USA 13

Lech Maligranda

On commutativity of interpolation with intersection

In: Zdeněk Frolík and Vladimír Souček and Jiř̌í Vinárek (eds.): Proceedings of the 13th Winter School on Abstract Analysis, Section of Analysis. Circolo Matematico di Palermo, Palermo, 1985. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento No. 10. pp. 113--118.

Persistent URL: http://dml.cz/dmlcz/701868

Terms of use:

© Circolo Matematico di Palermo, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON COMMUTATIVITY OF INTERPOLATION WITH INTERSECTION

Lech Maligranda.

The purpose of this note is to present a partial answer to a problem of Peetre on commutativity of an interpolation method with intersection. We are interested, in particular, in the case of the real interpolation method.

First, we recall some notations from the interpolation theory used in [2] and [9].

A Banach couple $\bar{A}=\left\{A_{0}, A_{1}\right\}$ is a pair of Banach spaces A_{0} and A_{1}-both continuously imbedded in some Hausdorff topological vector space (thus $A_{0}+A_{1}$ is defined). F is an interpolation method if, for any Banach couple $\bar{A}=\left\{A_{0}, A_{1}\right\}, F(\bar{A})$ is a Banach space such that $A_{0} \cap A_{1} \subset F(\bar{A}) \subset A_{0}+A_{1}$, and for any two Banach couples $\bar{A}=\left\{A_{0}, A_{1}\right\}$ and $\bar{B}=\left\{B_{0}, B_{1}\right\}$, every linear operator that maps A_{o} boundedly into B_{o} and A_{1} into B_{1} also maps $F(\bar{A})$ boundedly into $F(\bar{B})$.

There exist plenty of interpolation methods, but we will use the real interpolation method. For any Banach lattice of measurable funce tions Φ on $\left(\mathbb{R}_{+}, d t / t\right), \mathbb{R}_{+}=(0, \infty)$ containing min $(1, t)$, the real interpolation method (or K_{Φ} method) $K_{\Phi}(\bar{A})$ is defined to consist of all $a \in A_{0}+A_{1}$ such that $K(\cdot, a ; \bar{A}) \in \Phi$ with the norm $\|a\| K_{\Phi}(\bar{A})=$ $=\|K(\cdot, a ; \bar{A})\|_{\Phi}$, where for $a \in A_{0}+A_{1}$ and $t>0$

$$
K(t, a ; \bar{A})=\inf \left\{\left\|a_{0}\right\|_{A_{0}}+t\left\|a_{1}\right\|_{A_{1}}: a=a_{0}+a_{1}, a_{0} \in A_{0}, a_{1} \in A_{1}\right\} .
$$

Observe that in particular if $\Phi=L_{t^{-\theta}}^{\mathrm{p}}\left(\mathrm{R}_{{ }^{\prime}}, \mathrm{dt} / \mathrm{t}\right), 0<\theta<1,1 \leq \mathrm{p} \leq \infty$, the space $K_{\phi}(\bar{A})$ coincides with the familiar space $\bar{A}_{\theta, p}$ of Lions Peetre.

Now, we should return to topic.

Let A_{0}, A_{1} and A_{2} be Banach spaces continuously imbedded in
some Hausdorff topological vector space, and let F be an interpolation method. We consider the Peetre's question: when is it true that

$$
\begin{equation*}
F\left(A_{0}, A_{1} \cap A_{2}\right)=F\left(A_{0}, A_{1}\right) \cap F\left(A_{0}, A_{2}\right) \tag{1}
\end{equation*}
$$

up to equivalence of norm; it is obvious that we have inclusion c. There arises the question when in (1) inclusion \dot{C} can be replaces by equality.

This problem is not yet solved but there are some partial results. The purpose of this note, is to present a partial answer to problem (1) by giving some general examples....

We note that if for $a \in\left(A_{0}+A_{1}\right) \cap\left(A_{0}+A_{2}\right)$ the following inequality

$$
\begin{equation*}
K\left(t, a ; A_{0}, A_{1} \cap A_{2}\right) \leq C\left(K\left(t, a ; A_{0}, A_{1}\right)+K\left(t, a ; A_{0}, A_{2}\right)\right) \tag{2}
\end{equation*}
$$

holds then so does equality (1) for the real interpolation method-. $F=K_{\Phi}$.

