USA 13

Igor Kříž; Aleš Pultr
 Products of locally connected locales

In: Zdeněk Frolík and Vladimír Souček and Jiří Vinárek (eds.): Proceedings of the 13th Winter School on Abstract Analysis, Section of Topology. Circolo Matematico di Palermo, Palermo, 1985. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplements No. 11. pp. [61]--70.

Persistent URL: http://dml.cz/dmlcz/701880

Terms of use:

© Circolo Matematico di Palermo, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

PRODUCTS OF LOCALLY CONNECTED LOCALES

I.Křiž and A.Pultr, Prague

Abstract

Products of connected topological spaces are connected for a very simple reason: in $X \times Y$ one has the connected copies $X \times\{y\}$ of X and it suffices, e.g., to cross them by a connected $\{x\} \times Y$. More generally, if X is connected and Y general, and if $X \times Y$ is decomposed into two disjoint open set.s U_{1}, U_{2} we can consider again the connected $X \times\{y\}$ and realize that each of them is contained either in U_{1} or in U_{2}; this gives rise to the obvious decomposition $Y=$ $V_{1} \cup V_{2}$ such that $U_{i}=X \times V_{i}$.

Now when dealing with general locales one cannot imitate the mentioned reasoning. We do not have the points which have been so important. The question naturally arises as to whether the facts hold true at all, i.e.:

Are products of connected locales connected? More generally if A is a connected locale and if $1(A \oplus B)=a_{1} \vee a_{2}$ with $a_{1} \wedge a_{2}=0$, is there a decomposition $1(B)=b_{1} \vee b_{2}$ such that $a_{i}=1(A) \oplus b_{i}$? The first of the mentioned problems seems to be open, the second one is answered in the negative (a counterexample, which is rather complex, will be presented elsewhere). The purpose of this article is to deal with the simplest positive case, namely that of locally connected locales. Namely, we prove that the answer of the second question is affirmative if A is a product of connected locally connected locales (see Theorem 4.7 and also 4.8). We prove, too, that the answer is affirmative in the case of general connected A and locally connected B (Proposition 4.10). Besides, the almost trivial case of A a product of spatial locales and B spatial is dealt with (Theorem 3.12).

The usual notation and terminology of the theory of locales is used (as, e.g., in[2],[3]). In the definitions of connectedness and local connectedness we keep the classical form, not the modified one from [4.]. In expressing facts, the locale point of view

is preferred (to keep parallel with the topological spaces), on the other side, for simplicity reasons, we count and work with symbols in fremes (see 1.1 and, in particular, section 2).

1. Preliminaries

1.1. A frame (locale) is a complete lattice A satisfying the distributivity, law

$$
a \wedge \bigvee_{J} b_{i}=\bigvee_{J}\left(a \wedge b_{i}\right)
$$

The bottom resp. top of A will be denoted by
O(A) resp. 1(A)
or simply by 0 resp. 1 if there is no danger of confusion. A locale A is said to be nontrivial if $O(A) \neq 1(A)$.

Frame morphisms are mappings $f: A \rightarrow B$ such that $f(0)=0, f(1)=$ $=1, f\left(a_{1} \wedge a_{2}\right)=f\left(a_{1}\right) \wedge f\left(a_{2}\right)$ and $f\left(\bigvee_{j} a_{j}\right)=\bigvee_{j} f\left(a_{j}\right)$. The resulting category will be denoted by

