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ALWAYS OP THE FIRST CATEGORY SETS (il) 

E. Grzegorek 

Results of this note were presented during 13th Winter School on̂  

Abstract Analysis in Czechoslovakia. We investigated in [5} and [6] 

a useful sub-6-ideal, denoted by CJC* of the 6 -ideal of subsets of 

the real line R which are always of the first category, denoted by 

>£*• Now we prove that each X -set in the sense of [8] belongs to 

9C*. We also obtain as a corollary of a result of T6J elimination of 

the assumption CH in the theorem of Sierpinski [163 that there is a 

continuous f: R — > R such that there exists Ae #*for which f(A) 

does not have Baire property in the restricted sen$e (it also shows 

that Proposition C.g in [14] is simply a theorem of-ZFC). We also 

strengthen the theorem of Sierpinski [15] that there is an uncountable 

subset X of R .such that all its Borel isomorphic images into R 

are in !K* and have Lebesgue measure zero. Moreover we remove a 

mistake in our proof of Theorem 1 in [6] . 

Let X be a separable metric space. If every dense in itself 

subset of X is of the first category relative to itself, then X 

is said to be always of the first category. We denote by CK(X) or 

simply 7C if X=R , the c5 -ideal of subsets of X which are of the 

first category in X and by :K*(X), or JC* if X=R, the 6-ideal of 

subsets of X which are always of the first category. A subset A 

of X has the Baire property (A 6!Ew(x) )if there exists an open 

subset Q of X such that A N Q 6 0*(X) and Q ̂  Xe CK(X). A subset 

A of X has the Baire property in the restricted sense ( A € *5$ ( X)) 

if for every subset B of X we have B n A 6 ^(B). If X is a 

separable complete metric space then for every A C X we have 

A 6 tffa) iff 9 0 0 £ 3r(x) [8] o We denote by A the family of 

subsets X of R such that every countable subset of X is a Jjg 

set in X [jBj . We denote by ®(x) the 6 -field of Borel subsets 

of X, A space X is called a universal null set if there is no 

continuous probability measure on SCX)« W e denote by (£0 the 

This paper is in final form and no version of it will be submited 

for publication elswhere. 
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6-ideal of Lebesgue measure zero subsets of R. There are survey 
articles [2] and [10] concerning the above notions. A family Cf of 
subsets of the real line R is called 6 -ideal on R if 
A0> A1f A2,...ey implies U { A

n
: n=0,1,2, ...].<: ;f and 3 ^ 9 ^ , 

J J T O and for every xeR we have {x} e J , If J is a 6-
ideal on R then we define (see [6]) 

,j = «£A C R J for every B C R such that there exists a 1-1 
Borel measurable function f: B Â we have B 6 ^ j". 

It is clear that 7 is a* 6-ideal on R such that y C^f • w© will 
need the following theorem concerning 0t*« 

Theorem 1 (f61). Let m1 = rain £ |Y| : Y C R and Y^ ft}. There 
is X c R such that | X | = m1 and X 6 5{*. 

Remark. We would like to remove a mistake in our proof of 

Theorem 1 in [6J • A reader who is interested in the proof of 

Theorem 1 in [6] should replace lines 18-24 on page 142 in [6] by 

the following " Let F̂  • U{ En : n<Cj]' w h e r e F * are closed in Y. 
Setting 

.we get 

En • ̂.ol<m1 : 0± C Y^F^j-for every KCJand every n<<y 

Z = ^ X Y I N H , (.±y E j x O ± ) (compare [1]). 
Let Ji be a countably generated and separating points 6 -field on 
HL. • Let € be a <S -field on m., generated by tft and the family 
{E? : ifn<cj}# It is clear that Z belongs to the product 6-field11 

Sierpiriski proved (see [16]), assuming CH f that there exists a 

continuous function f: R >R such that there exists X6 3C*with 

f(-0£5Br (and such that the restriction of f to X is 1-l). This 
theorem is true in ZFC. Namely we have the following 

Theorem 2. There is X€9C*such that there is a continuous func
tion f: R >R with f(X)^^ w. We can additionally have that f 

restricted to X is 1-1. 

Indeed, since for every A C R we have A€01 iff $ C A ) £ ' 3 W [8] 
it easily follows from Proposition 4 in [6] that there is Y6 5f* 
and there is a continuous 1-1 function f: Y >R with f(Y)^$w. 
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Now Theorem 2 follows from the following theorem of Sierpiriski 

(Corollary 2 in tl7]). 

Let ? be a family of subsets of R such that for every Fe °y 

we have: 

g{F)6 *y for every homeomorphism g from F into R, 

{F U A ) ^ B€ 7 for every countable A, BcR, 

Then 

-fgCF): F e T and g: -? >R is a 1-1 continuous function J- • 

fg(F)z F e 7 and g: R >R is a continuous function such that 

f restricted to F is 1-l}. 

A similar theorem for universal null sets can be found in [4] • 

Add that Theorem 2 also shows that Proposition C,g in [14]is simply 

a theorem of ZFC. 

It is clear that 3£* C 3C*and it is known (compare Remarkl in [6]) 

that assuming CH, (or Martin's Axiom)?? ̂  ft? We have the following 

Theorem 3« X ^ «^# 

Proof. We need the following 

Lemma 1. Let (Oi) = £ A c R : for every B C R such that there 

exists a 1-1 continuous function f: B—>A we have B6 7C ̂  Tlien 

(w) c - ft*. 

