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A HYPERCOMPLEX METHOD OF CALCULATING STRESSES IN THREBE-DIMENSIONAL
BODIES

W. SPROSSIG /K. GURLEBECK

1+ INTRODUCTION

In the plane linear theory of elasticity the application of com-
plex functiontheory got an imporcant mean. In the last 50 years
was developed the analytical theory of quaternions.

Essential influence in this developement was given in papers by

R. FUETER [7], A. W. BIZADSE [2], R. DELANGHE [5] [6], F. BRACKX/
R. DELANGHE/F, SOMMEN [3], P. LOUNESTO [14] and other authors from
various countries. In [18] is made by W. SPROSSIG an experiment
for uzing'the analytical theory of quaternions to estimate thermal
stresses in real bodies. The aim of this paper consist in finding
out a connection between new results of numerical collocation in
[9] by K. GURLEBECK and quaternionic representations of solutions
of boundary-value-problems in three-dimensional linear elasticitye.

2+ PROELEM

We consider an isotropic elastic body in the space R?, G = T
is a piecewise smooth Ljapunoff-surface.

In equilibrium state the displacements u fulfil the following
system of equations

Au+ﬁ—l:73rad divu=-f in G (2.1)

where u = (Uqyug,us)y, £ = (£4,£2,£3) is the vector of outer
forces, m is a real number with m > 2 or m = Q. For m > 2
this constant has a physical intérpretation, ' is called
POISSON-number. On the boundary I' we have the eondition (%) or

(11)

(1) u=g _ , - (202)
(11) %% +0 %EE—% + % B x rot u= E. (2.3)

For thermal stresses the fuhctiona f and g ocan be choosen in

Tkis paper is in final form and no version of it will be submitted for publication elsewhere.
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the form
£ = 2‘—“-ﬂvss, % = 21 gen,

'where 8 i8 temperature and P themmal expansion number.

3. SOME LINEAR QPERATORS
Oonsider four-componentica) real vectors u = (uo,u), v = (vo,v)

U = {(UqeUgeus)y V = (vq,v,,v,) and introduce the quaternionic pro-
duct:

u vs= (uovo (u,v)y ux v + uv o+ vou)
where (u,v) = uyvy + UpVvy + UsVse
In setting

D(V) =(0' _.Q._, _9_., 2

ox* ox? ox®

we receive

D(V)u = (= div u, rot u + grad uo);
The Banach—spa;es af quaternionic-valued or Q-valued functions are
designed by Gy L3 Hg BeBeOse
For the imnmer product of two functions f and g of the space
LQ(G) we are vriting

(£,8) =:GJ"f g 4Gy o

We will recall the real vector u = (uj,~u), u = (uqyusyuy) conju-
gated quaternion.
The class of all vectorfunctions u € CQ(G) with
D(V)u = 0 (3.1)
we will call Q-analytical functionse
First investigations of this system were made by G. MOISIL/
N. THEODORESCU in 1941, It is necessary to introduce the weak
singular integraloperator

1 8 u
(Tu)(x) = gz Gf = Gy, X € G, (3.2)
where 6 = (O, -I-’E-'—Ll). The operator T fulfils the equation
X-=y
D(V)u = u

for every point-in the domain G
Furthermore if we are setting n = (O,n4,02,n3), where (n,,ns,n;)
deacribed the unit-vector of the outer normal en T in the point y,
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the twodimensional operator of CAUCHY-typ

(su)(x) = ff s TR (3.3)

is connected with the operators T and D(V) by the formulas

u(x) = (Bu)(x) + (Tp(V)u)(x), x€ G (3.4)
0 = (Bu)(x) + (TD(V)u)(x), =x € R® G.

This formula is the so-called generalized POMPEIU-decomposition.
If we calculate the limits

lip  (Su)(x) = 3(u + Su)(xt) = (Pu)(x') (3.5)
x»X €T

XeG

lin (su)(x) = 3(u = su)(x') = (Qu)(x')

XX €I

xeR® G

we have to define the operator S. It is given by

(su)(x) = J‘ '?"‘Eﬁ, ary, x€T. (3.6)

The lintegral is ex1sting in sense of CAUCHY,

4o AN INTEGRAL REPRESENTATION
Let

D = ker D(V) N LXG) + ™HG).
D describes the class of generalized (in sense of SOBOLJEW) dif-
ferentiable functions, whose derivatives belong to L%(G), see
also W. SPROSSIG [19].
We consider'the completed system

Auo = - fo (4.1)
Au + E%E grad divu = - £,
By setting f = (£,f), u= (u,u) and Mu= (2 =1) w ,u) and
using the formula
D(V)D(V)u = = Au
we obtain
D(V)MD(V)u = £, (4.2)

We remark, that for m = 0 <follows M = I,

In generalization of the theory of I. N. VEKUA (1962, [20])

V. IFTIMIE got in 1965 a multidimensional acalogue, see [11].

We f£ind the following representation.