Frm,
its opposite, the category of locales, by
Loc.
Throughout the paper we will often use the locale point of View while the notation will be kept as in Frm. Thus, we may speak about a sublocale B of A, but represent it as a surjective morphism $f: A \rightarrow B$. Or speaking about products of locales, the diagrams will be written as coproducts of frames.
1.2. For a topological space X denote by

$$
\mathscr{N}(\mathrm{X})
$$

the locale of its open sets. If $f: X \rightarrow Y$ is a contin'us map then $\mathscr{O}(f): \mathscr{O}(Y) \longrightarrow \mathscr{O}(X)$ defined by $\mathscr{O}(f)(u)=f^{-1}(u)$ is obviously a frame morphism. Thus, a (covariant) functor

$$
\mathcal{D}: \mathrm{Top} \longrightarrow \mathrm{Loc}
$$

is obtained. A locale isomorphic to an $\mathcal{D}(X)$ is said to be spatial.
1.3. A subset $U \subseteq A$ of a locale is called cover if $V_{U}=1$, it is said to be a basis of A if

$$
\forall a \in A \exists U(a) \subseteq U \text { s.t. } a=V U(a)
$$

Obviously, each basis of A is a cover of A.
1.4. For an element a of a locale A denote by

[a]

the interval $\{x \mid x<a\}$. It will be viewed as a locale endowed by the $0, \wedge$ and V from A and by $1([a])=a$.

The frame morphism

$$
\mathrm{p}=\mathrm{p}_{\mathrm{a}}: \mathrm{A} \longrightarrow[\mathrm{a}]
$$

given by $p(x)=a \wedge x$ represents the embedding of $[a]$ in A as a sublocale.
1.5. The complement of an $x \in A$, i.e. the largest $y \in A$ such that $\mathrm{xAy}=0$, will be denoted by \bar{x}.
An element is said to be complemented if

$$
x \vee \bar{x}=1
$$

1.6. Let U be a subset of a locale A. A U-chain between $a, b \in A$ is a sequence u_{1}, \ldots, u_{n} in U such that

$$
a \wedge u_{1} \neq 0, u_{\ell \wedge} u_{i+1} \neq 0 \text { for } 1=1, \ldots n-1
$$ and $u_{n} \wedge b \neq 0$.

A subset $U \subseteq A$ is said to be chained if there is a U-chain between any two of its elements.
1.7. We say that sublocales $f: A \rightarrow B$ and $g: A \rightarrow C$ meet if there is a commutative diagram in Frm

with a non-trivial D.
A system \mathcal{F} of sublocales of A is said to be chained if for any f, g in \mathcal{F} there is a sequence

$$
f=f_{0}, f_{1}, \ldots, f_{n}=\dot{g}
$$

in $\sqrt[F F]{ }$ such that f_{i} meets f_{i+1} for any $i=0, \ldots, n-1$.
1.8. Let U be a cover of A. For an $x \in A$ put

$$
\begin{aligned}
& \mathscr{C}_{(x, U)}=\{u \mid u \in U \text { and there is a U-chain between } x \text { and } \cdot u\}, \\
& c(x, U)=V \varphi(x, U) .
\end{aligned}
$$

Obviously,

$$
\begin{aligned}
& x \leqslant c(x, U) \text {, and } \\
& c(x, U) \text { is complemented. }
\end{aligned}
$$

(Indeed, $1=V U=c(x, U) \vee d$ where $d=V(U \vee \varphi(x, U))$. Obviously, $c(x, U) \wedge d=0$.
1.9. A morphism $f: A \rightarrow B$ is said to be dense if

$$
f(a)=0 \Rightarrow a=0
$$

More generally, a system of morphisms $f_{i}: A \rightarrow B_{i}$ ($i \in J$) is said to be collectionwise dense if

$$
\left(\forall i f_{i}(a)=0\right) \Rightarrow a=0
$$

1.10. Lemma: Let $f_{i}: A \rightarrow B_{i}(i \in J)$ be collectionwise dense, let a, b be complemented in A and let $f_{i}(a)=f_{i}(b)$ for all íJ. Then $a=b$. Proof: We have $f_{i}(a \wedge \bar{b})=f_{i}(a) \wedge f_{i}(\bar{b})=f_{i}(b) \wedge f_{i}(\bar{b})=0$, hence $a \wedge \bar{b}=0$ and similarly $\bar{a} \wedge b=0$. Thus, $a=a \wedge(b \vee \bar{b})=a \wedge b=$ $=(\bar{a} \wedge b) \vee(a \wedge b)=(\bar{a} \vee a) \wedge b=b, \square$

