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PLANE ELLIPTIC SYSTEMS AND MONOGENIC FUNCTIONS IN SYMMETRIC DOMAINS 

F. Sommen (x) 

Abstract In this paper we introduce generalized Laurent expan

sions for monogenic functions defined in open domains of Rm 

which are invariant under certain subgroups of S0(m+1). In this 

way we generalize the plane elliptic system introduced by P. 

Lounesto and P. Bergh in [ 41 in order to study axially symmetric 

monogenic functions. 

Introduction Let A be the Clifford algebra constructed over Cm. 

Then in [ 1] and [3] A-valued functions f in open subsets Q cjf Rm 

were investigated which satisfy Df = 0 or fD = 0 in ft, D= T e.-,-— 
j-o ^ x j 

being a generalized Cauchy-Riemann operator. They were called left 

or right monogenic functions in Q. Moreover in [6] we proved a 

Laurent type expansion for left monogenic functions in annular do

mains of the form B(0 ,R)\ B(0, r) , 0<r<R<°°, and we introduced the 

so called spherical monogenic functions, which are a refinement of 

the spherical harmonics. 

The ideas behind this paper emerge from group representation 

theory. Let G be a subgroup of S0(m+1) and let ft£Rm be open and 

invariant under G. Then G acts in a natural way on the space 

Mrr^(ft;A) of left monogenic functions in Q (see [7]) and so we ob

tain a representation of G. The generalized Laurent expansion for 

monogenic functions in U then arises from splitting this represen

tation into irreducible pieces* 

When G « S0(m+1), Q is an annular domain and the Laurent expansion 

according to G is the expansion of f^M. . (Q;A) into spherical mo

nogenic functions. 

The first section contains a result about restrictions to S " of 

left monogenic functions in a neighbourhood of S in /t . It is 

based on the use of Lie balls and complex harmonic functions (see 
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[5]). 

In section 2 we consider the case where G • S0(m). The correspon

ding open set ft is then called axially symmetric and we obtain a 
oo 

Laurent expansion of the form f • Y nvf, where ILf are so called 
k=o K K 

axial monogenic functions, satisfying special plane elliptic 

systems. 

For k=0 we obtain the system introduced by P. Lounesto and P. Bergh 

(see [4]). 

In section 3 we consider so called toral symmetty, where G is of 

the form SOfm-)x...*SO(m, ). We restrict our attention to the case 

G = SO(m.j)xSO(m2) , where we obtain an expansion into "toral mono
genic functions" which again satisfy certain plane elliptic sys

tems, and to the case G = SO(2)*...*S0(2), which provides a new 

link between monogenic functions and A-valued holomorphic functions 

of several complex variables. 

Preliminaries. Throughout this paper A denotes the Clifford algebra 

over C . A basis for A is given by {e. : A£{1,...,m}}, where 
ei = e{i} (i = 1 »••• »m)> e

o
= e 0 = 1 , ei = "eo Cis1 ,••• ,m) and e^.. + 

e.e. = 0 (i^j, i,j = 1,....m) and where eA • e„ ...e„ when 
j i J\ a.j a-^ 

A = { a . j , . . . , a , } with a-<. . ,<a, . For the definition of the involu

tions and the norm on A we refer to [ 1]. 

Arbitrary elements of if1 and Rm+ will be denoted by x-(x-,.,.,x ) 

and x=(x ,x^,...,x ) and will be identified with the Clifford num-
-* m m -• 

bers x = Y x.e. and x • Y x.e. s x +x. 
j-1 J J } L 0 3 J o 

Let ft£Rm+1 be open. Then a function f€Ci(ft;A) is called left (right) 
m ,. 

monogenic in ft if it satisfies Df • 0 (fD » 0), where D • J e. -r— 
j»o J xj 

generalizes the classical Cauchy-Riemann operator. 

We also consider ay^ open and functions f^Ci(ft;A) satifying D0f*0 
m ~ 

in ft, Do - I e. y^~ being the Dirac operator. Those functions will 
j=1 J dx^ 

also be called left monogenic and their corresponding right A-modu-

les are denoted bv M, . (fi;A). 
m+1 * ̂  » 

For ft£C open, Hjl^A) denotes the space of A-valued holomorphic 
functions in ft. 



