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INVERSE SYSTEMS AND PRETOPOLOGICAL SPACES 93

Davide Carlo Demaria - Rosanna Garbaccio Bogin

Given a pretopological space S=(X,P), we associate to any interior covering X
of S a symmetrical pf-space Sx on the set X. Precisely, to obtain the pretopology

of Sx, we take for each point x of X the principal filter of base the star of x
with respect to X. Taking the pf-spaces SX as terms, we obtain the inverse system
S of the pretopological space S. Generally the inverse limit S* of S is different
from S; yet S*=S when S is a Tychonoff topological space.

For each dimension n, we associate to S an inverse system of prehomotopy
groups Hn(Sx,a) and an inverse system of singular homology groups Hn(Sx). Taking
Ehe inverse 11m1§s lim Hn(Sx,a) and lfﬂ Hn(sX)’ we obtain Fhe shape groups
Hn(S,a) and the Cech homology groups Hn(S) of the pretopological space S.

Our shape groups have the characteristical properties of the classical shape
groups. Similarly we can say for our Cech groups. All proofs, except those for
the homotopy conditions, are similar to the classical ones.

The relations between our groups and the classical shape groups or Cech
homology groups of a compact topological space will be expounded in another

paper.

1. The inverse system of a pretopological space.

Let X be a nonempty set and P-{Fx}(xéx) a family of filters of X such that
;kF for each x€X. Such a family P is called a pretopology in X, and the pair
— X
(X,P) is called a pretopological space (see [2]). Here we will denote by S the"
pretopological space (X,P), since we need to consider different pretopologies
on the set X.
-
A
X
with x(Ax. Moreover we say that the pf-space S is symmetrical, if y€Ax implies

We recall that S is a pf-space, if each filter F_ is principal, i.e. Fx-
X .

x(Ay for any x,ye€X.
We also recall that (see [1]) a covering X of X is an interior covering of S,
if for any x¢€X there is at least one element A of X such that A(Fx.

Now we consider the collection Cov(S) of all interior coverings of S and we
preorder it by the following:

1.1 Definition Let X, X'€Cov(S). We write X<X' iff X' is a refinement of X.

This paper is in final form and no version of it will be submitted for publication elsewhere.
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1.2 Remark. Clearly (Cov(S), <) is a directed set, since X, X'¢Cov(S) implies

X AX'€Cov(S).

1.3 Definition Given X€Cov(S), we denote by P(X) the pretopology in X, that we
obtain taking for each x€X the principal filter of base the star St(x,X) of x
with respect to X. Then we put SX=(X,P(X)).

1.4 Remark. SX is a symmetrical pf-space, and the identity px:S—’SX is a
precontinuous map. Moreover, if X, X'€Cov(S) and X<X', the identity pxx,:SX,*SX
is a precontinuous map, and Py = PyyrPyr-

1.5 Definition We will denote by § the inverse system (S , p,.,,, Cov(S)), and

we will call it the inverse system of the pretopological space S. The projection
(PX)=S*§ will be denoted by p.

1.6 Remark. The inverse limit iiﬂ SX is the pretopological space S*=(X,P*), where
P* is obtained taking for each xéX the filter on X of base {St(x,X)}(XeCov(S)).
Cenerally the pretopology P* is coarser than P; yet S*=S, if S is a completely

regular topological space.

2. The morphism induced by a precontinuous map. .

Let us consider two pretopological spaces S and T, their inverse systems
= (s Cov(S)) and T = (T

s Cov(T)), and the projections $:S-§ and
q:T-T.
2

x> Pxx'’ y» Gyyr
.1 Proposition Any precontinuous map f:S2T induces a’morphism from S to T.

Proof:

a) For any Y€Cov(T), the family {f-1(Y)}(Y¢V) is an interior covering of S. So

£71 induces a function from Cov(T) to Cov(S), which preserves the preorder. We

will denote also this function by £1. ’

b) For each Y€Cov(T) we obtain a precontinuous map fy:Sf-1(y)*TV‘ putting fy(x)=

=f(x) for any x¢X.

c) (fy £-1) is a morphism from S to T. In fact, given ¥V, V' (Cov(T) such that

Y<y', clearly £=1(¥)<f-1(Y') and the follow1ng diagram commutes'

Pet(yyet(y")

Se-1() = Sg-10ym)
fy £y
Qyy
TV‘ vy TV'

2.2 Definition The morphism (fy, £-1) will be denoted by E:g»f, and we will
call it the morphism induced by f.

2.3 Remark. Let us define another function ¢:Cov(T) -+ Cov(S), taking for each
YeCov(T) an interior covering ¢(Y) of S, such that f"(V)5¢(V)- Then for each
Y€Cov(T), consider the precontinuous map f ¢(V)
any x€X. It is easy to see that (fy, $) is a morphlsm from § to ?, which is
equivalent to f.

given by f;(x)=f(x) for
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2.4 Remark. The morphism f induced by f makes commutative the following diagram:

f

v

o)
mE————uwm
>
H)é————
=}

?