2. What we will need on products

2.1. Products of locales A_{i} will be dealt with as coproducts of frames

$$
\left(A_{j} \longrightarrow \bigoplus_{i \in j} A_{i}\right)_{j \in J}
$$

If $a_{i_{k}} \in A_{i_{k}}$, the symbol

$$
(+) \quad a_{i_{1}} \oplus \ldots \oplus a_{i_{m}}
$$

stands for

$$
q_{i_{1}}\left(a_{i_{1}}\right) \wedge \ldots q_{i_{n}}\left(a_{i_{n}}\right) .
$$

To simplify the notation, the elements of the form (+) will be often written as

$$
\bigoplus_{\jmath} a_{i}\left(=\hat{\jmath} q_{i}\left(a_{i}\right)\right) .
$$

Then, of course, we must not forget that all but finitely many a are equal to the respective $1\left(A_{i}\right)$.

If $f_{i}: A_{i} \rightarrow B_{i}$ is a collection of morphisms then $\bigoplus_{J} f_{i}: \bigoplus_{J} A_{i} \longrightarrow$ $\longrightarrow \oplus_{B_{i}}$ designates the naturally resulting morphism between the products (defined by $\left.\bigoplus_{f_{i}}{ }^{\circ} q_{j}=q_{j}^{\prime} \circ f_{j}\right)$. In the case of small collection we write $f \oplus g, f_{1} \oplus \ldots \oplus f_{n}$ etc. We see easily that $\underset{J}{\oplus} f_{i}\left(\oplus_{j} a_{i}\right)=$ $=\bigoplus_{j} f_{i}\left(a_{i}\right)$.
2.2. We will need the following properties of the products (see,e.g. [1]).
(α) The elements of the form (+) constitute a basis of $\bigoplus A_{i}$.
(β) Let us call an element $\left(x_{i}\right)$ of the cartesian product $\mathcal{X} A_{i}$ acceptable if $x_{i}=1\left(A_{i}\right)$ for all but finitely many i. Let M be a set of acceptable elements such that
(1) $\left(x_{i}\right)_{j} \in M \&\left(\forall i, y_{i} \leqslant x_{i}\right) \&\left(y_{i}\right)_{j}$ acceptable \Rightarrow

$$
\Rightarrow\left(y_{i}\right)_{j} \in M .
$$

(2) Let $\left(x_{i r}\right)_{i e j} \in M$ be such that for $i \neq i_{c} x_{i r}=x_{i}$ independently on $r \in R$. Put $x_{\ell_{0}}=\bigvee_{r \in R} x_{i_{0} r}$. Then $\left(x_{i}\right)_{J} \in M$.
Then if

$$
\bigoplus_{i e j} a_{i} \leqslant V /\left\{\oplus_{j} x_{i} \mid\left(x_{i}\right)_{j} \in M\right\}
$$

we necessarily have $\left(a_{i}\right)_{j} \in M_{\text {. }}$
(γ) $\bigoplus_{a_{i}}=0$ iff $\exists k, a_{k}=0$ 。
(δ) If $a_{k} \neq 0$ for $k \neq j$ and $\oplus a_{i} \leqslant \oplus b_{i}$ then $a_{j} \leqslant b_{j}$.
2.3. Proposition: Let $a_{i}=1\left(A_{i}\right)$ for all but finitely many $i \in J$. Then $\bigoplus \underset{J}{\bigoplus}\left[a_{i}\right]$ is isomorphic to $\left[\bigoplus_{J} a_{i}\right]$. Proof: Consider the subobjects

$$
\begin{aligned}
& \mathrm{p}: \bigoplus_{\mathrm{J}} \mathrm{~A}_{i} \longrightarrow\left[\bigoplus_{\mathrm{J}} \mathrm{a}_{i}\right], \\
& p_{k}: A_{k} \longrightarrow\left[a_{k}\right]
\end{aligned}
$$

