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REMARKS ON POWERS OF, LATTICES 

A.Biaszczyk 

A cardinal 6 is called an <o-power if B ° « B. A well known re
sult of R.S.Pierce £7] says that the power of every infinite com
plete Boolean algebra is an co-power. Subsequently J.D.Monk and. 
P.R.Sparks [63 and W.W.Comfort and A.H.Hager .21 have shown that 
the same is valid for (̂ --complete Boolean algebras. This result 
was improved by S.Koppelberg C4] ; she has proved that it holds 
for weakly-C-complete Boolean algebras. Recently E.K. van Douwen 
and H.-X.Zhou L33 have obtained a topological theorem which is 
closely related to these results. They have proved that for every 
compact Hausdorff space Xf the power of the lattice L(X) « ilntclU 
: U is a cozero-set in X) is an co-power. Note, that the family of 
all regular-open subsets of a topological space X forms a complete 
Boolean algebra containing L(X) as an upward <r-complete sublat-
tice, i.e. L(X) is closed under suprema of countable subsets. This 
leads to a natural question (see C33 ) : which lattices have power 
being co-power ? Concerning this question I have obtained in E11 
the following results : 

Theorem 1• There exists an upward Gr-complete sublattice L of 
a complete Boolean algebra such that ILI is not co-power. 

In the next result Bc stands for the completion of an algebra B 
and the inequality u « w means that u,w eBc and for every ultrafil-
ter F C B such that X A U ^ O for every x eFf there exists y *F such 
that y ^ w. 

Theorem 2. If B is an infinite Boolean algebra and L is an up
ward cr-complete sublattice of B c such that B ^ L c B 0 and for every 
u * L there exists {un : n<co}cL such that inf l u A U n : n < co } « 
«• 0 f u v u a. 1 and u «<&u^ fox every n < co f then I LI is an 
co-power. 

The next result shows that the assumption that L is upward CT-
-complete and B C L C B C does not suffices for proving in ZFC that 
t L I is an co-power. Homely, we have 

v_>_._:._._ . _-_. __I-.I_- ill* 
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Theorem 3. If 2 n -£*«.nv| for every n<co $ then there exists 
an infinite Boolean algebra B and an upward G'-complete sublattice 
L of Bc such that B C L C B C and |L|is not co-power. 

The aim of this note is to show that under the assumption of 
generalized continuum hypothesis (GCH) the situation is quite dif
ferent. To do this I shall adapt an idea due to S.Koppelberg [53 . 

Theorem 4. Assume GCH. If B is an infinite Boolean algebra and 
L is an upward c-complete sublattice of Bc such that B c L C B 0

 f 

then |L[ is an co-power. 
Proof. Let B -= |B( ̂ co • Since |BC|$ 2 l B l -=- B + f the power of 

L equals either B or B + . Clearly, we may assume that I LI « B and 
B is a limit cardinal, i.e. B « sup{6> : ̂  < cf(B) } , where Bj < 
<6 ? < B for every ^<^<cf(B). If cf(B)> X Q f then by Tarski's for
mula, we get,, ^ ., 

B ^ ° « (sup{B^ : J<ef(B)J) ° - sup{(Bp ° : \< 
<cf(B)} . B. 

So, it remains to show that cf(B)> /<0# Assume the contrary : B « 
• sup{Bn : n<co}i where B n < B k < B for every n<k<co . Let L « lu^: 
"̂  < B} and Ln « L<\Bn , where B n is a subalgebra of B

c generated 
by the set {u> : ̂ -< Bn \ . Then every L is a sublattice of L and 
it has the following property : 

(1) if u frLn and -u t L, then -ueLn . 
Now, for every u t L we define 

i(u) * min i i : u e. L̂ ^ \ . 
Since L «U{L n : n<co}, the index i(u) is well defined for every 
u*L. Condition (1) follows that i(u) • i(-u) for every u * B ;-
recall that BCL. We define by induction a sequence (z : n<co}c 
C B such that 

(2) 0 < zni.-j < zn for every n < co , 
(3) n < p implies i(zn)<i(z ), 
(4) for every n < co , I B C z I -- B, 

where B Is z «tx«:B : x$ z J • Assume ZQ,«..,Z are just defined* 
Since I L.|/n\ I 4

 Bi(n) < fi and lB r znl " fif there exists x fcBr- z n 

such that x ̂ ^/z )• Since the sequence £L : n<cj\ is increasing 
we get n 

0 < x < z n and i(zn)<i(x). 
If iBrxl m Bf we set zn+1 = x. If not, then (BFs -xl « B and. we 
set zn+1 * zn~3C# Since 1( u) • *{-u) *or ©very u ^ B and -x « -z n v 
v(zn-x)f i(znVj) • i(x)>i(zn). Now, for every n<cj we set 

% c 2 n -.an+1 • 
The sequence lu : n < co $ consists of non-zero disjoint-elements 



REMARKS ON POWERS OF LATTICES 13 

of B and, by the condition (3), ifa^) • 1( z
n +i) *

o r every n< co . 
Hencef the set N • t^

1^) : n< co } is infinite. There exist infi
nite pairwise disjoint sets Nfc such that N = <^{Nk : k < c j 1 # 
Since the lattice L is upward c-complete, for every k<CJ there 
exists an element s-fc L such that 

sk « sup iu n : i^J^N-^lf . 
The set { sfc : k < co \ consists of disjoint elements and for every 
k < co there exists u^/^) < sk such that 

( 5 ) i ( u n ( k ) ) ̂  m a x t k f i(sk) } , 
which follows from the fact that every set N k contains arbitrary 
large indexes. Now, we set 

w «s sup £ Ujj/fc) : k < co \ . 
Note that W A S J . ^ ̂ V k ) * H e n c e» ^y condition (5)f i(w)^

 i(^n(]C)) 

for every k < co • Then, again by the condition (5)f i(w)>k for 

eveicy k < co f which is absurd. The proof is complete. 
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