1. Peetre in [7] proved that if $\left\{A_{0}, A_{1}\right\}$ is a quasi-linearizable couple, i.e., there exist linear operators $V_{i}(t): A_{n}+A_{1} \rightarrow A_{i-i}-O_{r} 1$ (depending on $t>0$) such that

$$
\begin{aligned}
& V_{o}(t) a+V_{1}(t) a=a \text { and }\left\|V_{0}(t) a\right\|_{A_{0}}+t\left\|V_{1}(t) a\right\|: A_{1} \leq C_{1} K\left(t_{r} a \cdot \bar{A}\right) \\
& \text { for } a \in A_{0}+A_{1},
\end{aligned}
$$

and if moreover

$$
\left\|V_{1}(t) a\right\|_{A_{2}} \leq C_{2}\|a\| A_{2} \quad \text { for } a \in A_{2}
$$

then inequality (2) holds.
The couples $\left\{C, C^{1}\right\},\left\{L_{w_{o}}^{p}, L_{w_{1}}^{p}\right\},\left\{L^{p}\left(\mathbb{R}^{n}\right), W^{k}, P_{\left.\left(\mathbb{R}^{n}\right)\right\}}\right.$ are quasi-linearizable and the couple $\left\{L^{p_{0}}, L^{p_{1}}\right\}, p_{o} \neq p_{1} \cdot$ is not quasi-linearizable (see [6]).
2. It turns out that even for Hilbert spaces equality (1) need not hold, as it was shown in an example by Triebel [8]. Namely, we consider three spaces: $L^{2}=L^{2}(0,1)$, Sobolev space $W^{1,2}=W^{1,2}(0,1)$ and weighted $L_{W}^{2}=L_{W}^{2}(0,1)$ with weight
$w^{\prime}(x)=\min (x, 1-x)^{-1 / 2}$. Then for $\theta \in[1 / 2,1)$ we have

$$
\left(L^{2}, W^{1,2} \cap L_{w}^{2}\right)_{\theta, 2}=\left(L^{2}, W_{O}^{1,2}\right)_{\theta, 2}= \begin{cases}W_{O}^{\theta, 2} & \theta \neq 1 / 2 \\ \frac{1}{W^{2}}{ }^{2} \cap L_{W^{\prime}}^{2} & \theta=1 / 2\end{cases}
$$

and

$$
\left(L^{2}, W^{1,2}\right)_{\theta, 2} \cap\left(L^{2}, L_{W}^{2}\right)_{\theta, 2}=W^{\theta, 2} \cap L_{W}^{2}=W^{\theta, 2},
$$

where $W_{0}^{\dot{\theta}, 2}$ denotes the closure of $C_{0}^{\infty}(0,1)$ in the space $W^{\theta, 2}$. Hence equality (1) does not hold.
3. If $A_{0}=A_{1}+A_{2}$ then inequality (2) holds with $C=2$. Namely, if $0<t<1$ then from theorem 3 and 2 in [4] we have

$$
\begin{aligned}
2^{-1} K\left(t, a ; A_{1}+A_{2}, A_{1} \cap A_{2}\right) & \leq K\left(t, a ; A_{2}, A_{1}\right)+K\left(t, a ; A_{1}, A_{2}\right) \\
& =K\left(t, a ; A_{1}+A_{2}, A_{1}\right)+K\left(t, a ; A_{1}+A_{2}, A_{2}\right)
\end{aligned}
$$

and if $t \geq 1$ then obviously

$$
\begin{aligned}
2 K\left(t, a ; A_{1}+A_{2}, A_{1} \cap A_{2}\right) & =2\|a\| A_{A_{1}}+A_{2}=K\left(t, a ; A_{1}+A_{2}, A_{1}\right)+ \\
& +K\left(t, a ; A_{1}+A_{2}, A_{2}\right)
\end{aligned}
$$

Hence inequality (2) holds with $C=2$.
4. J.Peetre posed in [7] the problem of equality (1) for $F=K_{\theta, p}$ if we replace arbitrary Banach spaces by symmetric spaces. We prove here that not only (1) but also inequality (2) is true even for Banach lattices of measurable functions.

Theorem 1 (see [5]). If A_{0}, A_{1} and A_{2} are Banach lattices on (Ω, Σ, μ) then inequality (2) holds with $C=2$.