(recall 1.4) and the coproduct of frames

$$
\left(q_{k}: A_{k} \longrightarrow \bigoplus_{J} A_{i}\right)_{k \in J} \cdot
$$

Define

$$
q_{k}^{\prime}:\left[a_{k}\right] \rightarrow\left[\bigoplus_{a_{i}}\right]
$$

by putting $q_{k}^{\prime}(x)=\bigoplus_{\mathcal{j}} x_{i}$ where $x_{k}=x$ and $x_{i}=a_{i}$ otherwise. It is easy to check that
$\mathrm{q}_{\mathrm{k}}^{\prime}$ are frame morphisms,
for $x_{i} \leqslant a_{i}$ (and all but finitely many $=a_{i}$), $\wedge_{j} q_{i}\left(x_{i}\right)=$ $=\hat{J}^{\prime} q_{i}^{\prime}\left(x_{i}\right)$, and $q_{k}^{\prime} \circ p_{k}=p \circ q_{k}$.
Let $f_{k}:\left[a_{k}\right] \xrightarrow{J} B$ be frame morphisms. Then there is a $\varphi: \oplus A_{i} \longrightarrow B$ such that $\varphi \cdot q_{k}=f_{k} c p_{k}$. For $u \in\left[\oplus a_{i}\right]$ put $f(u)=\varphi(u)$. Thus, f obviously preserves 0 , \wedge and V. Moreover, $f\left(I\left(\left[\oplus a_{i}\right]\right)\right)=$ $=\varphi\left(\Lambda_{q_{k}}\left(a_{k}\right)\right)=\Lambda \varphi q_{k}\left(a_{k}\right)=\Lambda_{f_{k}}\left(1\left(\left[a_{k}\right]\right)\right)=1(B)$ so that f is a morphism and we see immediately that $f \circ q_{k}^{\prime}=f_{k}$. Finally, if $f \circ q_{k}^{\prime}=$ $=f_{k}$, we have $f\left(\bigoplus_{x_{i}}\right)=f\left(\Lambda q_{i}\left(x_{i}\right)\right)=f\left(\Lambda q_{i}^{\prime}\left(x_{i}\right)\right)=\Lambda f_{i}^{\prime}\left(x_{i}\right)=$ $=\bigwedge_{f_{i}\left(x_{i}\right)}$ so that f is uniquely determined.
2.4. Lemma: Let $\left(f_{i}: A \rightarrow A_{i}\right)_{J}$ be collectionwise dense. Then so is $\left(f_{i} \oplus \mathcal{1}_{B}: A \oplus B \longrightarrow A_{i} \in B\right)_{J}$.
Proof: If $u \in A \oplus B, u \neq 0$ then there are $a, b \neq 0$ such that $a \oplus b \leqslant u$.

Thus, $\left(f_{i} \oplus 1\right)(u) \geqslant\left(f_{i} \oplus 1\right)(a \oplus b)=f_{i}(a) \oplus b \neq 0$ for some i.
2.5. Lemma: Let $x=1 \oplus u$ be complemented in $A \oplus B$. Then u is complemented and $\overline{\mathrm{x}}=1 \oplus \overline{\mathrm{u}}$.
Proof: We have $(1 \oplus \vec{u}) \wedge x=0$ and hence $l \oplus \bar{u} \leqslant \bar{x}$. On the other hand, write $\bar{x}=\bigvee_{m \in M} y_{m} \oplus v_{m}$ with $y_{m} \neq 0$. Since $x \wedge \bar{x}=0$, we have $y_{m} \oplus\left(v_{m} \wedge u\right)=$ $=0$, hence $v_{m} \wedge u=0$ so that $\nabla_{m} \leqslant \bar{u}$. Thus, $\bar{x} \leqslant 1 \oplus \bar{u} . \square$

3. Comnectedness and local connectedness. Regular cuts

3.1. A non-trivial locale A is said to be connected if the only complemented elements in A are $O(A)$ and $1(A)$. An element $a \in A$ is said to be connected if $a \neq 0$ and there is no decomposition $a=a_{1} \vee a_{2}$ with $a_{i} \neq 0$ and $a_{1} \wedge a_{2}=0$.