"PLANE SYSTEMS AND MONOGENIC FUNCTIONS11 261 

i<or ftcR"1 open, P^JftjA) and E^JfljA) are the left A-modules of 
A-valued testfunctions and C^-functions in ft. Pl,;(Q;A) is the 
right module of left A-distributions in ft. B(0,R) (resp. Bm(0,R)^ 

. 1 m 
denotes the ball in R (resp. Kj with radius R and u) is the 

tn 1 ^ 

area of Sm"'. 
Finally by da (resp. da ) we mean the hypercomplex surface element 
in R (resp. Rm) introduced in [1]. 

1. RESTRICTIONS OF MONOGENIC FUNCTIONS 

Let f^-M,. (Sm"1+B(0,R);A), 0<R<1. Then f|Sm"1 is an analytic func

tions on Sm~ . Hence, in view of the Cauchy-Kowalewski extension 
theorem in [ 1] and [6], there exists an extension r_(f) of f|Sm" , 

-j m 

defined in an annulus of the form B (0,Rf)\E (0,*rt) ,R
f>0, and sa

tisfying D0rm(f) » 0. 
Using results from [ 1] , [ 51 , [61 we have 
Lemma 1. Let 0<R<1. Then there exists Rf>1, only depending upon R, 
such that the map r is continuous from M, ̂  (Sm" +B(0,R);A) into 
M ( r ) , m C V 0 ' R , > X V 0 ' R , ~ 1 > - ' A > -

Remark. Let y€i?m+1\ S m - 1 . Then the function K(x,y) = - ! y
 m+1 

m+1 |y-x| 
belongs to M,^(Sm~1+B(0,R);A), R = |y ^-|. Hence for some. 

R'(y)>1, rm(K(.,y))(x) - L (x,y) belongs to 
M(r)>m(4)(0,R'(y))\I(0,R'(y)"

1)A) 

Furthermore in view of Lemma 1, L(x,y)D =0 and for every 

f€EMi(sm"1+E(0,R) ;A) , 

r m ( f ) ( ^ = /m-1 L(x,y)da f(y). m 3(Sm '+B(0,R)y y 

2. GENERALIZED LAURENT EXPANSION IN AXIAL SYMMETRIC DOMAINS 

Let Rm = {xeR"1 xc»Q} and let SO(m) be the group of rotations 
leaving the x0-axis invariant. Then a domain ftCR1*1*1 is called 
axial symmetric it \t is invariant under S0(m). 

Hence for every x€ft the sphere S 1 x 1 ^ ^ ^ + :VoSBX° and lyl'I^U 

is contained in ft anc? so we may introduce cilindrical coordinates 

(X0,P,OJ) in ft by means of the formulae x^Xo + pw, |x|=p, u>«-£- . 

Furthermore we use the notation e^ instead of w to denote the unit 
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normal on S 

We know from [ 6] that the Cauchy-Riemann operator D may be written 

in the form 

D = 377 + 37) eP + P epr
W-

r being the spherical Cauchy-Riemann operator. 

Furthermore there exists an open domain ft in the halfplane 

{(x0,p) : p>0} such that for every weS , Swft=(ft\{x:x=0}) n 

{x : x = | x | co}, where S ft = {x0 + pa> : (xo,p)
Gft}« 

Let feM (n\ {x : x = 0};A). Then f^-M,. (ft;A) if and only if f 

admits a continuous extension to ft (see [1]). Hence we may restrict 

ourselves to the case ftn{x : x = 0} = #. 

Let f^M. . (ft;A) and express f in cilinder coordinates f(x) = 

f(x0,p,u)), (x0,p)eft, a)€S
m"1. 

Then in view of [ 6] , for each (x0,p)
eft fixed we may expand f 

into a series of spherical monogenics on Sm~ . 
oo 

f(x0,P,a» - kIo(Pkf(XiiP)(-)
 + Qk

£
(x„,p)(

u» 

and, using Lemma 1 we have 

Lemma 2. The series 

fCx-.p.*) = J o ( P k - ( X i i P ) ( « - ) + Q k
£

( x 0 , p ) ( w : , ) 

converges uniformly on the compact sets of ft. 

Let <t>(x0,p) he a testfunction in ft and let T be a distribution 

in P l . . . ( f t ;A) . Then by <T ,<J>(x0 >P) > the distribution on S
m~1 is 

I1./ m-i 
meant which maps every ^eE(i^(S ;A) onto <T ,\Ko))(() (xo ,p)>. 

Furthermore we say that a distribution T has degree k when for 

every <K*o,P), <T,4>(xo,P)> is the sum of an inner and an outer 

spherical monogenic of degree k. 