Moreover, any morphism g = (gy, ¥) from § to T such that gp = P is equivalent
to f.

3. The morphism associated to a prehomotopy.

Let us consider two pretopological spaces S and T, the closed interval I=[0,1]
of the real line with the pretopology {Ut}(teI) (where Ut is the neighbourhood
filter of the point t), the pretopological space Z=SxI, and the inverse systems
§ = (SX, Pyy!? Cov(s)), T = (Ty, Qyyrs Cov(T)) and Z = (ZR’ TR Cov(Z)). Then
let £:5»T and g:S*T be homotopic precontinuous maps, and H: SXI>T aprehomotopy of
f to g.

3.1 Theorem We can associate to the map H:Z»T a morphism K:Z»T, which is
equivalent to fl and has properties analogous with those of homotopies.
Proof:

a) Define a function $:Cov(T) >~Cov(Z) as follows.

Given Ye€Cov(T), consider H-1(V)eCov(Z). For each point (x,t)€Z, take C EH'I(V),

. . t t ’
and then A eF and an open interval V Xyt GU such that Ax t QCX e
X,t t
{u }((x t)éZ) where U t=Ax’ th’ , is an 1nter10r coverlng of Z which refines
x, ’
H-1(Y).
For any x€S, the family {U t}(teI) is an interior covering of the subspace {x}xI
’

of Z. Slnce {x}xI is compact, there is a finite number n(x) of points ty of I

ch that” N ¥sth belongs to the
su lshin(x) Uy, tp, 2 {x}xI. Now observe that A= 1<h<n(x)Ax ° g
Xy h

filter F o and put R 5{W }(1<h<n(x)), where W, th is the set A XV
’ ’ 'h

Then coensider the fam11y R = \/ Rx .

Clearly R is a covering of Z; moreover R refines H'l(V), since Wy th__Cx th*

Given any (x,t)€Z, we have (x,t)eWy, ), for some positive integer hi“(x)' Since
X, th

V.’ €U, we have W €F .
th t X, th (x,t)

So ReCov(Z), and we put ®(Y)=R.

b) For each YeCov(T), we consider the map KV:ZQ(V)*TV’ given by Ky(x,t)=H(x,t).
KV is a precontinuous map, since for each (x,t)¢Z we obtain H(St((x,t),®(V)) <
cSt(H(x,t),Y).

c) K = (Ky, ¢) is a morphism from Z to .

In fact, given Y, Y'€Cov(T) such that Y<Y', consider ¢(V)’x>%Rx and ¢(V'). \/R"
where R = {Axxv’:}'lth}(lf_hf_n(x)) and R! = {A)'{xv':l’(tk}ﬂf_kﬁm(x)).
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Then we take the family R" of all subsets of Z of form A"XVh (1<h<n(x), 1<k<m(x))
", ' = yXsth |x tk -
with A A nA and vh,k V t nv # @, and put R" V Rx

Given a point (x,t)¢Z, we have A"XV iff tev K’ since A"GF and V

h, k ( ,t h, h, kK
‘an open subset of I. But we find two positive integers hfp(x) and kSp(x) such
X
that tevx *th and  tev' ; k. Hence R"€Cov(Z).
th

Clearly R" refines both &(Y) and ®(Y'). Moreover the following diagram commutes:

0 Zon 2
. yw%

Zo(y) Zoy")
Ky Ky
qyy'
T, Ty,
d) The morphism K is equivalent to f, since, for each YeCov(T), ®&(Y) is an

interior covering of Z which refines H-1(Y).

e) Observe that, for each t¢I, the map ht:S*T given by ht(x)-H(x,t) is
precontinuous.

Then define a function ¢:Cov(T) +Cov(S) as it follows.

t
Given YeéCov(T), consider ®(Y)=V Ry where R ={A v * P} (1<h<n(x)), and take
x€S X X th -
Aa{A }(x€S). Clearly A€Cov(S), since Akefx for any xe€S. Hence we put ¢(Y)=A.

. t
Now consider the function hy S¢(y) y» given by hy(x) ht(x) for any xeS.