Proof. For each $\varepsilon>0$ there exist decompositions $a=a_{0}+a_{1}=$ $=a_{0}^{\prime}+a_{2}$ such that

$$
\begin{aligned}
& \left\|a_{0}\right\| A_{0}+t\left\|a_{1}\right\|_{A_{1}} \leq(1+\varepsilon) K\left(t, a ; A_{0}, A_{1}\right) \text { and } \\
& \left\|a_{0}^{\prime}\right\| A_{0}+t\left\|a_{2}\right\|_{A_{2}} \leq(1+\varepsilon) K\left(t, a ; A_{0}, A_{2}\right) .
\end{aligned}
$$

Put $U=\left\{s \in \Omega:\left|a_{1}(s)\right| \leq\left|a_{2}(s)\right| \mu-a . e.\right\}$ and define b_{o}, b_{1} by

$$
b_{0}(s)=\left\{\begin{array}{l}
a_{0}(s), s \in U \\
a_{0}^{\prime}(s), s \in \Omega, U
\end{array}, \quad b_{1}(s)= \begin{cases}a_{1}(s) & s \in U \\
a_{2}(s), & s \in \Omega \backslash U .\end{cases}\right.
$$

Then $b_{0}+b_{1}=a$ and $\left|b_{0}\right| \leq\left|a_{0}\right|+\left|a_{0}^{\prime}\right|,\left|b_{1}\right| \leq \min \left(\left|a_{1}\right|,\left|a_{2}\right|\right)$ н-a.e. Hence

$$
\begin{aligned}
& K\left(t, a ; A_{0}, A_{1} \cap A_{2}\right) \leq\left\|b_{0}\right\|_{A_{0}}+t\left\|b_{1}\right\|_{A_{1} \cap A_{2}} \\
& \leq\left\|a_{0}\right\|_{A_{0}}+\left\|a_{0}^{\prime}\right\|_{A_{0}}+t \max \left(\left\|a_{1}\right\|_{A_{1}} \cdot\left\|a_{2}\right\|_{A_{2}}\right) \\
& \leq 2(1+\varepsilon) K\left(t, a ; A_{0}, A_{1}\right)+2(1+\varepsilon) K\left(t, a ; A_{0}, A_{2}\right)
\end{aligned}
$$

and the proof is finished.
5. The following resilt is an impor ant application $2 £$ the Theorem 1.

Theorem 2. If all spaces A_{0}, A_{1} and A_{2} can be obtained by the K-method from a fixed Banach couple $\bar{B}=\left\{B_{0}, B_{1}\right\}$, i.e., $A_{i}=K_{\Phi_{i}}(\bar{B}), i=0,1,2$ then inequality (2) holds.

Proof: By the Brudnyǐ-Krugljak theorem ([3], Th.8.1) there exists a constant $\dot{\gamma}=\gamma(\bar{B})<14$ such that

$$
\begin{equation*}
K\left(t, a ; K_{\Phi}(\bar{B}), K_{\Phi_{1} \cap \Phi_{2}}(\bar{B})\right) \leq \gamma K\left(t, K(\cdot, a ; \bar{B}) ; \widetilde{\Phi}_{0}, \widetilde{\Phi}_{1} \cap \widetilde{\Phi}_{2}\right), \tag{3}
\end{equation*}
$$

where $\widetilde{\Phi}_{i}=\left\{f: \widetilde{f} \in \Phi_{i}\right\},\|f\|_{\widetilde{\Phi}_{i}}=\|\widetilde{f}\|_{\Phi_{i}}$ and $\widetilde{f}:=\operatorname{inffg}: g \geq|f|$ a.e. and g concave\}.

The same argument as in the previous theorem shows that inequality

$$
\begin{equation*}
K\left(t, b ; \widetilde{\Phi}_{0}, \widetilde{\Phi}_{1} \cap \widetilde{\Phi}_{2}\right) \leq 2\left(K\left(t, a ; \widetilde{\Phi}_{0}, \widetilde{\Phi}_{1}\right)+K\left(t, a ; \widetilde{\Phi}_{0}, \widetilde{\Phi}_{2}\right)\right) \tag{4}
\end{equation*}
$$

holds.

