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PETTIS INTEGRATION 

Kazimierz MusiaJÍ 

1. INTRODUCTION. Recently, Geitz [4] has proved a Lebesgue Domlr 

nated Convergence type theorem for the Pettis integral defined on a 

finite perfect measure space. His proof is based on theorems due to. 

Fremlin [2] and James [5]. We show here that Geitz•s theorem holds 

for arbitrary finite measure spaces. Our proof imitates his one, 

however, instead of Fremlin1s theorem we use the following well known 

theorem of Mazur: If X is a normed space and {x : n e N} is weakly 

convergent in X to x e X, then there exist finite sets am,..., 
aZ( \' m = 1*2'••• o f non-negative numbers such that £--i a™ - 1 

*m' k(m) m «*"' ^ 

and lim £ ._.i a .x . = x in the norm topology of X. 
m ;j — i 3 3 ' •" 

The second problem we consider here is the problem of the appro
ximation of a Pettis integrable function by a sequence of pimple func
tions. In [7] it has been proved that if (£,Z,y) is a finite measure 
space, X is a Banach space, and f: S •+ X is Pettis integrable then 
f is approximated (in the Pettis norm) by a sequence of simple func
tions {f : n e N) if and only if the indefinite Pettis integral of 
/ has norm relatively compact range. In particular we have for such 
a function the following scalar approximation:'x*f -* x* f in measure 
y , for every functional x e X . 

In this paper we present necessary and sufficient conditions for a 

Pettis integrable function to be approximable by simple functions in 

the above scalar sense. 

2. TERMINOLOGY. Throughout X stands for a Banach space (real 

or complex), B (X) for its closed unit ball and X* for the conju

gate space. S denotes a non-empty set, I is a a-algebra of subsets 

of S, and y is a finite measure on Z. W(y) denotes the family 

of \x-null sets. 
A function /: S -*• X is weakly measurable if the scalar func-

x f is measurable for each x* e X* (i.e. (x*f) (BD) c i) 
* R 

The function / is scalavly integrable if x f e L-| (y) for 
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each x* e X . 
The function f is Pettis integrable on I (or on (S,l,\x)) 

if there exists a set function v: I -*• X such that 

x*v(E) = J^ *Vdy 

for all x* e X* and E e Z. In that case we write . 
v(E) = Jff fdy 

and v 'is called the indefinite Pettis integral of f on z (or 

on (5,Z,y)). 

A function f: S + X is weakly uniformly bounded if there.is 

a constant M such that v* \x*f\ < M\\x \\ y-a.e. (the exceptional set 

may vary with• x ) . 
A family H of scalar integrable functions is uniformly inte

grable if 

l i l t lu(E)-0 lB l?!lcf,J = ° 
uniformly for h e H. 

(S,Z,y) is said to be separable if it is separable in the Fre-

chet-Nikpdym metric (p (E,F) = y(E A F)). 
If Z 0 is a sub-a-algebra of z, then E(h\l ) denotes the 

conditional expectation of h with respect to --0-

If F c ? (S) then a(F) is the o-algebra generated by F. 

B denotes the a-algebra of Borel subsets of the real line R. 

3. LIMIT THEOREMS. The theorem we are going to present now is 

a Pettis analogue of Vitali's convergence theorem. Conditions (a) _.. 
and (b) of this theorem guarantee that for each x e X and E e l 
the sequence {J„x fnd\i: n e N} is convergent to J x fd]i, and that 

the set {x f: x* e B(X*)} is weakly compact in L1 (y) . The condi

tions (a) and (b) may be replaced by any others guaranteing the above 
weak compactness and the convergence of the appropriate scalar. 

integrals. 

THEOREM 1,(VITALI CONVERGENCE THEOREM FOR PETTIS.INTEGRAL). Let 
f: S -*• X be a function. If there exists a sequence {f : n e N} of 
X-valued Pettis integrable functions on S such that: 

(a) The set {x f : x e B(X )> n e N} is uniformly integrable, 
(b) lim x f = x f in measure, for each x e X 3 

n n * w 

then f is Pettis integrable and lim f„ f d\i = f„ fd\i weakly in 
X, for each E e l . 

PROOF. Assume at the beginning that X is a real Banach space. 

Fix E e l , and let C be the weak closure of the set 
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{/_ fndv: n e N}. Since Vitali's convergence theorem guarantess that 

limn J_ x*fnd\i =/ x*fd\i * for each x* e X*, we see that C is bo

unded and C\{J„ fnd\i'. n e N} consists of at most one point. In or

der to prove our assertion it is sufficient to show that C is weakly 

compact, since this yields the existence of the weak limit of 

{/_ fnd\i: n e N} in X. Clearly the limit can only be equal to 

J fd\i, and so we shall be able to conclude, that / is Pettis inte-

grable on E, and hence an the whole of _. 