To prove that e is precontinuous, we have to show that h (St(x,A))C St(H(x,t),Y).

y

To this purpose take a point x0€S such that xeA . For any positive integer

h<n(x ) such that teV 05 th

, we have A xy g’ hSSl:((x,t) ®(Y)); therefore (see
th *0
b)) h (A yest(H(x,t),Y).
X0

Hence (hy, $) is a morph1sm from § to T.
Moreover (hy, ¢) is equivalent to the morphism fi :S+T induced by h , because the
interior covering ¢(Y) of S is a refinement of h;l(V).
Observe that the covering ¢(Y), and consequently the function ¢:Cov(T) +Cov(S) do
not depend on the point t of I.

0 . . 2
For t=0 we have ht-f; therefore the morphism (hy' ¢) is equivalent to f.

Then for t=1 we have ht-g; thus the morphism (h;, ¢) is equivalent to §.

3.2 Remark. We proved in b) that H is a precontinuous map from (SXI)¢(V) to T

for each YéCov(T). But generally we cannot say that H is a precontinuous map from
xI to T,.

¢(V) y

4. Inverse systems of pairs.

Let us consider a pretopological space S=(X,P) and a subset A of X.
4.1 Definition Let J' be a subset of the index set J, and for each i€J let Aigx..
We say that A = {Ai}(ieJ,J') is an interior covering of the pair (S,A) with
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(J,J") as indexing pair, if:

) {Ai}(ieJ) €Cov(S);

(2) for each x¢A there is at least one index jeéJ' such that A.eF .
The collection of all interior coverings of the pair (S,A) willJbexdenoted by
Cov(S,A).
4.2 Remark. Let A={Ai}(iEJ,J')E Cov(S,A). The families {Ai}(ieJ) and {Ai}(ieJ')
will be denoted by A_ and AJ, respectively. A induces in X the pretopology
P(AJ) = {EEY;TK;?}(XGX) and in A the pretopology P(A {FE?;jx__T}(XEA)
Clearly P(AJ) induces in A a pretopology P(AJ)* which is coarser then P(AJ,).
The pair ((x,P(AJ)), (A,P(AJ,))) will be denoted by (S,A)A
Clearly the identity p :(8,A)>(S,A), is a precontinuous map.
4.3 Definition Let A= {A }(1€J J') and B= {B }(heH,H') be interior coverings of
the pair (S,A). We write A< B iff:

m BH is a refinement of AJ,
e
4.4 Remark. (Cov(S,A), <) is a directed set.
1f A, A'eCov(S,A) and AEA', the identity pAA,:(S,A)A,->(S,A)A is a precontinuous

(2) BH' is a refinement of A

map, and pA = pAA’pA"

4.5 Definition The inverse system ((S A)A, Pppt? Cov(S,A)) will be called the
inverse system of the pair (S,A), and it will be denoted by S A. P= (pA) will be
called the projection from (S,A) to S A.

4.6 Proposttzon Let S and T be pretopological spaces, A a subset of S, B a
subset of T, S A= ((s, A)A, L Cov(S,A)) and T B = ((T, B)B, qBB" Cov(T,B)).
Any precontinuous map f:(S,A)>(T,B) induces a morphism f: $ A-*T B.

Proof: Given B={Bi}(1gJ,J ) € Cov(T,B), the family £=1(B) ={f’1(Bi)}(i€J,J')
belongs to Cov(S,A). Then, for each B¢Cov(T,B), we define a precontinuous map

£ . . _ 1y .
-B-(S,A)f_1(8)*(T,B)B, putting EB(X)—f(x) for each xeS. (fB, f-!) is a morphism

from $,A to f:h, and we will denote it by f.

4.1 Remark. For each BeCov(T,B), let us take ¢(B)eCov(S,A) such that f‘1(3)5¢(8).
We obtain a precontinuous map f : (s, A)¢(B)->(T,B)B putting fé(x)=f(x) for any xeS.
(fé, ¢) is a morphism from S,A to T,B which is equivalent to E.

4.8 Theorem Let S and T be pretopological spaces, ACS and BET. Then let f and g
be homotopic precontinuous maps from (S,A) to (T,B), and let H:(SxI, AxI) +(T,B)
be a relative prehomotopy of f to g. We can associate to the map H a morphism
K:Sii:2§1 +f:ﬁ, which is equivalent to fi and has properties analogous with those
of relative homotopies.

Proof: To simplify notations, we put SxI=Z and AxXI=C.

a) Given B-{B }(ieJ,J') € Cov(T,B), observe that H-!(B)={H"1(B, )}(15J J') belongs
to Cov(Z,C). For each (x,t)és, take c, eH‘l(B) such that:

(i) c ( ,t),
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.. . -1
(ii) if xeA, then cx,tEH (BJ,).