THEOREM 4s1. Let £ € L3(G), then common solution in the class D
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is representing in the form

u=@, + W8, + mlTe, (4.3)

where & ,2, € ker D(v) n LQ(G).

REMARK 4.1, Formula (3.9) can be transformed into

W=y + —2— 1T divy + ™ 1L (4.4)

2(n-1)

with x € ker A(G), x ¢t R® - R*.

S5e _ DIRICHLET-BOUNDARY~VALUE~PROELEM
Now, we will solve the partial differential equation (4.2) with
the boundary condition (2.2). It is true the following assertiont

THEOREM 5.1, Let f € LY(G), r > 3, g € H°(T'). The boundary
value problem (4.2) - (2.2) has the unique solution

u=sg - mre + W s(tr o 8)" N (QeemuME). (5.1)

ll

The operator tr T™ 'S is an isomorphism from im P N H3(I) to

im Q n E3(T).

BEMARK 5.1, If (Vu)(x) = 4= JB—2ar  then it's true-the

r lxy| 7
special representation for solution of the problem (4.2) - (2.2),
if the puarameter m is choosen zero

u = 5g - T + TSV (Qg + T*£).

REMARK 5,2 If we use for describing these representation formu-
las, then we have to calculate the multidimensional integralope-
rators S8, T, Q and the differential operator v,

Calculations of these operators cause annoyance. Therefore we
developed in addition an other numerical approach.

6o CCMP@ETE SYSTEMS OF ANALYTIC FUNCTIONS

The proof of all numerical methods for approximate solution of
boundary value problem (2.1) = (2.2) requires the construction of
complete function systems in ker D(V) MD(V)(G) N HS(G). Since we
will use formula (4.3) it will be sufficient, to f£ind complete
systems in ker D(VXG) n E%(@) respectively

R(ker D(V)(G)) » . The basic functions used in this paper re=-
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sult from fundamental solutions of generalized CAUCHY-RIEMANN-
operator D(V), which singularities will be choosen in suitable
manner in B3 @, Similar constructions were showed by F.E. BROWDER
[4], V. D. KUPRADZE/M. A. ALEKSIDZE [1], C. MULLER and other

authors ([10], [12], [16]) for special equations of mathem.Sical
physicse.

DEFINITION 6.1 Let X be a normed right-vector-space. The sy-
st:m {fi}‘;’_,:,] c X is called complete in X, if it is possible to
approximate every element £ € X arbitrary closely by finite

right-linear-combinations of the elements {fi}‘;___,i. {fi}(;_,] is

called closed in X, if for every bounded right-linear--functional
L over X with velues in Q L(f;) =0 i€ N implies L =

LEMMA 6,1, Let X & normed right-vector-space over Q. The
systen, {£,}7 4 ¢ X 1is closed, if it is complete in X,

LEMMA 6.2 BEvery bounded right-linear Q-valued functional L
over LQ,(G) N ker D(V)(@) has a representation
L(£) =J T £de £ e 1XG) N ker D(V)(G)
G

with 1 € L) n ker D(V)(G).

Proofs See |3]e

THEOREM 6,1, Let G and G, bounded star-shaped domains of R?
with smooth boundaries I' respe T,, such that Gc GA' Further
let {xi}i_'l cr, a Sense subset of T, and q>i(x) = |1" X
where ei(x) = (o,

le').Then the system {q’i}i=1 is complete
X=X
i

in LYG) N ker D(V)(G).

