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PRODUCTS AND MEASURABLE CARDINALS

Andrzej Szymanski

Following wvan Douwen [1], let us call a space X to be extremally
disconnected at a point p, peX, if for every two disjoint open
sets U and V in X, p¢clUnclV. This is a local version of the
well known concept of extremal disconnectedness: a space is extre-
mally disconnected if every its two disjoint open subsets have dis-
joint closures, or equivalently, if the closure of any its open
subset is again open. Results of van Douwen’s paper [1] decide ge-
nerally the question whether a space is extremally disconnected at
some point for spaces being the ééch-stone compactification of ano-
ther one, :

We aim to decide the same question but for spaces being ( topo-
logical) products of two or more factors. Our main results are:

there exists a measurable cardinal iff there are two Hausdorff
spaces X and Y and their non-isolated points xeX and y eY such
that the space X*Y is extremally disconnected at the point (x,y),

Con(ZFC + "there exists a measurable cardinal"™) —> Con(ZFC +
+ "there exist two completely regular Hausdorff dense-in-itself
spaces whose product is extremally disconnected" + "for éverx
three Hausdorff spaces X, Y and Z and for every their non-isolated
points x€X, y€Y and ze Z, the space XxY xZ is not extremally
disconnected at the point (x,y,z)").

The motivation for considering extremal disconnectedness for
topological products comes also from Boolean algevbras (BA for sho-
rtening). It is well known that the free product of two infinite
BA’s cannot be complete BA, The question arises, "how much" is it
incomplete? To give an answer, consider the following local version
of completeness of BA “s. Call two ideals I, J of a BA B complemen-
tary if. InJ = {0} (see [2]). We say that the BA B is complete at
the ultrafilter UCB if for any two complementary ideals I,JCB
there is a u, u€ U, such that either uai = O for every ieI, or
uA j = O for every jeJ. One can verify that a BA is complete iff
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it is complete at each its ultrafilter., Now, some of our results
can be stated as follows ( see Corollary 1.3 and Corollry 2.6): un-
der V = L, the free product of two infinite BA’s is complete at no
ultrafilter, but assuming the existence of a measurable cardihal,
there are two infinite complete BA°s whose free product is comple-
te at "many" ultrafilters.

We have used the topological language instead of Boolean alge-
braic one, as it allows to get results in much more general form.
We refer to Engelking’s book [3]1 and Jech’s book [4] for undefined
topological and set-theoretical notions.

1. Cellular families. A family R of pairwise disjoint open sub-
sets of a space X is a cellular family for p_, p€ X, if p ¢ clU for
UER and pe clUR. If p is a non-isolated point of a Hausdorff
space X, then there exists a cellular family for p of cardinality
not greater than the character of p, and there exists a cellular
family for p of cardinality not greater than the cellularity of X.

For a non-isolated point p of a Hausdorff space X let us set
c(pyX) = inf{]R|: R is a cellular family for p§. Then c(p,X) is
a regular infinite cardinal.

If x is an infinite cardinal, then P*(K)-pgggj of a space X is
a point that lies in the interior of every intersection of x re-
gular open sets containing the point,

Theorem 1.1. If p is a non-isolated point of a Hausdorff space
X, then-c(p,X) = inf{x: p is not a P*(n)-point of X}.

Proof. Let A = inf{x: p is not a P*(x)-point of X}. It is ob-
vious that if p is a P¥(x)-point of X, then c(p,X)>x. Hence
c(psX)2 2. To prove the converse inequality, let{'U :o(<a} be a
family of regular open neighborhoods of p such that p does not
lie in the interior of the intersection of that family. Set VO =
= X-clU, and Vg = intN{U, : k< p}~cll,, for pA<a. The family R =
= {Vy: <A} is a cellular family for p. To see this we verify
the condition pe clUR, only, remaining conditions can be easily
checked. Let G be arbitrary open neighborhood of p. Let/z,, P<As

‘be the least ordinal such that G-qa £ D. Since Uﬁ is regular open
G-cllUs # p. Hence Gn Vs B o
An uncountavdle cardinl x is said to be measurable if there is

a non-principal x-ccmplete ultrafilter over x, i.e., if there is
a family § of subsets of x such that:

(1) {d}e} for every « € %,

(2) if Aeg and ACBCx, then Beg,
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(3) for every ACx, either A€EE orx-A€g,

(4> if SC§ and [S|<x, then {'\Seg.