Afterwards, with the same process of Theorem 3.1, for each x¢S we construct a
finite refinement Rx={w }(I<h<n(x)) of the family {C }(teI), such that
,

X,th

each W. is of form A XV where A eF and V ’ h is an open interval of I
X,th h h

containing t,. The famlly v Ry belongs to Cov(Z,C), and we put ®(B)— e, Rx.

h X€S,A A

b) For each BeCov(T,B), we obtain a precontinuous map KB:(Z,C) *(T,B)B

%(B)
putting KB(x,t)=H(x,t) for any (x,t)e€z.

c) K=(K ®) is a morphism from Z,C to T,B, which is equivalent to f.

d) For each BéCov(T,B) consider $(B)= :; ARX and put ¢(B)={Ax}(x€S,A).

Clearly ¢(B)<¢Cov(S,A). Afterwards, given t€I, we obtain a precontinuous map

t t
hB:(S,A) +(T,B)B putting h;(x)=H(x,t) for any x€S. Then (hB, ) is a morphism

/\¢(B)A . . . . a P
from S,A to T,B, which is equivalent to the morphism ht:S,A~*f:§, where
ht:(S,A)<*(T,B) is the precontinuous map given by hy(x)=H(x,t) ¥x€S. The
function ¢:Cov(T,B) +Cov(S,A) does not depend on t. Finally (hg, $) is equivalent
to £ and (hé, ¢) is equivalent to §.
The proofs of b), c), d) are analogous to the corresponding ones from Theorem 3.1.

5. Shape groups and relative shape groups.

Let us consider a pretopological space S and its inverse system S =
= (SX, Pyx!? Cov(S)).
Let x be a point of S. For any XéCov(S) and each dimension n, we can calculate

(see [2]) the prehomotopy group I (Sx,x) of S, based at x. Moreover, given X<X'
n 2

X
x,+SX induces a homomorphism piX’ from
Hn(SX,,x) to Hn(Sx,x). So, for each positive integer n, we obtain the inverse

in Cov(S), the precontinuous map pxx,:S

system (I (SX,x) Cov(S)).

s pXX"
5.1 Definition We put H (S,x) = 11m il (Sx,x) The group H (S,x) will be called
the n-dimensional shape group of the pretopological space S based at the point x.
We will write ﬁn(s) instead of ﬁn(s,x), when ﬁn(S,x) does not depend on the point
x of S.

5.2 Remark. If S={x}, clearly ﬁn(s)=o for each dimension n.

Now take a subset A of the pretopological space S, and consider the inverse
A\
system S,A = ((S,A)A, PAAr? Cov(S,A)) of the pair (S,A).
Let x be a point of A. For each dimension n, we can consider the inverse system

(Hn(S,A,x) Cov(S,A)) of relative prehomotopy groups. (Observe that

A° PAare
Hn(S,A,x)A denotes the n-dimensional relative prehomotopy group of the pair (S,A%
based at x).

5.3 Definition We put ﬁ (8,A,x) = lim H (S,A,x) . The group H (S,A,x) will be
called the n-dlmensxonal relat1ve shape group of the pair (S, A) based at x. We
will write H (S,A) instead of H (S,A,x), when H (S,A,x) does not depend on the
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point x of A.

6. Homomorphisms between shape groups.

Let S and T be pretopological spaces, §s(sx, pXX" Cov(S)) and T =

=(T v qyy,, Cov(T)) their inverse systems, f:S+*T a precontinuous map. Then
consider the morphism f= (fy, £=1) from S to T induced by f.

For each dimension n, the precontinuous map fy:S induces a homomorphism

->T
=1y Y
Fc,n from Hn(Sf_1(y),x) to Hn(Ty,f(x)).

6.1 Dzfinition We denote by fn:ﬁ;(s,x)—*ﬁn(T,f(x)) the homomorphism lim f;,n’
and we say that it is induced by the precontinuous map f:S-T.
6.2 Remark. Similarly, given two subsets A of S and B of T, and given a point x
of A, for each dimension n we obtain the homomorphism f :ﬁn(S,A,x)->ﬁn(T,B,f(x))
n
induced by a precontinuous map f:(S,A)~>(T,B).
v ~
6.3 Proposition 1f £:(S,A)>(S,A) is the identity, then fn:ﬁn(s,A,x)»nn(s,A,x)
is the identical isomorphism.
6.4 Proposition Let £:(S,A)+(T,B) and g:(T,B)>(Z,C) be precontinuous maps and
v v Vv

h=gf. Th h =g f .