Observation: The element a is connected iff the locale [a] is connected.
3.2. Lemma: If $\varnothing \neq U \subseteq A$ is a chained set of connected elements then $V U$ is connected.
Proof: Standard: if $V U=a \vee b$, $a \wedge b=0$, we have, for any $u \in U$, $u=u \wedge(a \vee b)=(u \wedge a) \vee(u \wedge b)$, hence either $u \wedge a=0$ or $u \wedge b=0$ so that finally $u \leqslant b$ or $u \leqslant a$. Now if $u \leqslant a$ and $v \leqslant b$, there is obviously no U-chain between u and v. Thus, either $V U=a$ or $V U=b . \square$
3.3. Corollary: For each connected $x \in A$ there is the largest connected $c(x)$ such that $x \leqslant c(x)$ (namely, $V\{u \mid u$ connected, $u \geqslant x\}$). For any two non-void x, y either $c(x)=c(y)$ or $c(x) \wedge c(y)=0 . \square$
3.4. Corollary: If A has a cover U consisting of connected elements, it has a disjoint cover consisting of connected elements. \square
3.5. From 3.2. and 1.8 we immediately obtain

Corollary: (1) For any cover consisting of connected elements and any connected $x \in A$ we have $c(x, U)=c(x)$.

- (2) If A is connected then any cover consisting of connected elements is chained.
3.6. A locale is said to be locally connected if it has a basis comsisting of connected elements.
3.7. Observation: Let A be locally connected. Then for any a \mathbb{A}, a is locally connected. \square
3.8. From 3.4 we immediately obtain Corollary: Let A be locally connected. Then there is a system ($\left.a_{i}\right)_{j}$ of connected elements of A such that
(1) $y_{a_{i}}=1(\mathrm{~A})$
(2) $i \neq j \Rightarrow a_{i} \wedge a_{j}=0$.
3.9. A couple of non-trivial locales (A, B) is said to have regular cuts if each complemented x in $A \oplus B$ is of the form $l \oplus u$.
3.10. Remarks: (1) Obviously, if (A,B) has regular cuts then A is connected.
(2) Equally obviously, A is connected iff (A, 2) has regular cuts.
(3) In classical topology, whenever X is connected then the clopen sets in $X \times Y$ are of the form $X \times U$ with U clopen in Y. Thus, the property of regular cuts is contained in the connectedness of X. The situation in general locales is different. There exist connected A such that (A, B) do not always have the regular cuts. An example is rather complicated and will be presented elsewhere. The purpose of this article is mainly to show that the products behave well with respect to connectedness at least in the locally connected case.
3.11. Theorem: Let there be given a collectionwise dense chained system $f_{i}: A \longrightarrow A_{i}(i \in J)$ of sublocales of $A . L e t\left(A_{i}, B\right)$ have regular cuts. Then (A, B) has regular cuts.

In particular (recall 3.10.(2)), if A_{i} are connected, A is. Proof: Let $x \in A \oplus B$ be complemented. Thus, obviously, ($f_{i} \oplus 1$) (x) are complemented in $A_{i} \oplus B$ and hence equal to $1\left(A_{i}\right) \oplus u_{i}$ for some (complemented) u_{i} in B.