$$
\text { Since } \Phi_{i} \text { are Banach lattices we have }
$$

$$
\begin{aligned}
& K\left(t, K(, a ; \bar{B}) ; \tilde{\Phi}_{0}, \widetilde{\Phi}_{i}\right)=\inf \left\{\left\|\tilde{x}_{0}\right\|_{\Phi_{0}}+t\left\|\tilde{x}_{i}\right\|_{\Phi_{i}}: K(\cdot, a ; \bar{B}) \leq x_{0}+x_{i}\right\} \\
& \leq \inf \left\{\left\|K\left(\cdot, a_{o} ; \bar{B}\right)\right\|_{\Phi_{0}}+t\left\|K\left(\cdot, a_{i} ; \bar{B}\right)\right\|_{\Phi_{i}}: a=a_{o}+a_{i}\right\} \\
& =K\left(t, a ; K_{\Phi_{0}}(\bar{B}), K_{\Phi_{i}}(\bar{B})\right), i=1,2 .
\end{aligned}
$$

Hence

$$
\begin{aligned}
K\left(t, a ; A_{O}, A_{1} \cap A_{2}\right)= & K\left(t, a ; K_{\Phi}(\bar{B}), K_{\Phi} \cap \Phi(\bar{B})\right) \\
& {[b y \text { inequality }(3)] }
\end{aligned}
$$

$$
\leq \dot{\gamma}_{K}\left(t, K(\cdot, a ; \bar{B}) ; \tilde{\Phi}_{0}, \widetilde{\Phi}_{1} \cap \widetilde{\Phi}_{2}\right)
$$

[by inequality (4)]

$$
\leq 2 \dot{\gamma}\left(K\left(t, K(\cdot, a ; \bar{B}) ; \tilde{\Phi}_{0}, \widetilde{\Phi}_{1}\right)+K\left(t, K(\cdot, a ; \bar{B}) ; \widetilde{\Phi}_{0}, \widetilde{\Phi}_{2}\right)\right.
$$

[by the above inequalities]

$$
\begin{aligned}
& \leq 2 \dot{\gamma}\left(K\left(t, a ; K_{\Phi_{0}}(\bar{B}), K_{\Phi_{1}}(\bar{B})\right)+K\left(t, a ; K_{\Phi_{0}}(\bar{B}), K_{\Phi_{2}}(\bar{B})\right)\right) \\
& =2 \gamma\left(K\left(t, a ; A_{0}, A_{1}\right)+K\left(t, a ; A_{0}, A_{2}\right)\right) .
\end{aligned}
$$

and the inequality (2) holds.
Immediately from Theorem 2 follows that if $A_{0}=A_{1}+A_{2}$ or $A_{0}=A_{1}$, or $A_{0}=A_{2}$ then inequality (2) holds.

In the special case when Φ_{i} are weighted L^{∞}-spaces with some concave weights, Theorem 2 was proved by Asekritova [1] in her dissertation by a quite different approach.

The problem what is the necessary and sufficient condition for the validity of (1); is still open.

I am grateful to V.I.Ovchinnikov who made accessible for me paper [1] at the time when I was in Woronež in December 1984.

REFERENCES

1: Asekritova I.U. "Real interpolation method for finite collection
of Banach spaces", Candidate Dissertation, Jaroslavl' 1984 (Russian)
2. Bergh J. and Läfström J. "Interpolation spaces. An introduction", Berlin-Heidelberg-New York: Springer 1976.
3. Brudny ${ }^{Y}$ 'Ju.A. and Krugljak N.Ja."Real interpolation functors", Jaroslavl' 1981 (Russian).
4. Maligranda L. "The K-functional for symmetric spaces", Interpolation Spaces and Allied Topics in Analysis (Proceedings, Lund, Aug. 29-Sept.1, 1983) Lecture Notes in Math. 1070, Springer 1984, 161-- 170.
5. Maligranda L. "Some property of interpolation spaces", submitted.
6. Peetre J. "Zur Interpolation von Operatorenräumen", Arch.Math. 21 (1970) \&. 601-608.
7. Peetre J. "Ưber den Durchschaitt von Interpolationsrăửen"... Arch. Math. 25.(1974)., 511-513.
8. Triebel. H. "Eine Bemerkung zur. nicht-kommutativen-Interpolation", Math.Nach 6 69 (1975), , 57.-60.
9. Triebel. H. i"Interpolation theory, function spaces, differential operators". Berlin: VEB Deutscher Wiss. 1.978.

INS:IIIUTE OF MATHEMATICS
POLISH ACADEMY: OF SCIENCES
MIELZYNSKIEGO 27/29
61-725 POZNAN, POLAND