& en T8

v v
7. The homomorphlsms 5 H (S A x)*H (A,x), 1R (A,x)+Hn(S,x) and
n—n
j (S!x)*ﬂ (S,A,x)
Let us take a pretopological space S=(X,P), a subset A of X carrying the
pretopology P* induced by P, and a point x of A. Then consider the following

three functions.
1)  {Y:Cov(A) > Cov(S,A) assoc1ates to {X }(ieJ') the family {A. }(1eJ J'), where
J= J'"U{(j} (with JéJ ), A.,=X, and A —x U(X—A) for ieJ'.
2) Y:cov(S)+Cov(A) associates to {Ai}(leJ) the family {AfWA}(iéJ)-
3) P:Cov(S,A) >Cov(S) associates to {Ai}(ieJ,J') the family {Ai}(ieJ).
For any ReCov(A) we can define a boundary homomorphism 6% from ﬂ (S,A,x)

R,n TR
to H (AR,x) in the usual way (see [2]). It is easy to prove that (6 R0’ Y) is a

morphxsm from (Hn(S A x)A, pAA” Cov(S,A)) to- (H (AR,X), pRR" Cov(A))
Afterwards, considering the usual homomorphisms l;,n ;10 (AW(X)’X) Rell (Sx,x) and

j* .H (Sm(A),x)*Hn(S,A,x)A, we obtain the morphisms (ii’n, ) from

(Hn(AR’x)’ pﬁR,, Cov(A)) to (Hn(Sx,x), pix,, Cov(S)) and (jx,n’ J) from

(Hn(SX,x), pﬁx,, Cov(S)) to (Hn(S,A,x)A, pKA,, Cov(S,A)).

7.1 Definition We put § = lin O Bmlmig o, = limjx

With a standard proof we obtain:
7.2 Proposition Let f£:(S,A)+(T,B) be a precontinuous map, g:A*B the restriction

of f to A, xeA, y=f(x) . For each dimension n, the following diagram commutes:
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i E“ i (1,8,y)
nn(S’A’X) n » B,y
v v
g, | &
¥ én i@,y
Hn—1(A’x) n-1"7

7.3 Proposition Let S be a pretopological space, ACS, and ‘xe¢A. We obtain the
followlng 0- sequence' .
oo B, (a0 —To T (8,00 a1 (5,80 Sn, nn_1(A,x)i~4_,...

-

8. The homotopy condition for shape groups.

To prove the homotopy condition (i.e. Theorem 8.3), we need a definition and a
lemma.
8.1 Definition Let X and Y be sets, ¢ a partition of X, f:X*Y a function. We say
that f is quasiconstant with respect to ®, if f is constant in each element of e.
8.2 Lemma Let h:I"»X be a precontinuous map from the unit n-cube 1" to a
symmetrical pf-space X. It is possible to find a finite partition € of I™ in open
cells (of dimensions n, n-1,..., 0) and a precontinuous map k:In*X, such that:

(i) k is quasiconstant with respect to @ and homotopic to h;

(ii) moreover, if h is a n-preloop of X based at a, then also k is n-preloop of
X based at a.
Proof: Let ff;}(xex) be the pretopology of X.
a) First we consider the case n=1.
Since h:I»X is precontinuous, for each z€¢I there is an open interval V, of I such
that h(V)CF, ..
Since I is compact, we find a finite number m of points z; of I, such that
{VZi}(iiiSm) is a minimal linked covering of I, where z,=0, 2j<z; for i<j, z =1.
Then we take y0=0, ym=1, and for each positive integer i<m we choose a point
yievzinvzi+l. Afterwards we consider the partition
¢= {lo,y,[, {y,}, ]y1,y2[, e Iy b ]ym " 1]}
of I, and we define a precontinuous map k:I+X putting:
k(yi) = h(yi) for i=0, 1, ..., m;
k(]yi.yi+1[) = {h(zi+1)} for 0<i<m.
Then we obtain a prehomotopy K of k to h, putting:
k(z) if OSFSQ
K20 ='{h(z) if f<e<l

Moreover, if h is a preloop based at a, also k is a preloop of X based at a, since
k(0)=h(0)=a and k(1)=h(1)=a.
b) Now we consider the case n>1, assuming that the lemma is true for n-1.
To use simple notations, given a point w=(z1,zz,...,zn) of In, we put
(z Ziseeenz ) =z, z =u, (z, u)-w.

For each u¢l, the function h I 1+X given by hu(z)-h(z,u) is a precontinuous
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map. So we find a finite partition 6; of In_1 in open cells (of dimensions n-1,

n-2, ..., 0) and precontinuous map ku:In_1+X for which conditions (i) and (ii)
hold.