Proofs It is sufficient, to show the closure of {q’i}i..’l‘ Let

L e(IS(G) N ker D(v)(6))' and L(py) = i€ N, Let G' bounded
star-shaped domain with smooth boundary, such that G< G' and

B c @,, furthermore let 7 € G‘:(G ) with n(x) = ey x € G

The function I will be expanded from G %o R?
tion. Conditions L(p;) =0 41 € N involve

JI@) 84 4 .0 s1ex
ly=x It 7

by zero-func-
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intail (Tl)(xi) = 0 ie N also

(M )(x) =0 x€coG=R'T, (6.4)
Lec 9 € LHG') N ker D(V)(G) c LHG) N ker D(V)(G) then
L(e) = Len) = (L * 8)(on) = + 7z[1#(0,L—)]D(v)(¢n) =

I7l

a6, ] D(v)(en)(x)da, +

f[ fI(Y) In I7- |

é (S (y) T T5- I dey ] D(v)(on)(x)dG, =

since ¢ € ker D(V)(G) and (6.1). Let {Gi}"{:1 a sequence of
domains with following properties

G c Gn+1, Gn 1 CGn’ G c G neN

mes (G, G) g5—=—> 0, mes(3G,) z5——> mes dG.
Repetition of upper consideration shows
[~}
Le) =0 o€ U @HG) N ker D(V)(E;))
[+4]
If we close it=11(L9(Gi) N ker D(V)(G;)) in LYG) we get the so-

lution [9]. L(¢) =0 ¢¢€ L@(G) N ker D(V)(G) dinvolve L = O.

REMARK 6.1. It is possible to prove Theorem 6.1 in
LP(G) N ker D(V)(G) 1 <p <o [9].

Let Ry = {f¢ cg’“(r), 0O<ax<1, Sf=f)
R, = {er ca'“(r), 0O<a<1, Sf=-f)
L¥(T) Ur
1= L ﬁi:( ).

The extension of S from CS’“(P) to L%(r) also will be deno-
ted by Se.

THEOREM 6.2. Let {x;}7_1» {03}7.446y G,y T, T, defined in
analogy to Theorem 6.1 and vy, the trace operator [13]. Then the
system {Yowi}i—1 is complete in 1.

Proof: We define for £ ¢ LYT) the function f, =8 T and
show at first
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T . =0 ieN
( x* Yo (pl)Le‘(I')

iff te ; (6.2).

(Tk,yoq)i) =0 ieN iff an“‘—f Y940 =0 i€ N iff
(Sf)(xi) =0 ieN iff (S£)(x) =0 xe€ coG iff [see [17])
SE=f iff fe |.
Further it will be shown, that for f € I

(Fs @) =0 ¢ € 1. (6.3)

Let tGiT?_1 the compact exhaustion of co G considered in proof

of Theorem 6+1. From Theorem 6.1 follows the completeness of
{o))5.4 1o L3(G) N ker D(V)(&;) 1€ N

Consider at first ¢ € L}(G;) N ker D(V)(G;) for some i € N.
The function ¢ can be represented bv

: C..
j—»ooi:’ll 1J

in L%(Gi) N ker D(V)(G;)e It follows by using Theorem of HARNACK

= 1i i Q
Y? = ;jl_];moo i§1yo(pi c;; im L¥(T) also

Fpove) = jlim 1%1(Tk,yo¢i)cij = 0, since (6.2).

Let ¢ € 1, then exists a sequence {Wn}ﬁ=1 c Ry with Y, tends
to ¢ if n tends to infinity in L¥T)e VY € ; nDEN
involves x, = Sy, € C(G) N ker D(V)(G) and YoXn ¥ Xn. So we
receive the existence of a sequence {ngn)}?=1 n(n eC(Gj) n

N ker D(V)(Gj) and ngn) tends to x, if J tends to infinity in
c(G). :

It follows Yon%“) T YoXn = ¥, 1B L%(P), such that

J- ©

(e 9) = nlimw(iz,wn) = lin  lim (g,yongn)) = 0, since (6.3).

- 00

Now the closure of {y ¢;}{.4 ia p can be shown,

Let f € 1, (f,yowi) =0 1i€N and g=n £ then we obtain
(—éka Yo(Pi) =0 ie€eN _

These equations imply g € 1 and also (gk,f) = (£,£) = 0

therefore £ = Q.

THEOREM 6+3. Let G,G; bounded star-shaped domains with smooth
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boundaries I' and Ty, {yi}?=1 a dense subset of Iy and

2]
i ~ « Then the system {yowi}§=1 is complete in e

Proof: See Theorem 6.2.

THEQOREM 6.4, Let G, Gq, GA’ T1y Ty Wi’ ¢; such as in Theorem

6.1 - 6.3 defined. Then the system {Yo(pi}';’:,] U {yowi}‘;’:,l is
complete in LS(P).

