng+r^wJwg + n0( l+n1+r0)w1w_ + 

+ n 0 ( l +n 2 +( l+n 1 ) r 0 +r 1 )w 1 w| + n^nj+r^w^w,. + . 

* n o ( n l + r
0 ) w l + n

0 ( n i + r
0 ) < V 4 + nQwg . 

Moreover, i f n is even, then w i (G n r ) - 0 for any odd i . 
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As a consequence we obtain very quickly Yoshida's result on 
the parallelizability of Grassmann manifolds. 

1.2. Theorem. The only parallelizable Grassmann manifolds 
are G2 ±t G4 1# G4 3, GQ1 and GQ ? . 

Theorem 1.1 yields also the following estimations of 
span Gn^p : 

1.3. Theorem. If n is even, min {r,n-r}^3 is odd and 
max { r,n-r|^ 9 , then 

span Gn -£ r(n-r) - 8 . 
Moreover, span Gg ,«-* 7 , span GQ 3 = 7 , span G1Q _ -£ 13 , 

span G 1 0 5 •-> 17 , span G 1 2 5 --» 27 and span G14 ? --» 41 # 
Finally we prove 

1.4. Theorem. If n is odd, then G _ does not embed in 
? 7 n'r 

Rr(n-r)+min \r,n-r| 

This result is in infinite many cases weaker than that given 
by Oproiu ([_9J , Theorem 1). However, it is also in infinite many 
cases equally strong or stronger (in some of-them considerably). 

2. Proof of Theorem 1.1 

We shall need some lemmas. 
2.1. Lemma. Let i) be an r-dimensional (r> 0) vector 

bundle over a paracompact space. Then the i-th Stiefel-Whitney 
class w.(4j ® r\) of the tensor square on®7) vanishes for any 
odd i . 

Moreover, abbreviating w. ( ri ) = w. , and writing 

r = ^> .r.2 in the dyadic expansion, we have: 
i-* 0 x 

W 2(1J© *) ) = U + r^w^ ; 

w
4(^®^} )

 B (1 + r 0
+ rl) wl + row2 ; 

w6( f)© 1) ) B (1 + r 0)(
1 + r1)w1 + r ow^2 + r^w* ; 

"s^*)®*) ) s ((l + r0)(l + r1) + r2)w^ + (l+r Q)w^ + (1 + r .Jw* + 

. + ro(l+r1)w1w2 + rQw4 . 

Proof. Let <Tlf. • •, ffr denote the elementary symmetric 
functions in variables xlf...,x . Then (see Borel and Hirzebruch 
[2] or Thomas [12I) there is a unique element Q p in the ring 
Z2--Xi ' • • • 'x .1 °f polynomials over the integers modulo 2 , having 
the property 
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(2.1.1) $-{&<.....&-) = T1 (l+x,+x ) , 
f * i.J-1 X J 

\N(^®7j ) = (^(w^... ,wp) . 

Essentially it remains to study the polynomials (£) . 

r 2 

First we note that I~7 (l+x.+x.) = 1~7 (l+x.+x.) in the 
i.j-1 1 J i<j X J 

ring Z2L
xi'...,xpJ . Further, 

(2.1.2) n (1+x^+Xj)2 = (l+^1+.--+5'(rf2)) 
1 < J ;- 2 — 2 

= i + <y1 +...+ er ( r > 2 ) . 

G* being the s-th elementary symmetric function in variables 

x.+x , i<j ( (p,k) will always denote the binomial coefficient 

p!/(p-k)!k! ). 

Observing that each (T. is a homogeneous symmetric poly­

nomial of the i-th degree in x1#...,x , we conclude that each 

CT. can be expressed in a unique way as a polynomial in (5*1,... 

..,(5". . For our purposes it would be sufficient to determine the 

coefficients mod 2 of this expression for 1=1,2,3,4 . 

Hence, for practical reasons, let us consider the biindexed 

variables U M . - \ = x.+x. , i < j , with the biindices (i;j) 

ordered lexicographically, and write down the induced "list": 

(2.1.3) x1+x2,x1+x3,...,x1+xr,x2+x3,...,x2+xp,....
x
r-1

+x
r 

__ r 
Since <D* = > 'x.+x. = a ^ / X . , it is clear, that the 

1 K j x J i=l 1 

coefficient a1€ Z 2 equals to the number (mod 2) of entries x1 

in the sum > ^x.+x . Looking at the list (2.1.3) we read 
i<j 3 

a* = r-1 = r+1 mod 2. 
— 2 

Similarly, 0*2 must be of the form b1<5"1 + b2GT2 , i.e. 