Now take a point u€l. For any cell Z of the partition 6;, the image {ku(Z)} is a
point of X. For each Zéf there exists a point z¢€Z, such that {k (Z)}={h (z)} and
moreover z has an open nelghbourhood V which contains the closure Z of Z Then,
since Z is compact, we find an open 1nterva1 w w.Z of I containing u and such that

’
h(V xw CF s Put W=_Nw _.
( z u,Z) h(z,u) Uz €€, v,z
Since I is compact, we find a finite number m of points ujel such that

{WUi}(IiiSm) is a minimal linked covering of I, where u1=0, ui<uj for i<j, um=1.
Then we take v0=0, vm=1, and we choose viewufﬂwui+1 for each positive integer i<m.
Afterwards we consider the following partition of I:

6, = {[0,v1[, {v1}, ]v1,v2[, veey {v } ]vm 0 1]},
By means of (7}, and by means of the partitions 6Li (15}5@) and G;i (1<i<m) of "

we obtain a finite partition (® of I® in open cells of dimensions n, n-1, ..., O.

-1

’

We define a function k:In*X, which is quasiconstant with respect to £ and

precontinuous, putting:

k(z,vi) = kVi(z). for i=0,1,...,m;
k(z,u) = kui+'(z) for ue]v Vis [ and 0<i<m.
We obtain a prehomotopy K of k to h, putting:
{k(w) if 0<t<}
K t) =
w8 = {hew if f<ect

Moreover, if h is a n-preloop of X based at a, clearly also k is a n-preloop of X
based at a.

8.3 Theorem Let S and T be pretopological spaces, a€S, beT, and let f:(S,a)>(T,b)
and g:(S,a)>(T,b) be precontinuous maps. If f and g are homotopic, then ¥n=§n for
each dimension n.

Proof: Let H:(SxI,{a}xI)»(T,b) be a prehomotopy of f to g.

a) Given YeCov(T), consider the elements ®(Y)¢€Cov(SxI) and ¢(¥)€Cov(S) we
mentioned in 3, and recall that both £=1(¥)< ¢(¥) and g=1(¥)<$(¥).

The theorem is proved if the following diagram commutes:

.y,&mn (S¢(V)’a) ey,

Wy 1,68

“““‘-£Z£__\~\» "/’/Elﬁf/”/’
Hn(Ty,b)

b) Observe that S W) is a symmetrical pf-space. Hence, by Lemma 8.2, in each

class [h] of H (s

H (s g1 )

-1(y),a

),a) we find a n-preloop k, which is quasiconstant with

[1¢7
respect to a sultable finite partition ¢ of I in open cells.
c) The map kx1p:1 x1+(sx1) o)

In fact, let (w,t)€I™I. Since the map k:I™S

is precont1nuous.

is precontinuous, there is a

oY)
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neighbourhood U, of w such that k(Uy) g St(k(w),$(¥)). But k(U,) is a finite
subset of-S¢(y). Put k(Uw)={x1,...,xm}, and take a positive integer r<m. The point
X, belongs to the element A of ¢(¥Y). Moreover, for each te¢l we find a point trél

and an open neighbourhood V rv fr of ty such that A XVtr’tr ®(Y). Then
t Xr r

v = Nyttt 4, nelghbourhood of t, such that k(Uw)XVtgSt((k(w),t),¢(V)).

t 1<r<m 3%

d) The prehomotopy H of f to g is a precontinuous map from (SxI) to T . By ¢),

oY)
= H(kxil) is a precontinuous map from I™XI to T. Moreover K is a prehomotopy of
fk to gk. ~

Therefore the foregoing diagram commutes, because f¥*

P P*e=1(yypcyy (B = (K]

and 8 Prtyypcn [ = [ekl-

9. Cech homology groups.

Let us consider a pretopological space S=(X,P) and its inverse system § =
= (SX, Pyyr? Cov(S)).
For any XeCov(S) and each dimension n, we can calculate (see [2]) the singular

homology group Hn(SX) of Sx. Moreover, given X<X', the precontinuous map
pXX':SX'*SX induces a homomorphism pfx tH (Sx,)-*Hn(SX) for each'dimension n. So,
for each integer n>0, we obtain the inverse system (Hn(SX), Pfx , Cov(S)).

9.1 Definltionv We put Hn(S) = lim Hn(SX)' The group Hn(S) will be called the
n-dimensional Cech homology group of the pretopological space S.

9.2 Remark. Clearly, if S={x}, ﬁn(s)=o for n>0, and ﬁo(s)=z.

Now let A be a subset of S and 571 = ((S,A)A, p:A’, Cov(S,A)) the inverse
system of the pair (S,A). For each dimension n, we can consider the inverse system
(Hn(S,A)A, piA', Cov(S,A)), where Hn(S,A)A is the n-dimensional relative singular
homology group of the pair (S, A)

9.3 Definition We put H (S,A) = 11m H (s, A) . The group Hn(S A) will be called
the n-dimensional relatlve Cech homology group of the pair (S,A).