Now consider f_{i}, f_{j} which meet so that there is a commutative diagram

with non-trivial D. We obtain

$$
1(D) \oplus u_{i}=(g \oplus I)\left(f_{i} \oplus 1\right)(x)=(h \oplus I)\left(f_{j} \oplus 1\right)(x)=1(D) \oplus u_{j}
$$

and hence $(1(D) \neq O(D)) u_{l}=u_{f}$. Taking into account that $\left(f_{i}\right)_{j}$ is chained, we infer that $u_{i}=u$ for all i. Thus, $\forall i\left(f_{i} \oplus 1\right)(x)=1\left(A_{i} \notin u\right.$ $=\left(f_{i} \oplus 1\right)(1(A) \oplus u)$ and hence $x=1(A) \oplus u$ by 1.10. \square
3.12. Theorem: Let A be a product of connected spatial locales, B a spatial locale. Then (A,B) has regular cuts.
Proof: Consider $A=\bigoplus{ }_{\mathcal{J}} A_{i}, A_{i}=\mathscr{D}\left(X_{i}\right), X_{i}$ connected, $B=\mathscr{O}(Y)$. Recall that the natural projection

$$
\pi: \bigoplus_{\mathcal{J}} \mathcal{D}\left(\mathrm{X}_{i}\right) \oplus \mathscr{D}(\mathrm{Y}) \longrightarrow \mathcal{D}\left(X \mathrm{X}_{i} \times \mathrm{Y}\right)
$$

obviously satisfies

$$
\pi\left(\oplus_{j}^{\oplus} a_{i} \oplus b\right)=\mathbb{X} a_{i} \times b
$$

and hence π is dense. Now let x be complemented in $A \oplus B$. Then $\pi(x)$ is cloven in $\mathbb{X} X_{i} \times Y$ and since $X X_{i}$ is connected, $\pi(x)=A \times u$ for a u cloven in Y. Thus,

$$
\pi(1(A) \oplus u)=A \times u=\pi(x)
$$

and hence, by $1.10, x=1 \oplus u . \square$

4. Products of connected locally connected locales

4.1. Throughout the following paragraphs 4.1-4.8, A $i(i \in J)$ are connected locally connected locales, B a nontrivial locale, $\mathrm{A}=$ $=\bigoplus_{J} A_{i}$, and x is an arbitrary but fixed complemented element of $A \oplus$ © B 。

Sometimes we will wish to point out a particular "coordinate" of a basic object $\underset{J}{\oplus} a_{i} \oplus b$. Then we write

$$
\bigoplus_{j\{i\}} a_{i} \oplus a_{j} \oplus b
$$

4.2. An element $\bigoplus_{J} a_{i} \oplus b$ is said to be exact if there are b_{1}, b_{2} such that $b=b_{1} \vee b_{2}$ and

$$
\bigoplus_{\mathrm{J}} a_{i} \oplus b_{1} \leqslant x \text { and } \underset{\mathrm{J}}{\oplus} a_{i} \oplus b_{2} \leqslant \bar{x}_{0}
$$

4.3. Lemma: Let $\bigoplus_{j+i j\}} a_{i} \oplus a_{j}^{m} \oplus b(m \in M)$ be exact and let the system $\left\{\left.a_{j}^{m}\right|_{m} \in M\right\}$ be chained. Then $\bigoplus_{j\{j\}} a_{i} \oplus \bigvee_{M} a_{j}^{m} \oplus b$ is exact.
Proof: We have $b=b_{1}^{m} v b_{2}^{m}$ such that

Hence,

$$
\oplus a_{i} \oplus a_{j}^{m} \oplus b_{1}^{m} \leqslant x, \oplus a_{i} \oplus a_{j}^{m} \oplus b_{2} \leqslant \bar{x}_{0}
$$

$$
\left(\oplus a_{i} \oplus\left(a_{j}^{m} \hat{\mu} a_{j}^{n}\right) \oplus b\right) \wedge x=\left(\oplus a_{i} \oplus a_{j}^{m} \oplus b\right) \wedge\left(\left(\bigoplus_{m} a_{i} \oplus a_{j}^{x} \oplus b\right) \wedge x\right)=
$$

$$
=\left(\oplus a_{i} \oplus a_{j}^{m} \oplus b\right) \wedge\left(\oplus a_{i} \oplus a_{j}^{n} \oplus b_{1}^{\prime}\right)=\oplus a_{i} \oplus\left(a_{j}^{m} \wedge a_{j}^{n}\right) \oplus b_{1}^{\prime \prime} .
$$