Suppose therefore that C is not weakly compact. Then, according 

to a theorem of James ([5], Th.1) there exist a bounded sequence 

{x :. n e N} , a sequence {x .: n e N} c C, and a > 0, such that 
xk^xv) = ° f o r k > n a n d x?.(x )..>. B for .. k _ n- . 

Consequently, we can .find a subsequence {g ^.m e N} of 

{f : n e N} and a subsequence {y*: m e N} of {x*: n e #} / such that 

(̂) /^ y*:9m
dv =• ° f o r K > m, 

(H) JE y*yQm
dV > e f o r & -S »-, 

K££) lim^ /_ ar a^dy = /_ x* fdv, for all x* e X*. 

* Consider now the set {y f^ me N}. It easily follows from (a) 
'7/T 

that this set is uniformly integrable and bounded in L-j(y). Hence, 

it is relatively weakly compact. This yields the existence of a func

tion h e L, (y) and a subsequence {z*.i 3 e N} of {y* ^ m e N} - such 
* 3 m * 

that lim. z .f = h weakly in L- (y) . Applying (Hi) for all z . 
3 3 * 3 

we get an inequality J z .fd\i _ e and hence J hd\i > e. 
- 3 - mm 

Now we shall appeal to the theorem of Mazur. Let a-,...,a, / x .» 
in e JV, be non-negative numbers, such that £ . a77! = 1 and 

m -k 3 3 

lim (2 . a .s .. /) - h in _..(y). Without loss of generality, we may 

assume, that the above convergence holds y-a.e.. Clearly, if z 

is a weak* cluster point of the sequence {£ . am.z*+ : m e N} , then 

h = z*f y-a.e. In particular, we have 

(iv) /_ z*fd\i _ e. 

On the other hand, since each g is Pettis integrable, the 

functional x ->- /„ x gnd\i is weak continuous. Hence, if. {w } 

is a subnet of {V . a .z ., : m > n} that converges weak to z , 
3 3 3+™ * o 

then, applying (i), we get 
0 = l im f_ w g d\i = l im w J - g d\i = z J „ g d\i = J „ z q d\i. a JE na yn a na JE yn o J E yn J ff oyn 

Since this-holds for each n e IV , we see from (Hi), that 

/_ s /dy = 0. But this contradicts the inequality (iv). 
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It follows that C is weakly compact and so the real part of 

the theorem is proved. 

Assume now that X is a complex Banach space, and denote by 

X* the real conjugate of X. According to the real valued version 
IT 

already proved there exists a set function v: E -+ X such that for 

each z* e X* and E e l the equality 

z*v(E) = fE z*fdv 

holds. Consider x* e X*, then, there is a (unique) z* e X* such 

that 

x*(x) = z* (x) - iz* (ix) 

for all x e X. Then, consider an operator T: X -> X given by 

T (x) = ix. As T is i?-linear and continuous we have 

iv(E) = Tv(E) = fE Tfdv = fE ifdv. 

where the integrals are taken with respect to X*. 
Ix 

It follows that 

x*v(E) = z*v(E) - iz*liv(E)l = 

= fE z*fd\i - ifE z*(if)dv = 

= fE lz*f - iz*(if)ldv = fE x*fdv 

Thus, the theorem is completely proved. 

As a direct consequence of Theorem 1 we get the following gene

ralization of the classical Lebesgue Dominated Convergence Theorem: 

THEOREM 2 (LEBESGUE DOMINATED CONVERGENCE THEOREM FOR PETTIS 

INTEGRALS Let f: S •> X be a function satisfying the following two 

conditions: 

(a) There exists a sequence of Pettis integrable functions 
•k -k 

f : S -> X, n e N, such that lim x f = x f in measure, for each n ^ n n J ' J 

x e X j 

(3) There exists a Pettis integrable function g: S -*• X such 

that \x*fn\ -- \x*g\ \i-a.ey for each x* e X* and n e N (the 

exceptional set depends on x ) . 

Then f is Pettis integrable and lim f f d\i = /„• fd\x we

akly for all E e Z. 