We now have 

Lemma 3. Let (TjJkeyy be a sequence of distributions in ft such 

that Tk has < 

k£N, T. = 0. 

that T-. has degree k and I T, - 0 in P^(ft;A). Then for every 
K k=o K U j 
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In the sequel we use the notation n-f(x) for P, f , . (o>) + 
K K (Xo,pj v 

-Qkf(x0,p) ̂
# A £ u n c t i o n of the form nk£» f€Mrr)(

fi;A)t will be 
called axial monogenic of degree k. 
We now come to 
Theorem 1. (Generalized Laurent expansion) 
The functions n, £ are left monogenic in ft. Furthermore the opera-* 
tors IL are projection operators on M^ -,(8;A) and the series 

f(x) - I nRf(x) converges inMjrj(ft;A). 

Proof. From Lemma 2 it follows that uniformly on compact sets in 

n , f(x) = I nkf(x). 
k»o K 

Hence we have that in distributional sense 

o = I Dn.f(x). 
k=o K 

3 "• 3 1 -> 
Using the decomposition D s - j — + e y- + — e T , the fact that 

nkf is a distribution of degree k, the properties of T^ and the 
spherical transform (see [61) it is easy to see that DIIkf is a 
distribution of degree k. Hence, by Lemma 3, £llkf - 0 for all 
ke/y and so ILf is left monogenic in ft and f= £ Jl^f converges in 
M(r)(ft;A).

 k=0 

Furthermore it also follows from Lemma 3 that IÎ IIj • fij-.j-lj. Q 

In order to study the nature of axial monogenic functions We 

introduce the notations 

Ak,u>(x°'P) ° Pkf(x,,p)(u,:) and Bk ,o> (Xo'P) = '?PQkf(x.,p)(M) 

Notice that for each (xo,p) ft fixed, A*. fxo,p) and B, (xo,p) 
•K , u) K , u) 

are inner spherical monogenics of degree k. 
Furthermore, using the monogenicity of I-kf, we obtain 
Theorem 2. For each a)esm" fixed. A, and B, satisfy the 
equations 

fil — A - — B m k+ m~ 1 * U J ax0
 Ak,a> 3p *k,u> ^T^ Bk,a) 

" « ^7Bk,a, + lp A k , u > " £ Ak>a). 
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Remarks. (1) For k-0 the system (i) , (ii) reduces to the system 
of generalized Cauchy-Riemann equations in the plane investigated 
by P. Lounesto and P. Bergh in [ 41 . It gives the description of 
the left monogenic functions which are invariant under SO(m). 
(2) The system (i) , (ii) may be rewritten as follows 

(_i_ + i|_ ) ( A + i B ) = _ _ E _ 1 B + if A 

.= ±- (A-iB) • if^-((A-iB)-(A+iB)) 

k+P-1 
or putting w = A + iB, 

Hence it is an equation of the form 
a w + aw + bw = 0, 
dz 

which were investigated by Carleman t2] and Vekua [8] and so we 
may apply their theory to the above system. This leads to new 
theorems about the zeros of monogenic functions. 

3. GENERALIZED LAURENT EXPANSION IN TORAL SYMMETRIC DOMAINS 

mi ,* mi+m2 ~ 
I e- - — and D2 = I e. -*—. 

j=1 ' 3xj j=mi+1 ^ 9xj 
Let Di = 

Then DiD2 + D2Di = 0 and D0 - Di+D2 is the Dirac operator in 

/?mi+m2^ Let sO(mi)xSO(m2) be the subgroup of SO(mi+m2) which 

rotates the variables xi » (x- ,... ,x._, )and x2 * (x„ -11 • • • »x«. ._«» ) 
v 1* ' mi' v mi+1 * ' mi+m2' 

independently. Then we shall now consider solutions of Dof»0 in 
open subsets Q of R®1 mz which are invariant under S0(mi)xS0(m2) 
and which, for reasons of simplicity, do not intersect the hyper* 
planes xi=0 and x2*0. 
Furthermore we introduce so called toral coordinates in Rmi 2 by 

*i -> . 
putting x. » r.w. , or. * _J and r, • |x. ! • Notice that in these 

J J J ) |x.| J J 
notations D. « e r j — + — e T., where e„ « w. and T. is the 

J i i i m .-i i 
spherical Cauchy-Riemann operator on S ̂  
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As [ri,r2] = 0 it makes sense to look for simultaneous eigenfiinc-

tions of rr and r2 on S
mi"1xsm2"1 and the theory is similar to the 

theory of spherical monogenic functions. 