6%, = b1(^_x.) +b~(^>
 x-ix.i) • Therefore we find b,. and b9 

^ - L i = l 1 ^ K j : L J 1 * 
2 

numbers (mod 2) of entries x1 and x^x2 respectively in 

3> *, (x.+x.)(x +x ^ . Again, an easy calculation using 
(i;jfTtm;n)

 x JM m n* 
(2.1.3) gives us b1 = (r-1,2) mod 2 and b2 = r-2+(r-1)(r-2) -

= r (mod 2) (note that the real number of entries x! x
2
 i 8 

(r-2)r-2(r-l,2) ). 

as 
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Following this pattern (but taking some more care of rela­
tions among coefficients) we find: 

^ 3 - (r-1,Z)&1 + (r(r-l,2) + (r.2,2) + (r-l,3))o-l0-2 + 

+ (r(r-l,2) + (r-2,2) + (r-l,3))©-3 mod 2 ; 

^ 4 - (r-1.4)(5j + (r(r-2,2)+r(r-3,2)+(r+l)(r-l,2)+(r-3.2) + 

+ (r-2,3))Gri<3-3 + ((r-l,2)(r-2,2) + r(r-2,2))<5-2.+ 
2 

+ (r-2,3)6,1 6*2 + rG*4 mod 2 . 

It is a well-known property of binomial coefficients, that 

(2.1.4) (p,k) = n (p.,k.) mod 2 , 
i*0 1 1 

where p = > fp;2 resp. k = ̂  A.2 1 are the dyadic expansi­
le 0 ^ i-* 0 x 

ons of p resp. k . 
Similarly, there is no difficulty in deriving the following 

identities mod 2: 
k 

(2.1.5) (p-l.k) s 22(p,i) . P*l . 
i=0 

(2.1.6) (p-2,2s) s .£(p,2i) , p-*2 . 
i=0 

s 
(2.1.7) (p-2,2s+l) s S(P.2i+l) , p^2 . 

i=0 

( 2 . 1 . 8 ) (p -3 ,k ) s (p ,k) + ( p , k - l ) + (p ,k-4) + (p ,k -5 ) + . . . , p^3 . 

Using this one calculates, that 

$ r
( f l r i ^ r ) " * + ( l + r0)ffl"+ ^ V l ^ l + r o < y 2 + 

+ (l+r0)(l + r1)<r; + ro0-J<rl + r^ff* + 

+ ((l + r0)(l + r1) + r2)oJ + (l + r0)Or*ff* + 

+ (1+r^OT* + ^(1 + ̂ ) 0 - ^ 2 + r0G-4 + 

+ fl0.r(erl'""0-r) ' 
f10 r bein9 a polynomial over 22 , which consists of nomomials 
having weights at least ten. This together with (2.1,1) and (2.1.2) 
proves the lemma. 

We remark that the method above enables us theoretically to 
compute step by step the sequence w1( 7j® r\ ),... ,wk(*n07j ) for 
any k . 

2.2. Lemma. Let m and w^ be the same as in 2.1, n* 
denote the n-fold Whitney sum *>)©...©*) , and 
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n = .^*,n.2:L be the dyadic expansion of n . Then: 
i-* 6 x 

w1(n^ ) = no\N± ; 

w2(nij ) a nQw2 + n1w1 ; 

w3(h^) ) = now3 + n ^ w * ; 

w4(nrj ) = nQw4 + n1w2 + n ^ w ^ + n2w* ; 

w5(ntj ) -= nQw5 + non^W3 + n ^ w ^ +inQn2w^ ; 

w6(n7) ) =- nQw6 + n ^ w ^ w ^ n±w| + n ^ w * + n^wjwg + n ^ w j ; 

w7(nt) ) = nQw7 + n^wjw.. + n ^ w ^ + n^wjwj + V ^ w f + 

+ n0
nln2w2wl ; 

w8(nr) ) = n0wQ + n^wjwg + n^J + n ^ w ^ + n0n2wjw4 + n^WgW* + 
4 4 2 6 8 

+ n2w2 + n1n2w1w2 + n n n ^ ^ ^ + n-^ ; 
wg(n*j ) = nQwg + n ^ w j ^ + n^w^w,- + nQn2wJw5 + n ^ w * + 

+ nonin2w5w3 + non1w1w^ + n ^ ^ w * + n ^ n ^ w * + n ^ w * . 

Moreover, if n is even, w.(n'T) ) vanishes for any odd i . 
Proof. The first part: since w(nin ) • (l+w1 +...+ wp) , 

it holds 

(2.2.1) wk(ntj) - Z K n - i o X " - ^ ' 1 ! ^ " 

... (n-l^i^.. .-.ik-1,ik)w1
1.. .wk

k , 

where the sum runs throughout the set of (k+l)-tuples 
(i ,i1,...,ik) with iQ+i1+...+ik » n and i1+2i2+...+kik • k . 
This and a little calculation using (2.1.4) gives the assertion. 