10. Homomorphisms between ech homology groups.

Let S and T be pretopological spaces, S= (SX, Pyx!? Cov(S)) and T =
=(T v qyy,, Cov(T)) their inverse systems, f:S*T a precontinuous map, and f=
-(f ,£7!) the morphism from § to ¥ induced by f.
For eéch dimension n, the precontinuous map fy:S induces a homomorphism

. =1 Ty
T from L (s ) to H (T).
n Y

£=1(Y)
v v y

10.1 Definztton We denote by fn:H (S)-+ﬁn(T) the homomorphism lim f*’n, and we

say that it is induced by the precontinuous map f:S-T.

10.2 Remark. Similarly, given two subsets A of S and B of T, for each dimension n
we obtain the homomorphism f .H (s, A)-*H (T,B).
10.3 Proposition 1If f:(S, A)-*(S 4) is the identity, then f :ﬁ (s, A)-*H (S,A) is
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the identical isomorphism.

10.4 Proposition Let f:(S,A) > (T,B) and g:(T,B) +(Z,C) be precontinuous maps and
h=gf. Then hn=gnfn. ’

10.5 Proposition (Excision Theorem) Let A and U be nonempty subsets of a
pretopological space S, such that c1(U) < int(A). Then the canonical injection
f:(S-U, A-U) + (S,A) induces an isomorphism En:Hn(S-U, A—U)—’Hn(S;A).

Proof: 1In fact we have:

(i) Let A={A.}(ieJ J') be an element of Cov(S,A) such that P(AJ) induces in A
the pretopology P(A ). Then (see [2]) the injection f£:(S-U, A-U) -(S,A) induces
an isomorphism f 'H (S—U A-U)-*H (S,A).

(ii) Let A={a, }(16.1 J') € cov(s, A) Then A= {A Y@ J3,3%)  (where J*={ieJ/A, nA#G})
is such that P(KJ) induces in A the pretopology P(Ks*) Moreover A<A

v

11. The homomorphisms 5 el (S,A)-*ﬁ ), Y H (A) +H (8), 3 :H (s) ~H (S,A).
LS S 8 11_1 I 1T T I Y I

Now consider a subspace A of a pretopological space S and the functions
- [ )
Y:Cov(A) +~Cov(S,A), Y:Cov(S) +~Cov(A), P:Cov(S,A) >Cov(S) we mentioned in 7.

For any RéCov(A) we can define a boundary homomorphism @5’“ from Hn(S,A)

t
. YR °
Hn-1(AR) in the usual way (see [2]), and (3*’n, y) is a morphism from

]
(5,00, A, cov(s,a)) ko H_, ), B, Covm)).

Afterwards, considering the usual homomorph1sms 1X tH (AW(X) he:! (S ) and
ji’n.ﬂ (Sm(AQ*ﬂ (s A)A, we obtain the morphisms (liin, P) from

(Hn(AR), pER', Cov(A)) to (Hn(SX), p}:x’, Cov(S)) and (j':’“, ¥) from
(Hn(SX), piX', Cov(¢)) to.(Hn(S,A)A, P, ’, Cov(S,A)).

11.1 Definition We fut § = lim af’“, i = lin i’:'“, j = lim j’:’“
With a standard proof, we obtain:

11.2 Proposition Let f:(S,A)+ (T,B) be a precontinuous map and g:A*>B the

restriction of f to A. For each dimension n the following diagram commutes:
v

. £ .
i (s,A) n >H (T,B)
n n
v v
3, l ¥ an
v n v
H @ > Hn_1(A)

11.3 Proposition Let S be a pretopological space and A ¢S. We obtain the

following O-sequence: .
v v v - v
o e H ) e LE ) L s, 0 R ) et

12. The homotopy condition for Cech homology groups.

To prove the homotopy condition (i.e. Theorem 12.5), we need some previous
statements.,

cesy 1 be
n

Let Ap -[aoa’...ap] be the standard p-simplex, and let i1; iz,
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. . A
integers such that 05i1<i2<...<in§p where 1<n<p. Given a singular p-simplex O

on a pretopological space X, we denote by 0?1 i the singular (n-1)-simplex
A o .
Ox(a. ...a. ) product of 0 :A +X and of the singular (n-1)-simplex (a, ...a, )
i i, P A | 1n
on A . Moreover, given a function F :APXI-¥X, we will denote by Fi i the
1..-
function FA((a. veea, )X1_):A XI+X., We will wright oi and F} instead of
A 11 A I P 1 1
g .
0...eep ™ Foogp

12.1 Definition Let a = Zaxcx and B = ZaxTA be singular p-chains on a

pretopological space X. We say that o is homotopic to B, if:

(1) for each A with aA#O, there is a prehomotopy FA of oh to TA;
. A
(2) if 0} = T., then Fi = FH,
Y 3j Y 3j
With a process which is similar to the one of the classical case (see for
example |5|), it is possible to prove the following:

s . A
12.2 Proposition Let X be a pretopological space, o = Zaxc a p-cycle on X and

B = Zaxr a p-chain on X. If B is homotopic to a, then also B is a p-cycle on X;

moreover & and B are homologous.