PROOF. If g: S -*• X is Pettis integrable then the family 

{x g: x e B(X )} is uniformly .integrable and bounded in L* (\i) 

(this is an easy consequence of the countable additivity and the u-

-continuity of the indefinite Pettis integral of g (cf.LM, Theorem 

II.3.5) 

It follows that the assumptions of Theorem 1 are satisfied. 
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REMARK 1. Replacing the function ^ in Theorem '2; by ja. func-' 

tion h e L] (y) satisfying, for each :'x*. and n;> . N,••.;'a;cpricUtioh^ ; 

\x*f | < | h | y-a.e., we get the same .coriplus ion concerning. ;ĵ..;;Btit 

such a form of Theorem 2 is essentially weaker from the orginal; pneV 

Namely, it follows from Musia^ (C6J, Proposition 1) that if • g is. 

Pettis integrable, then one can only find a measurable partition 

{E i n £ N} of S and, a sequence of functions <j> e L«j (y) # n e Nt 

such that for each n and #* the inequality \x*g*En\ - H n ' 

y-a.e., holds. If the variation of the indefinite integral of g is 

infinite then the. functions <j> , n e N, cannot be replaced by a single ̂  

function <j> e L-j (y) . 

4. SEQUENTIAL APPROXIMATION BY SIMPLE FUNCTIONS. It has been 

proved by* Musia,t ([7], Remark 1 and Corollary 1 ) that if v is the 

indefinite Pettis integral of f: S -* X, then v(E) is a norm rela

tively compact set if and only if / can be approximated by simple 

functions in the sense of Pettis norm, i.e. if there is a sequence 

f : S •*• X, n € N, of simple functions, such that 

lirn̂  sup{js \x*fn - x*f\dv\ ** e B(X*)} = 0 

In this section, we show, that if one does not order theuniform 

convergence on B(X*), then one gets a condition which is equivalent 

to the separability of v(Z). 

THEOREM 3. Let f: S + X be a Pettis integrable function on 

(S3Z3\x) and, let v: Z + X be its indefinite integral. Then, the 

following conditions are equivalent: 

(i) {x*fi x* e B(X*)} is a separable subset of L-j(y)., 

(ii) There exists a o-algebra E c z suoh that (SjZ,0*\i\z 0) 

is separable and f is weakly measurable with respect 

to z0; 

(Hi) There exists a sequence {fn* n e N} of X-valued simple 

functions, suoh that for each x* e X* one of the follo

wing conditions is satisfied: 

(a) ^x*fn
l n € N} is uniformly integrable and \i-a.e. -

* 

convergent to x f3 

(b) ^x*fn
l " e -V} is uniformly integrable and convergent 

in vmeasure to x*f, 

(c) {x*f : n e N} is convergent to x*f in L .*(y), 

(d) ^x*fn
x n c ®} iQ convergent to x*f weakly in L-|(y), 

(iv) v(Z) is a separable subset• of X. 
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PROOF. (i -v ii) Assume that the set {x*f: x* € B(X*)} is se- . 

parable. Then, there exists a sequence {xn: n € tf} in - B(X*) , such 

that {#.*/: n e N} is dense in {x*f: \\x*\\ <. 1}. If 

E0. =
 a[Un=1 K ^ " 1 ( V u W ( y ) ] t h e n c l e a r l y ulZo is separable. 

Take an arbitrary x* e B(X*)* Then, by the assumption, there 

exists a sequence {x*,: k e N}, such that xnyf + x*f i n I>r(S,z,\x) • 

It follows that there is a subsequence of {xnvfl ^ e -V) converging 

to x*ff on a set S\N with \i(N) = 0 . But W(y) <= £0 , and so 

/Y € Z0 . It follows that a?*/ is z0-measurable. 

(•££ •> iiia) Assume that / is weakly measurable with respect to 

a separable (S,Z0,\i\z0) and, let. ? = a({£ : n € -V})
 c -V b e a 

countably generated a-algebra which is y|ZQ-dense in Z 0. Moreover, 

let ir be the partition of S generated by the sets Ei ,. .. ,E . 
n . . . . . . . . . i n 

Put for each n ,. /Px 

; v=^e%^v";"wo;=:d>"; 
It is well known that {,/Vf a (iTn) } _7 is an X-valued martingale 

and x*/n -̂  E(x*f\l) in 'L-j (S,E ,y l£). (Cf. [8],.Ex. IV. 3.2) and. 

ylz-a.e. (cf. [1], V. 2.8). Moreover, the conditional expectation . 

operator is a contraction on L^ (y \l) and so we have / [x*fn\d\i. $ 

is / Ia;*/|iiy for all n e N. This yields the uniform integrability 

of {x*fn: n € N } . As by the assumption f is dense in l0, we have 

5 (**/]?) =„x*f. y-a.e.f and so «*/ n + a:*/ u|Z 0-a.e. 