The second part: since n is now even, we can write 
w(nii ) - (w(* ) ) n ' , which yields the result immediately. 

2.3. Proof of Theorem 1.1. Since G is compact, the ca-
1 n, r 

nonical bundle V may be identified with its dual V n r '
 anc* 

(2.3 .1) T ( G n # r ) © } { n ( r © y n / r « n y n # r 

(see Hsiang and Szczarba [4J). The first part of 1.1 follows, 
using product formula for Stiefel-Whitney classes, from 2.1 and 
2,2, 

In the case n is even we know (see 2.1 and 2.2) that the 
odd - dimensional Stiefel-Whitney classes of V ® y resp. 
njj vanish. By (2.3.1) we obtain 
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ws(Gn.r> " k& k(G n, r)« p(|®J[)
 + " 8(

ntf > 
p> 0 

This with an obvious induction completes the proof. 

3. Proofs of the remaining theorems 

Let G_ _ denote the infinite Grassmann manifold of all 
' oo linear r-subspaces of R 

3,1, Lemma. The restriction morphism 

-* ' HP(Goo,r'Z2>^HP(Gn,r'Z2> 
is an isomorphism for p-£ n-r # Hence, there is no polynomial rela­
tion among w1#,..,w in H P ( G r;Z2^ f o r P-^n"r • 

Proof. The cell decomposition of Grassmann manifolds (Milnor 

[7]) implies that the (n-r)-skeletons (G r)(n_r\
 ancl 

(G_ „),„ „\ may be identified. The commutative diagram v co , r' (n-r) ' ° 

id 
(Gn,r>(n-r) * (Gco ,r>(n-r) 

j 

'n,r 
-- G 

co ,r 

i,j,k being inclusions, induces - jjn cohomology with arbitrary 

coefficients - the commutative diagram 

k* 
iPtd \ * MP* HH(Gco.r> 

І * 

нP
(

G
n,r> 

-
 н H

«
Gæ,r>(n-r)> 

id 

J4 
— H H« Gn.r>(n-0> ; 

Cohomology properties of CW-complexes imply that k* and j* 

are isomorphisms for p<n-r and monomorphisms for p • n-r • 

Therefore, i* is an isomorphism for p< n-r and a monomorphism 

for p • n-r . 

Moreover, it i8 known that the mod 2 cohomology ring 
H*(Gco ,rjZ2) i 8 t h e polynomial ring Z2[w£,...,w^] ,w£ - w ±(^ p) 

being the i-th Stiefei.yvhitney class of the canonical vector 
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bundle J(p over GR (see Milnor [7]). 

On the other hand, the ring H * ( G
n r5

z
2)

 is generated multi-

plicatively by the Stiefel-Whitney classes w1,...,w of the ca­

nonical bundle v p over G n f (see Borel [l]). Since, by 

"universality" of v and naturality of Stiefel-Whitney classes, 
w i < K n , r ) = i#<wi<tfr>> ' the ring morphism i* : H ^ ^ j Z g ) — 

H*(G r»
Z2) is an e P i m o r P n i s m * anc^ 3.1 is proved. 

3.2. Proof of Theorem 1.2. The map h : GM —**G send-r n,r n,n-r 
ing each linear r-subs.pace of R into its orthogonal complement 
in R is a diffeomorphism. Therefore we shall suppose throughout 
this section n ^ 2 r . 

It follows from 1.1 and 3.1 that 
(-) w

2(
Gn.r> = w^ j£ 0 for h s 2 mod 4, r^З and odd. 

( І І ) w4ÍGn.r> 
2 

= w 2+... f£ 0 f or n 5 0 mod 4, r«^ 3 

and odd. 
( І І І ) w

l<
G
n,r> « w* / 0 for n odd, 

(ІV) w
2
( G

n r
) 

2 
= w-ij-' 0 for n s 0 mod 

2 
= w

2
+... / 0 for n 5 2 

4, r even, 

(V) w4ÍGn.r) 

2 
= w-ij-' 0 for n s 0 mod 

2 = w 2+... / 0 for n 5 2 mod 4 , r even, 

which clea rly implies the non-parall lizability of G„ „ in each n, г 
of the cases (-•) - (v) • 

This, however, covers all G 's not diffeomorphic to pro-
n t • 

jective spaces. To make the proof complete, it is sufficient to 
1 3 

observe that - since the only parallelizable spheres are S , S 

and S (Kervaire [5] , Milnor [8J ) - the only parallelizable pro­

jective spaces are
 G
2 1 '