We have the following 

Definition 1. Let (k,l)£Z2. Then a function P, ,(o)i,o)2) is called 

simultaneous spherical monogenic of degree (k,l) in the following 

cases : 

(i) if (k,l)e.V2, r^rjpk 1(o)i ,o)2) satisfies Djf = D2f - 0, 

(ii) if (k,l)e(Z\-V)x/y, rTk"1r2 e„ P, , satisfies Dif = D2f = 0, 
r i K , j. 

( i i i ) i f (k,l)€tfx(z\.V) , r^rl1"1 e r P, , s a t i s f i e s Dif = D2f = 0, 
r 2 K , l 

(iv) i f (k , l )e (z\ iV) 2 , rTk"1r2
1"1 e\ e\ P, , s a t i s f i e s Dif=D2f=0 

m j . m r i r 2 K , J. 

i n R m i + m 2 . 

Notice that in the cases (i)-(iv), the corresponding eigenvalues 

of (Ti,r2) are respectively given by (-k,-l), (mi-k-2,-1), 

(-k,m2-l-2), (mi-k-2,m2-l-2). We hereby make use of the fact 

that [ Ti,er2] = [ r2,eri] = 0 . 

We now study the expansion of analytic functions on Rmi m 2 into 

simultaneous spherical monogenics. 

Let f(o)i ,o)2) be analytic on s
m i + m 2. Then we have 

Lemma 4. There exists a unique function f(xi,x2) satisfying 

Dif = D2f = 0 in a neighbourhoud of S
mi~1xSm2~1 in Rmi+m2, such 

that f|Smi"1xS
m?~1 = f. 

Using this Lemma we obtain 

Lemma 5. There exist unique simultaneous spherical monogenics 

P, ,f such that on Smi~1xSm2"1, f = ? P-,-k > 1 k;i=--co ̂ ,1 

Furthermore for some C>0 and 0<6<1, 

sup |Pk ̂ (0)1,0)2)1 <C(1-6)l
kl + lil , for all (k,l)ez2. 

0 ) i , 0 ) 2 » • 

Let f be a so lution of (Di+D2)f * 0 in an open set ft.which i s in
variant under SO(mi)xS0(m2). . 
Then there ex i s t s ft £ { ( r i , r 2 ) : t.>0} such that ft * {riO)i + r2o)2 : 
( r i , r 2 ) e n , o ^ e s V ' 1 , j «1 ,2 } . 
Hence f give* rise to a set of analytic functions fr x(ci>i9a>2) 

K^l9*2) 

,f. 
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on S m i~ xS m 2~ , parametrized by (ri,r2)eS and determined by 
f t r T* <i(wi,W2) - f (riO)i + r 2w 2) . iri,r2j 

Let P, ,fr ^(wi,w2) be the simultaneous spherical monogenics 
K , ± V . - l » r 2 j 

associated to £f J(Ui,o)2) and put for (k,l)e#2 

1*1 9* 2 J 

tfk.lfW - p k . l f C r i . r 2 ) ( u , ' U - ) + P-k-1,l f(ri,ra) ( w ,' U- ) 

+ Pk,-1-1 f(r.,ra) ( U l ' u - > + P-k-1.-1-1£(r:,r*)(w»-M-> 

Then n, ,f will be called a toral monogenic funciton of degree 

(k,l) and we have 
oo 

Lemma 6. The series f = J II, - f converges uniformly on the 
k,l«o Kfl 

compact subsets of ft. 

Using distributional techniques similar to the axial monogenic 

case, we now come to the toral version of the generalized Laurent 

expansion. 

Theorem 3. The function II, ..f are left monogenic in ft. Furthermore 

the operators IV , are projection operators on M^ > (fl;A) and 

the series f = I n k , l £ c o n v e r g e s i n M(r),mi+m 2^
; A^' 

k, 1 

In order to obtain the equations for n, ,f, we bring II, ..f into 

the form 

II. ,f = A, ., + e B, - + e C, , + e e^ D. - , 
k,l k,l ri k,l r2 k,l ri r2 k,l* 

A, ,, B, ,, C, 1 and D, .. being simultaneous spherical monogenics 

of'degree (k,lje<V2. 