On the other hand, since \wedge is commutative we can reverse the roles of m and n to obtain that

$$
\left(\oplus a_{i} \oplus\left(a_{j}^{m} \wedge a_{j}^{n}\right) \oplus b\right) \wedge x=\bigoplus a_{i} \oplus\left(a_{j}^{m} \wedge a_{j}^{m}\right) \oplus b_{1}^{m} .
$$

Comparing the right hand sides and recalling 2.2.(δ) we see that if $a_{j}^{m} \wedge a_{j}^{m} \neq 0$ then $b_{1}^{m}=b_{1}^{n}$. Consequently, since $\left\{a_{j}^{m} \mid m \in M\right\}$ is chained, all the b_{1}^{m} are equal to a unique b_{1}. Similarly we see
that $b_{2}^{m}=b_{2}$ for all m. Thus,

$$
\oplus a_{i} \oplus \bigvee_{M} a_{j}^{m} \oplus b_{1} \leqslant x, \oplus a_{i} \oplus \bigvee_{M} a_{j}^{m} \oplus b_{2} \leqslant \bar{x} \cdot \square
$$

4.4. We will say that $\underset{J}{\oplus} a_{i} \oplus b$ is c-exact if for any connected $c_{i} \leqslant a_{i}, \bigoplus_{J} c_{i} \oplus b$ is exact.
4.5. Observation: If $\bigoplus_{a_{i} \oplus b}$ is c-exact, $a_{i}^{\prime} \leqslant a$ (and all but findtell many a_{i}^{\prime} equal to 1) and $b^{\prime} \leqslant b$, then $\bigoplus_{i}^{\prime} \oplus b^{\prime}$ is c-exact. \square
4.6. Lemma: (1) If $\bigoplus_{J} a_{i} \oplus b^{m}(m \in M)$ are c-exact then $\bigoplus_{J} a_{i} \oplus\left(\bigvee_{M} b^{m}\right)$ is c-exact. is c-exact.

$$
\begin{aligned}
& \text { (2) If } \\
& \text {-exact. }
\end{aligned} \bigoplus_{J,\{j\}} a \oplus a_{j}^{m} \oplus b(m \in M) \text { are c-exact then } \underset{J \sim d j\}}{\bigoplus} a_{i} \oplus \bigvee_{m \in M} a_{j}^{m} \oplus b
$$ Proof: (1) is obvious.

(2): Here we will use the local connectedness of the locales A_{i}. Put $a_{j}=V_{M} a_{j}^{m}$. Let $c_{i} \leqslant a_{i}$ be connected. Write $c_{j} \wedge a_{j}^{m}=V\left\{d_{k}^{m} \mid k \in K(m)\right\}$
with d_{k}^{m} connected. Thus,

$$
c_{j}=V\left\{d_{k}^{m} \mid m \in M, k \in K(m)\right\} .
$$

Since c_{j} is connected, $\left\{d_{k}^{m} \mid m \in M, k \in K(m)\right\}$ has to be chained (recall 1.8) and consequently the statement follows from 4.5 and 4.3. \square
4.7. Theorem: Let $A_{i}(i \in J)$ be connected locally connected locales. Put $A=\bigoplus_{j} A_{i}$. Then, for each nontrivial locale $B,(A, B)$ has reguar cuts.
Proof: Let x be complemented in $A \oplus B$. Write

$$
x=\bigvee_{r \in R}\left(\bigoplus_{i \in J} a_{i r} \oplus b_{r}\right), \quad \bar{x}=\bigvee_{r \in S}\left(\bigoplus_{i \in J} a_{i r} \oplus b_{r}\right) .
$$