 G
4 1

 a n d G
8 1

 # 

3.3. Remark. The non-parallelizability of even dimensional 
G
n r-'

8
 (and even more, the non-existence of any vector field with-

n t r 

out zeros on them) could also be proved in other, but less intrin­

sic in relation to the present context, way using the fact that 

their Euler characteristic does not vanish. For the Grassmann mani­

folds G
R
 of oriented linear r-subspaces of R

n
 this follows, 

for instance, from the theory of symmetric spaces (Wolf [13]), and 
r>/ 

because G„ „ is a double covering of G , we have also 

n, r » n, r 

*.
(G
n.r> " 2 V r ^ 0 . 

3.4. Remark. From 1.1 and 3.1 one obtains immediately that 

G
n
 is a spin-manifold iff n 3 0 mod 4 , r is odd or 

n 5 2 mod 4 , r is even. 

3.5. Proof of Theorem 1.3. Clearly we may suppose n-* 2r
 f 

We have 
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w8(Gn ) = w^ +... £ 0 for n = 0 mod 4 , r^ 5 , 
4 

Wg(Gn r) a w2 +... / 0 for n = 0 mod 8 , r = 3 , 

4 2 wQ(G ) = w.Wp +... /* 0 for n = 4 mod 8 , r = 3 , 

2 2 
w8^Gn r̂  = wlw3 +##* ^ ° ^or n = 2 m°d 4 , 

which proves the first part of the theorem. 
2 

For G- , we obtain W
2 (

G R 3) = WI ** ° ' w4xG6 3^ = 

2 2 4 = w6(G6 3) = 0 and wQ(Gg 3) = w1w, + w2 , which, however, 

vanishes. To see this it is enough to analyse the relations among 
g 

w1, w2, w3 in H (Gg 3»z
2) (recall, that all relations among 

w-,..-,w in H * ( G
n r5Z

2)
 a r e determined by (1+w-+...+w ). 

. (l+w^.. .+w*n_r) = 1 , w\ = w"i( v ) being the dual Stiefel-

-Whitney class (see Borel [lj)). 

On the other hand, a similar analysis shows, that the 8-th 

Stiefel-Whitney classes of GQ , f G10 , , G10 5 , G12 5 and 
G14 7 does not vanish. 

Moreover, when n is even and r is odd, span G *--

span S " (see Leite and Miatello L6J ). Hence, we get span GQ , = 

= 7 , the remaining estimations being clear. This completes the 

proof. 

3.6. Proof of Theorem 1.4. If an n-dimensional manifold M 

can be embedded in Rn , then w (M) = 0 for p^ k , w (M) 

being the p-th dual Stiefel-Whitney class of M (see for instance 

Switzer |jLoJ ) • Hence, for to prove our theorem we show that 
wr. .-(G-, -J / 0 if n is odd and n»-- 2r . 
n-rv n, r' r 

It is clear from (2.2.1) that w
D (

n V ) i s °f t n e form 

(3.6.1) wn(nV ) B nwn( X ) + t e r m s without W
D( V ) 

for any real vector bundle V over a paracompact space. 
For p-^n-r-^r , n odd we can write in a unique way 

(3.6.2) wp(Gn#r) - wp(£ n # r) • terms without « p(y n f r) • 

Namely, from (2.3.1) we obtain 
(3.6.3) w p(G n r) = w p . 2 ( G n / r ) w 2 ( | © | ) + ...+ 

+ w l ( G n , r > V - ( 8 ® 8 > + W P
( nK > ' 

if p is odd, and 

(3.6.4) wp(Gn r) - V 2 ( G n . r > V K ® P + " ' + 

"2(Gn,r)V2(J®I > + V K ® tf > + 

V n K > ' 
+ w,. 

+ 
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if p is even. 

Then one gets (3.6.2) from (3.6.1) and (3.6.3) resp. (3.6.4) 

observing that W
D(J(®X ) does not contain w (1/ ) (see the 

proof of 2.1) and keeping in mind that p--* n-r ensures the 

absence of polynomial relations among w1 ( v r^'**''
wr^n r̂  • 

Since "w = (l+w1+w2+...)" , it is clear that 

"w« r.(Gr. r-) • w« .-(G« -J + monomials without w„ r(Gn ) . n-rx n,r' n-rx n,r' n-rx n,r' 

Thus, expressing the right-hand side in terms of w-s()( n r) 

we obtain (see (3.6.;2)): 

*n-r<Gn,r> = w n - r ^ n.r> + t e r m s w i t h o u t w
n - r ^ n.r> ' 

which does not.vanish, and the proof is complete. 
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