We then obtain 

Theorem 1. For each (o>i ,u)2)^S
mi"1 xS1"2'1 fixed, Ak 1, B k ±, C k x 

and D, , satisfy the equations 

'*> (arT + ^ Y i + (U77 + 1 1?f i ) ck,i " ° 

( i i ) ^877 " rT)ck,x " (^77 - 77 )Bk ,i * ° 

( i i i > ^ " 7T)Ak,i + (37T + 2 l ? f i ) D k , i " ° 
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(iv) ( . j i - • ̂ l ) D k > 1 - ( . .ji- - i-)Ak>1 - 0, 

Notice that the system (i)-(iv) splits into two separate systems 
(i) ,(ii) and (iii),(iv). 
They are also plane elliptic systems of Vekua type. 

3.2. The^case^G^-^SOiZix^^.^xSQi;?! 

Consider x+iyecm and identify S0(2)x..,xS0(2) with the group 

{(eie1,...eie*) : 6^10,21.1, j = 1,...,m}. 

Then an open set Qcc111 which is invariant under G is called a 

Reinhardt domain and the grbits of G are polydics. 
m 3 3 m 7m 

Let Do = I (e. -r—- + e.. ~ ~ ) be the Dirac operator in C7 =B 

and put i . = -e.e. 
J i j+íi 

Then i? = -1 and [ij,ik-
 s 0, (j#k, j ,k=1 ,.... ,m). 

Furthermore D0 may be written in the form 
m -. -. 

»>- .1, •jCKJ^j^-

Notice that special solutions to D0f = 0 are the solutions t. 
the system 

A S —• —• 

(•577 + ij jf-) f(x,y) = 0, j = 1,...,m, 

which gives rise to a theory which is quite similar to the theory 
of holomorphic functions of several complex variables. 
When z. ~ x. + ii>ri» these functions admit local Taylor series 
expansions of the form 

f(x,y> - I z \ z...-z m a k , 
klf...,km

 1 « m V " - - ' K m 

where a, , eA. 
K 1 ,...,Km 

We now introduce toral coordinates in C® by putting 
i .e. 

i • r .e - J, r..e[u,+«»[, 6^10,2ir[ .. 

m i . e . „ i . 3 

In these c o o r d i n a t e s , D0 = I e . e J J ( -— + —- -rs—j . 
. ' , j v 8 r . r• 36 . 
J-1 J J J j 
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Let fl be invar iant under S O ( 2 ) x . . . x S O ( 2 ) and l e t D 0 f s 0 in 1). 

Then we can expand f i n t o a s e r i e s of the form 

i 1 k l e 1 * , . , + i k l B 9 l B 

* ( x ) - I e 1 1 1 m m m f  

k - , , . . . , ^ k 1 " - - > k m 1 m 

and we have that 

m i 1 k 1 6 1 + . . . i . ( k . + 1 ) 6 . + . . . + i k 6 ^ 
D 0 f ( x ) = I T e . e 1 1 1 3K 3 J 3 m m m 

k 1 " . " k m J = 1 J 

Э k i 
(ÏÏ7 r ) f V V í г 1 » ' " ' г m ) 

j j k i . ' * * ' * S i п ш 

. -• | e

i1k1 ľ-"- ij<kj+ 1^j + --- + i m k m m 
k 1 k ш J a 1 

Э k -

. • - d г j г j k 1 Km ] ' 

=0. 

If we now write D
0
f(x) again into the form 

i
l
k

l
e

1
+...+ike 

of(x) I e g,
 k

 (r.. ,...,r ), 
k k K.j ,. . . ,K I m 
K
1 »•••»% 1 m 

we obtain that 

m
 3

 k.+1 

^k k " -•
 e
i ̂ aT~

 +
 r ^ V ... -k -1 . . k * K

 '*
-
" m j=1

 J d r
j
 r

j K
1 » - - ' »

 K
j •''••'

K
m 

Hence the equation Dof = 0 eventually leads to the system 

m
 a

 k.+1 
I 6.(35— + -J—) f, -k -1 k " °> 

j-»i J
 c , r

j
 r

j
 K

1 »• • • »
 K
j ' »•• • »

K

m 

r
m which may be splitted into systems, parametrised by (k-,...,k )€tf3 

of 2. equations. 
Notice that special solutions to these.systems are given by 

ki K 
f -» r ] r m 
kl'-'"km * V • ' 

which gives rise to holomorphic functions of several complex vari<-
ables. 
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