. A . .
12.3 Lemma Let X be a symmetrical pf-space and o = ZGAG a singular p-chain on

X. For each A such that GX#O, we find a finite partition g‘of Ap in open cells
and a singular p-simplex TA on X such that:
(i) TA is quasiconstant with respect to 6;;

(ii) ZaATA is homotopic to Zaxox.

. . R A . .

Proof: Let us consider successively the faces of all simplices 0 of dimensions
. . .. A

0, 1, ..., p and let us define the corresponding faces of the simplices T .

For any O-dimensional face Oi we take T? = o? .
. 1 1 1
Now let 0? i be a n-dimensional face of a simplex GA. Assume that all
1-|o
simplices T2 . (0<m<n) and the prehomotopies F% . of T% . to
A iqe.edip igeeeip igeeedp
a’, . has been defined, in a way such that:
11...1m " A u A
if 03 . =0, A for some A, j, then T, . =T, . and F, . o=
igeeeip Jqeeedp igeeed Jreeedy igeeeip
=F} -
]1..._] n
We observe that we can consider An as the nth cone C (ao) on {ao}, and we denote
by T the projection from I® to An=Cn(aO). The product function o} m

11...1n

is a
. A n
precontinuous map fi i 1 X,
. {eeely
. . n .
So we have to construct a precontinuous map g? N :I +X which must be
1«-. n

. A : . . o
homotopic to fi i and quasiconstant with respect to a suitable finite
1ll.n -

partition 82 i of I" in open cells, To obtain the map gx and the
1eseip ig...1
prehomotopy H% . of g% . to f% , we follow a p;ocesg similar to
igeeeiy iqeeeiy igeeeiy a
the one of Lemma 8.2; but now we have to recall that H . 1is already

. e 2n . . . igeeedy
determined in I XI by the inductive hypothesis.



INVERSE SYSTEMS AND PRETOPOLOGICAL SPACES 105

Finally we observe that the function H? i and its restriction g? vy to
InX{O} are relation preserving. So the }unct?ons F% . and T% T are given
11...1n 11...1n
by the following commutative diagrams:
H .
1 igee.iy X

12.4 Remark. Now let (X,A) be a pair of pretopological spaces. Since generally A

carries a pretopology finer than the one induced by X, we have to add to
Definition 12.1 the following condition:

(3) if o} . is a singular (n-1)-simplex on A, then A , and FA

iqe.eip e ™ igee.d

n
must be precontinuous maps into A.

12.5 Theorem Let S and T be pretopological spaces, ASS, BgT, and let

f:(S,A) » (T,B) and g:(S,A) + (T,B) be precontinuous maps. If f and g are homotopic,
v

then fn = En for each dimension n.

Proof: Let H:(SxI, AxI) -+ (T,B) be a prehomotopy of f to g.

Given BeCov(T,B), consider the elements ®(B)éCov(SxI, AxI) and ¢(B)€Cov(S,A) from

Theorem 4.8, and recall that ¢(B) refines both £~1(B) and g"(B).

Then consider the following diagram:

18R (a7
‘?/3/ “n(s’“w(m%
B (S,A) 1 () H (5,0 15,

B
X%
H (T,B)g

Let [a]eﬂn(S,A)¢(B) and o = Zaxok. By Lemma 12.3 and Remark 12.4, we construct a
n-chain B = EGATX such that:

i) B is a linear combination of a finite number of n-simplices that are quasi-
constant with respect to a suitable finite partition of A,;

ii) B is homotopic to a.

Therefore B¢[a] since, by Proposition 12.2 and Remark 12.4, B is a relative cycle
homologous to 0. Now consider the chains fB = Zuk(ftx) and gB = Zax(grx), and

-1 =1
observe that ffpi (B)¢(B)([a]) = [£B] and ngE (B)¢(B)([a]) = [g8].
With a proof analogous to the one of Theorem 8.3, we see that KA-H(TAX1I) is a

prehomotopy of fTA

= [g8].

to gTA; moreover £B and gB are homotopic chains. Hence [£B8] =
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