Thus, all the $\bigoplus_{i \in j} a_{i r} \oplus b_{r}$ with $r \in R \cup S$ are c-exact (in fact, exact) and $1(A \oplus B)=x \vee \bar{x}=V_{r \in R u s}\left(\oplus_{i} a_{i r} \oplus b_{r}\right)$. Recall 2.2. (β) and use 4.5. and 4.6 to obtain that $1(B)=b_{1} \vee b_{2}$ such that $1(A) \oplus b_{1} \leqslant x$ and $1(\mathrm{~A}) \oplus \mathrm{b}_{2} \leqslant \overline{\mathrm{x}}$ which immediately yields $\mathrm{x}=1 \oplus \mathrm{~b}_{1}$ 。 \square
4.8. Thus, recalling 3.10.(1) we immediately see that the product of connected locally connected locales is connected. In fact, we have
Theorem: The product of any system of connected locally connected locales is connected locally connected. Proof: It remains to prove the local connectedness. Let \mathcal{B}_{i} be basis of A_{i} consisting of connected elements. Since $A=\bigoplus_{J} A_{i}$ is generated by all the $\underset{\mathcal{J}}{\oplus} a_{i}$ with all but finitely many a_{i} equal to $\mathbb{1}\left(A_{i}\right)$,
we see easily that A is generated by the elements

$$
\bigoplus_{\mathcal{O}}^{\oplus} b_{i}
$$

with $\dot{b}_{i} \in \mathcal{B}_{i}$ for finitely many i and $b_{i}=1\left(A_{i}\right)$ in the remaining cases. By the Observation in 3.1 and by 2.3 it suffices to show that $\underset{J}{\oplus}\left[b_{i}\right]$ are connected. This follows from 3.7 and 4.7. \square
4.9. Lemma: Let $I(A)=\bigvee_{i \in J} a_{i}$ with mutually disjoint connected a_{i}. Then each complemented x in A has the form $V_{i \in K} a_{i}$ with some $K \subseteq J$. Proof: Let x be complemented. Since a_{i} is connected and $a_{i}=\left(a_{i} \wedge x\right) v$ $V\left(a_{i} \wedge \bar{x}\right)$ we have either $a_{i} \leqslant x$ or $a_{i} \leqslant \bar{x}$. Put $K=\left\{i \mid a_{i} \leqslant x\right\}$. \square
4.10. Proposition: Let A be connected and either A or B locally connected. Then (A, B) has regular cuts.
Proof: If A is locally connected, the statement follows from 4.7. Let B be locally connected. By 3.8 we have a system ($\left.b_{i}\right)_{j}$ of connected: $b_{i} \in B$ such that $V_{b_{i}}=1$ and $b_{i} \wedge b_{j}=0$ for $i \neq j$. Then, $1(A \oplus B)$ $=V_{i \in J} I(A) \oplus b_{i}$ with disjoint summands. Since each $A \oplus\left[b i I_{i}\right.$ is connected by 3.7 and 4.7 (with the roles of A and B reversed), $A \oplus\left[b_{i}\right]$ is connected and hence finally $l \oplus b_{i}$ is. Now if x is complemented, we have by $4.9 \mathrm{x}=\mathrm{V}_{i \in K} 1 \oplus \mathrm{~b}_{i}=1 \oplus \underset{K}{V} \mathrm{~b}_{i} . \square$

REFERENCES :

[1] C.H.Dowker and D.Strauss : Sums in the category of frames, Houston J.Math. 3 (1977), pp. 7-15
[2] P.T.Johnstone : Stone spaces, Cambridge University Press, Cambridge, 1982
[3] P.T.Johnstone : The point of pointless topology, Bull. of the AMS (New Series), Vol. 8 (1983), pp.41-53
[4] P.T.Johnstone : Open locales and exponentiation, preprint
A. PULTR

KMA
MFFUK
Sokolovská 83
18000 PRAHA 8
I. KKIZ

Pujmanové 877
14000 PRAHA 4