Proof: Every function £ € L?(r) can be written in the form

— 1 1
f_z(I+S)f+-§(I-S)f, where (I +8)fe ; (I-8)fe A
and use of the Theorem 6.2 and 6.3.

REMARK 6.3 The condition at position of singularities o1 the
functions ¢; resp. VY; can be formulated not so strongly by use
of identity-theorem for generalized analytical fuactioms [17].

REMARK 6.4, It is possible to get the appropriate results of
Theorems 6.1 = 644 in
(r)

B(T)
HS(G) n ker D(V)(G), ’RIQ ' ‘R:lg and Ha(r).
7« DECOMPOSITION OF HOMOGENEOUS BOUNDARY VALUE PROBLEMS
Method of decomposition is described in general case as follows.
Let A an elliptic differential operator of second order with

constant coefficients. Consider the boundary value problem
Au =0 in G (7'1)

Ru=g on TI.

Assume the correctness of (7.1) in suitable spaces. The problem
(7+1) will transformed into two boundary value problems (of first
order) of the equation D(V)u =0 in G.

D(V)v=0 in G (7.2) D(V)Jw=0 in G (7.3)

R4v Pg on T Row Qg on T
where P2 = P, Q*=Q, P+ Q=1 and a relation u = &(v,w)
will be given between the solutions of (7.1) and (7.2), (7.3).
We remark, that in applications to various boundary value problems
the operators P and Q are generalizations of the projectors P
and @ investigated by A. W. BIZADSE [2] and W. SPRUSSIG [17] im
detail. In this paper we will demonstrate the method’ for boundary
value problems in three-~dimensional linear elasticity.

n
n
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THEOREM 7.1+ Let G c R' bounded domain with smooth boundary T,
Y, ‘trace operator [13] and g € HS(I‘) 8 > 3/2. Then the boundary
value problem
D(V)MD(V)u = 0 in G (7.4)
You =8 on T
can be decomposed into two unique solvable boundary value problems
of first order.

D(V)v=0 in G
_A(1+s) (7.5)
YoV =31+ S)g on T
D(V)w=0 in G (7.6)
YOTM-1w = 32-(1 +8)g on T
and the relation between u, v. w is given by
ws=v+ T,
Proofs From (3.4) follows for every v € HS'M/Z(G)
v = Sy v + ID(V)v, (7.7)
from D(V)v = O get v =8y,v and Y V= I+Syv_Pyv,

that means y,v € Im P, Let he€ ImP n EQ(P). Then the prbblem
Av=0 in G
YoV = h oa T
has a unique solution v with y v=h ¢ ImnP and with (7.7)
follows
PY,V + Y, TD(V)v
and yomn(vgv = 0, wbich implies TD(V)v = 0, since

TD(V)v € ker A(G) N HQ+“/2(G)

n

follows D(V)v =0 and v is also a solution of the boundary
value problem

D(V)v=0 4in G (7.8)

Yov =h on T

With that the condition h € Im P N Hi(I') is necessary and suffi-
cient for solvability of (7.8). With 2z = u = v we get from
(7+4) = (7.5) the following boundary value problem

D(V)MD(V)z = O 1in G

Yo% = Qg on I'e

The substitution w = MD(V)z - shows the solvability of (7.6)e
Uniqueness of solutions of (7.5) and (7.6) follows from
kor D(V)(@) n B§*Y/2(6) < xox a(6) n BZ*VZ(a),
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ker T = {0} and uniqueness of (7.4).

REMARK 7.1 H is possible to get the result of Theorem 7.1 by
use of weaker smoothness conditionse. The invariance relations
S£=f feyy(ker D(V)(G) N H8+1/2(G)) and
52 = ~f £ € v (ker D(V)(co T) N H3+1/2(co ®)
enable s simple numerical treatment of the singular integral opera-
tor S. These relations will be used now to construct an operator
N with similar properties in spaces of boundary values which
correspond to boundary conditions of second kind. Let F defined

by
Fu = Im[%% +n gig—% + % n x rot ule

From representation (4.3) get direct decomposition
F(ker D(V)MD(V)(G) N HS(G)) = F(ker D(V)(G) N HS(G)) +
+ F(ker D(V)(co @) N Hg(co G)).
It is possible to prove the existence of complete orthonormal

systems in

R; = B(ker D(v)(6) N E(G)) resp. R, = F(ker D(v)(co T) N
n B(co ).