Proof. Since X* = X (see Proposition 3 in [6]) in order to 

prove Lemma 1 it is enough to prove (CJ£) = % . It is clear that 

tt.c(0£)Co Let A6(7C)C. In order to prove A 6 0< consider B £ R 

such that there is a 1-1 Borel measurable function f: B—>A. There 

are B^9 B2 such that B»B1 U B2, B1 6 M(B) and the restriction g 

of f to B2 is continuous C8]. We have g: B2—>A is a 1-1 

continuous function and A€(0C)c. Hence *&2$Vi a n d Be9{ , so A 6 DC. 

Lemma 2 (see [8 J or [10]). 

a) \ £ /£* 
b) Let X, Y C R be such that there is a 1-1 continuous function 

on X into Y. Then if YeX then XeA. 

Now let X e A . By Lemma 2, XefrC^. Hence by Lemma 1f X* 3C*. We 

have proved X C 0{*. The fact that X C£ CK* follows e.g. from A C Of* 
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and the fact that 3£* is a 6 -ideal on R whereas \ is known not to 

t>e eTen finite additiTe (Rothberger [12], compare [8] and [10]). 

We strengthen the following 

Theorem (sierpinski, Theorem 5 in [153). There exists uncountable 

subset A £ R such that each set B C R which is Borel isomorphic 

with A satisfies B e ^ n X ? 

Recall that Sierpinski*proTed that each selector from nonempty 

constituents of a coanalytic non-Borel set has the property as in the 

aboTe Theorem. Hence A in the proof of Sierpinski necessary has 

cardinality St*. We haTe the following (compare Theorem 3 in [53}. 

Theorem 4 . Let m1 - min { | x | : X^ft} f l e t m2 » min •£ |x| : x£ cC0} 
and l e t m = min -[BL , m2}. There i s A C R with |A|=m and: for.«Texy_ 
Borel isomorphism f: A—>R we haTe f(A)e<£ n7C*,, MoreoTer instead 
of that f i s Borel isomorphism we can assume that f" : f (A) ~>A 
i s Borel measurable (and f i s 1-1) . 

Instead of Theorem 4 we proTe more general 

Theorem 4* Let -[^5 t € T } be a family of _6 -ideals on R and 

let n be such that for eTery teT there is A ^ ^ with JA.J =n # Then 

there is AeO£cf+s teT}such that: 

a) if |T| ̂ . K Q , then we can haTe \k\ = n, 

b) if |T|^.$C.f then we can haTe |A| = min£tf:f
 n } f 

c) if Martin's Axiom holds and |T| ̂  2 ^°, then we can haTe|A|=n. 

Proof, a) Choose for eTery teT an A. € ̂ ?. such that J A. \ = n. 

Let X be an abstract set such that |x| = n and let for eTery 

teT f.: A.-->X be a 1-1 onto function. Let jb he a countably 

generated 6-field on X containing f.(2>(A.)) for eTery teT. In 

case a) we can take simply & = the <3 -field generated by the family 

U {f tCS(A J) : t e T}. Let g: X—>R be a characteristic function 

of a countable sequence of sets generating (fa, [18]. Define A=g(x). 

We claim that AeD-f^ t$T}. Let teT and let B C R be such 

that there is a Borel measurable 1-1 function f: B—>A. Observe 

that (fl g f)i B—JA^ is a_J-1 Borel measurable function. Hence 

we haTe B © X . because A^.e'J.. 

b) Choose for eTery teT an Â etf-i- BMOYI that Â . = min {n, X*X 
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Let f̂  and X be/such as in the case a ) . Choose for each t e T a 

countable family C t generating the 6 - f i e l d f t C 9 ^ t ) ) . We have 
| U { C t : t e T } ) ^ ^ . Hence by a theorem of Rao [11] there e x i s t s a 
countably generated 6 - f i e l d «# on X such that € t £ c # for every 
t 6T. Hence f C&CA^C^for every t € T. The res t of the proof i s as 
in case a ) • 

e) • The proof i s similar to a*) and b) but to have a countably gen
erated 0 - f i e l d c# we use the following f a c t s . I t i s known [9] that 
i f Martin's Axiom holds and ]x\ < 2^° then ^(x) i s a countably gen
erated 6 - f i e l d on X. Rao [11] and Bing, Bledsoe and Mauldin £1"] 
proved that for every set X such that /?(X^3>0-) - ' P f c x x ) we have 
that i f ^ C ^ x ) andl?|».£lx| then there i s a countably generated 

5 - f i e l d <^ on X w i t h ^ S <#,. Kunen (see C73 or [13] ) proved that 
i f we assume^Martin's Axiom then £(x)eStx) = 3>(X x X) for every X 
with |x)-$ 2 .(For X such that | x | ^ X j the l a s t statement i s a the
orem of ZFC, [11] or [73.) 

.if 
Theorem 4 follows from Theorem 4 a) because it is known that 

there is A.-€OC* such that \k^\ = m^ [6] and there is A2€ cC0' such 

that |A2| m m2 ([3] , compare [6]). 

Remark . If X C R and all Borel isomorphic images of X into R 

are in <£ A^K then all -Borel isomorphic images of X have to be in 

c^fA9£ , where c/T denotes the 6-ideal*of universal null subsets of 

R [6] .Recall that it is well known that <£ =<̂ V*(compare e.g. [2]). 
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