This completes the proof. 

The implications (a + b •*• c + d) are obvious, and so it remains 

to prove that (aid) yields (iv) . 

(Hid •*• v) The condition (Hid) means exactly that for each 

Eel the sequence {/ fnd\i: n e N} is weakly convergent to 

/_ fd\x . Hence v (2 ) is contained in the weak closure of the set 

U v (I), where v n is the indefinite Pettis integral of fn. As 

each set v n(E) is finite dimensional, the union is weakly separable. 

But according to the well known result of Mazur, the weak and norm 

separability in Banach spaces coincide. 

(iv •*• i) Suppose that {x*f: \\x*\\ < 1} is not separable. We 

shall prove that v(E) is non-separable. To do it take an arbitrary 

x*2 e X * with ||a,*I = 1 and h1 e Lm (y ) , such that <h1,x\f> = 1 

(<x ,x> denotes the value of x* on x) . Then, assume that we have 

already constructed for an ordinal 3 < co <j a family 

{(x ,h ) : a < 3} with the following properties: 

(a) x* e X* and \\x*\\ = 1, 

(3 ) ha e L ^ O O f 

(Y ) x*f ^-lim[aj*/: a < y} for each y < 3 f 
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(6) <h ,x*f> = J 1 i f a = Y < 3 Y aJ < 
[0 i f a < Y < 3 

S ince {x*f: \\x*\\ < 1} i s n o n - s e p a r a b l e , we can f ind x* e X*, 
3 

such that ||a?ill = 1 and x*f i l±n{x*f: a < 3}. Then, applying the 
P p a 

Hahn-Banach theorem we get h. e L (y) such that <hn,x*f> = 1 and 
g co 3 P 

<hofx*f> = 0 for all a < 3. 

Consequently, we get a net { (x ,h ) : a < OJ-j } satisfying (a)-($) 

for all a,3fY less then a>-. 

Consider now an operator T: X* •* L<\ (y) given by Tx* = x*f* 

It is well known (and easy to see) that T is continuous. 

It is easy to see that for a < 3 we have 
\\T*bQ - T*h || > 1 

* p a 
and so t h e s e t ' T Loa(\s) i s n o n - s e p a r a b l e i n X**. 

But lin{x„: Eel} is norm dense in L (y) and so linv(E) is 
CJ oo 

norm dense in T*Loo(\i) . It follows that v(E) is non-separable. 

This completes the proof of the whole theorem. 

REMARK 2. The uniform integrability of the sets *{x*fn : n e N} 

appearing in conditions (iiia) and (iiib) may be replaced by the unî -

form integrability of the set {x*fni n e N, x* e £(X*)}*This follows 

easily from the proof of (ii -* iiia) if one applies the uniform inte

grability of the set {x*fi \\x*\\ < 1}. 

REMARK 3. Theorem 3 holds for arbitrary normed spaces. The proof 

needs no change. 

Combining Theorem 1 with Theorem 3 and Remark 2 we get the follo

wing characterization of Pettis integrability in the case of separable 

measure spaces: 

THEOREM 4. Let (S>Z>\i) be a measure space and let f: S -+ X 

be a function. Then> f is Pettis integrable on l and weakly measu

rable with,respect to a separable measure space (SsZQjy|l0) • if and 

only if there exists a sequence {f z n e N} of X-valued simple 

functions on S such that: 

The fam 

grable3 

(a) The family {x*/ : n e Ns x* e B(X )} is uniformly inte-

(b) For' each x* e X* lim x f = x*f \i<-a.e. 
n J n J 

In the particular case of bounded functions we get the following 

result: 



140 KAZIMIERZ MUSIA£ 

THEOREM 5. Let (£JI_,y) be a measure space and let. "f\ S -> X 

be a weakly uniformly bounded function. Then, f is fettis integrable 

On Z and 'weakly measurable with respect to a separable measure space 

{?>£&* *VIs ) if and only if there exists a bounded sequence 
{f : n £ N} of X-valued simple functions such that lim . x*f ' =~ x*f n : . _• - n n • 
\i-d.e.j for all x e X (the exceptional sets depend on x ). 