With that the operator N can be defined correctly by the rela-

tions
Ne=2, fefp, Ne=-f, feR,.
As a corrolary)we get the property
2P 8=3/2
Nif=f, fe (r)/span{ftrf 2ar, = 0, fx x 2(x)dr, = 0}
r

If we define P = 4(I +N), Q= %(I - N) and substitute vy,
by F in Theorem 7.1 we get an analogous result in the case of
boundary conditions of second kind.

REMARK 7.2, In the case m = U we get in Theorem 7.1 correspon-
ding results for the DIRICHLET-problem of LAPLACE equation.

8+ TRANSFORMATION FORMULA
To use decompositon results for numerical methods it is necessary

to describe the range of the weak singular integral operator T

simple computation checks following
THEOREM 8.,1. Let G c R® bounded domain and x5 ¢ G. Then
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- "—g!'—'- = - —1._

g ;
’l'(lx_xil."k 21"-"!11'1 -E .I;:;:IT (xf‘xk)e + q;G K (8.2)
where Vg i € ker D(VI(G) mui ey = (1,0,0,0)500e404 = (0,0,0,1)e

e¢ + 8, 2 € ker D(V)(G) (8.1)

REMARK B.1. The esscatial (non-snalytical) parts of (8.1) azd
(8.2) are independent of the domain if x, § G and so are the
following systems construoted in section 8.

9¢ LUMPLETE SYSTEMS OF SOLUTIONS OF DIFFERENTIAL EQUATION

THEQREM 9.1, Let G € BE* bounded star-shaped domsin with smooth
boundsry T, G, ¢ B* with Tc G, Ty = 3G, and { }1",I cry
a dense subset of I';. Then every elament uﬁ ker D(V)MD(V)}(G)

n ng(e) can be approximated in B°(G) arbitrarily doaely by ez~
pressions

(x) = E" i.._ & + E'["—j——hbﬂ +
Ynyyn, in1 ]xi-xl' i=1 lxi"'xl . (9.1)
10:2(%;: X=X (:11‘- ) ==I’)bki

with suitable choosen coefficlents &y € Qp byy € ): A

Proofs Use (4.3), Theorem 6,1, Remark 6.4, Theorem 8.7 and con-

tinuity of T i Hg(e) - ag(G).

REMARK 9.1. We get complete systems of harmonic functions in the
cagge m = Q,

REMARK 9.2+ It 18 possible to oonatruct complete systema in ap—
propriate subspaces of H°(I') by using theorems sbout traces
([13], [92).

Presented prineiples of comstruction of ocomplete pystems in kernel
of varicus ellipticel differentisl oporators by means of genera=
lized anslytical functlons summarizes other approaches (see [1],
[10, [12], [16])s Bxisting relations betwsen other concepts and
our construction wil) be demonstrated at exsmple of PAPROVIOw~
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NEUBER-statements in linear elasticity.
From (4.3) follows by simple computation there presentation

W= X~ ms TRe D(V)x with x € ker A(G), (9.2)
X $ R® » R%,
The PAPKOViC—KEUBER-statements
u =¥ - g grad(x « ¥) = 7o Erad 9, (9.3)
where VY 3 R?® o R’: @ 3 R? » R'y, ¢,V € ker A(G), can be transfor-
med by V¥ = (p,¢) and u = (uo,u) into
Inu=1Iny -z ImD(V)(x ¢ InV) = zmop Im D(V)ge
Then is valid
D(V)[Im ¥ = 5p=s wRe D(V)iny| = D(V)[Inm ¥ - zm—p D(V)(xeIm ¥)-
- 7o D(V) Re y].
H involves the existence of a function & € ker D(V)(G) with
In ¢ = 5p=s TRe D(V)Im § + & =

= In ¥ = 700 D(V)(x ¢ Im ¥) = zoo D(V)Re ¥
and at last
In Y48 = mo—s TRe D(V)(Im ¥+8) = Im ¥ = 72D(V)(xeIn ¥)~(9.4)

- ﬁtﬁ D(V)Re V.
from (9.4) follows the relation
x=Im{y +8& & € ker(V)(G)
between x from (9.2) and ¥ from (9.3).

REMABK 9+3¢ An ossential advantage of (4.3) for numerical treat-
ment contains in uniqueness of ansalytical parts &, and &,.

REMARK 9.4, For numerical solution of elliptic boundary value
problems by means of collocation methods based on presented decom=-
position theorems and constructed function systems will be refered
to [9]0
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