REMARK 4. As it has been proved by Stegall, the range of an in

definite Pettis integral of a function defined on a perfect measure 

space is norm relatively compact. It_follows from Theorem 3 that such 

a f_unction is_.weakly measurable with_ respect _to__a. separable.measure 

space._ Hence, Theorems 6 and 7 _ of Ge_i t z £4J,_are_. particular__cases ..of 

Theorem 4 and 5.respectively. _ 

Let come back _to Theorem.3, It.-is a natural .question .whether 

the _separa.bi.lity condition ( ii ) . can be replaced, by. the following 

stronger .one: 

„ _There exists. a countably generated. . aTalgebra.. z c i- sucJi .that 

f is_weakly measurable with respect to the u | i-completion o£._.?• 

Unfortunately, the answer in negative (at least if. one assumes 

the Validity of Martin's Axiom). We begin with an easy consequence 

_of Theorem 34 of Talagrand C9J. 

. PROPOSITION 1 (.MA). Assume that (S_.__,u) is such that z is 

contained in. a \x\Z-completion of a countably generated a-algebra 

I. If f: S •* X is Pettis integrable then the indefinite Pettis 

integral of f has norm relatively compact range. 

PROOF. Without loss of generality we may assume / to be 

weakly uniformly bounded. Let H = {x f: x* e B(X*)}. As H is 

compact in the topology of pointwise convergence we can apply The

orem 34 of [9]. Thus, if {a:*: n e N} is a sequence in B (X*) , 

then there is a subsequence {x* : k c N} such that {#* f:k e N} 
nk +nk 

is u-a.e. convergent. It follows that an operator T: X •+ L*(\\) 

given by Tx = x f is compact. Hence T is compact as well, and 

this yields the relative compactness of the Pettis integral. 

Now we are ready to prove the existence of a Pettis inte

grable function f such that its Pettis integral is separable but 

f is not weakly measurable with respect to any Z which would be 

contained in a \i\Z-completion of. a countably generated Z. 
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, EXAMPLE. (MA). Let W be an infinite set. Identifying VW with 
W the set of characteristic functions (0f1> we can introduce on PW 

the product topology and the Haar measure u. It has been proved by 

Talagrand (t9l, Theorem 10) that there exists an extension u of 

u to a a-algebra Z such that all non-measurable filters on W 

are of u-measure one. 

Let , X = y x y be the direct product measure on PW*PW and let 

ft PW x Pw + lw(W) be given by 

f(a,b) = Xa - xb , 

where x is the characteristic function of a set o c w% 

It is proved in (131, 2D) that f is Pettis integrable on 

a (Z x i) r the range of its indefinite Pettis integral is always non . 

relatively compact, and for uncountable W it is even non-separable* 

Thus if W is uncountable^ then f cannot be approximated by any 

sequence of simple functians, in the sense considered in this papers-

Assume now that W is countablef and denote hy B the a-alge

bra of Borel subsets of PW x PW. Clearly B is countably generated-

Suppose that there ia.a countably generated z such that / -

is weakly measurable with respect to a z0 c a(Z x z) being the. 

completion of Z with respect to: X|z. Without loss.of generality, we. 

may assume that. B c z . But then, it follows from the construction, 

of Z that z0 is X-dense in o(I.x E ) . In particular the inde-. . 

finite Pettis integral of / on ZQ (which is relatively com

pact by Proposition 1) coincides with the indefinite Pettis integral 

on a(Z x z) (which is non relatively compact). 

Thusf we have got a contradiction, which proves that the a-al

gebra with respect to which / is weakly measurable cannot be too 

small. 

REMARK 5. Let us also observe that the function f used in the 

above example in the case of countable W gives an answer for a 

long outstanding question concerning the existence of conditional 

expectations of Pettis integrable functions.':'.Indeed, if there 

existed the conditional expectation E(flB) of f with respect to 

B, then the equality 

!E E(f\B)d\ = fE fdX 

would hold for arbitrary E c B. But B is X-dense in a(z x z) 

and so the equality would be true for all E e o(l x z). This cle

arly gives a contradiction, because according to the result of 

Stegall ( [3], 3J) the set {/ E(f |B)dX: E e B} is norm relatively 

compact. 
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Observe yet, that according to Proposition 1, a similar result 

holds for arbitrary C ^> B being a completion of a countably gene

rated C with respect to A|C. 

If one does not want to use the result of Stegall, then the non 

existence of E{f\Z * PW) can be proved. Namely, an easy calcu

lation shows that if E(/|E x PW) existed it would be equal to 

1 1 

X ~ ("o) r where (-j) e l^(W) is the sequence with all coordinates 

equal to 1/2. But according to ([3], Theorem 2B), the function 

a •+ x is not Pettis integrable with respect to y, and so 

X - (T/2) is not Pettis integrable on I as well. 
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