Theorem 1.2. If p is a non-isolated point of a Hausdorff space
X and the space X is extremally disconnected at p, then either
c(psX) = §, or c(p,X) is a measurable cardinal,

Proof. Let us assume that w= c(p,X)> K, Let R be a cellular
family for p such that |R| =k, say R = { U, tdex } . Consider a set
§ defined in the following way: § = {AcCx: peclUj Uyt &€ A}}.
can be easily verified that § satisfies conditions (1)-(3) for x
to be measurable. We verify the condition (4). Let S Cg and let
ISI<%. For A€ S we set V, = X-clU{U,: otex-A}. Then {V,: A€ S}
is a family of less than x regular open sets containing p. By The-
orem 1.1, there is an open neighborhood G of p such that GC/\{YA=
: A€ S}, Hence pd clU{U;: deU{x-A: A€ S}} and therefore p €
€ clU{U : d€N{A: AeS}}, This means NS€EFn

Theorem 1,3, Let X » S€S, be Hausdorff spaces such that |Xs[ >
> 1 for every seS and let |S|2 S%,. If X is the product of all
spaces X, then c¢(p,X) = o, for every pe X.

Proof. Let s & S, n€w, and s £ s, if n # n, For a given point
peX let Un be a regular open neighborhood of the point p(s ) such
that U ¢ X (such U exists because lX l>1 and X is Hausdorfi)
We set V = {xeX' x(s )cU Avee ~X(S )eU }. Then each v nt DEW@
is a regular open nelghborhood of the point p and p does not lie
in the interior of their intersection. Hence p is not a P*Cw)-
-point of X. By Theorem 1.1, c(p,X) = £,, p being non-isolated
point of the Hausdorff space X g

2. Are products extremally disconnected at any_point? If x is
an isolated point of a space X and a space Y is extremally disco-
nnected at a point y, the answer is yes: the product XxY is extre-

mally disconnected at the point (x,y). However if we restrict our-
self to the non-trivial case, i.e., both x and y are non-isolated,
then the answer is much more complicated. It turns out, we have
to deal with measurable cardinals.

Theorem 2.1. Suppose X and Y are Hausdorff spaces and let xeX
and y €Y be non-isolated points., If c¢(x,X) = c(y,¥), then the
space XxY is not extremally disconnected at the point (x,¥).

Proof. One can choose cellular families R for x and § for y
such that |R| = |S] = x, where w = c(x,X) = c(y,¥Y). Enumerate R
as{Uy: «<x}and S as {V :«<x}. Let us put Gy = Ugx (Y-c2U{%::
t «<A}) and Hy = (Y=clU{U;: «<pf) xVp for p<w. If we set G =
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= U{Gs: A<x ] and H = U{ Hy: pew}, then G and H are disjoint
cpen subsets of the space Xx Y, It remains to show that (x,y) € clG
~n clH. Let AxB be a basic neighborhood of the point (x,y). There
is a ¥, s<x, such that An Uy # f. Since y dclU{V,: x<¥ }, there
is a g, ¥¢ B<x, such that BaV, £ p. Hence D # (AnUyg)x(Bn Vs)C
C(AxB)AGyC(AXB)AG. This shows that p €clG. Similar proof
works for Hwm .

From this theorem one can immediately deduce that the .space
"X *xX is extremally disconnected at no point of the form (x,Xx),
whenever X is a Hausdorff space and x is a non-isolated point of
X. Also, the space XxY is not extremally disconnected at some
point, whenever X and Y are infinite countably compact Hausdorff
spaces ( compare to Corollary 2.6).

Theorem 2.,2. Suppose X and Y are Hausdorff spaces and let xe X
and yeY be non-isolated points. If the space X XY is extremally
disconnected at the point (x,y), then one of cardinals c(x,X) or
c(y,Y) is measurable.

Proof. One can observe that the space X is extremally disconn-
ected at the point x and the space Y is extremally disconnected
at the point y. By Theorem 2.1, c(x,X) A c(y,Y). Hence one of
cardinals c(x,X) or c(y,Y) is uncountable and therefore, by The-
orem 1.2, it is measurable =

If the axiom of constructibility, V = L, holds, then by Scott’s
theorem there is no measurable cardinal. Hence

Corollary 2.3. (V = L), If X and Y are Hausdorff spaces and
x €X and y €Y are non-isolated points, then the space XxY is not
extremally disconnected at the point (X,y) m

The next theorem shows that the non-existence of measurable
cardinals is essential to get the above corollary.

Theorem 2.4. Suppose that A is a measurable cardinal. Then
there exists a completely regular Hausdorff extremally disconnec-
ted dense-in-itself space X such that the product XxY is an ex-
tremally disconnected space, whenever Y is an extremally discon-
nected space and |{Y[< A,

Proof. We shall begin with a general construction of topolo-
gies induced by ultrafilters. Before some notations.

T.et Z be a set and let SeqZ be the set of all finite sequences
in 2 (i.e., s €SeqZ iff domsew and rngsC2). If se SeqZ is
a sequence of lenght n (i.e., doms = n)and z¢ Z, then s~z de-
notes the sequence of lenght n+1 that extends s and whose n-th
term is z.
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Let x be cardinal and let ¥ be an ultrafilter over x. We are
ready to define the promised topology, denoted from now by T;.

The underlying set is Seqx; Ue'I‘§ iff ¥s(seU —> [ ext sl e
€ UJe§). It can be easily verified that T¢ is a topology on Seqw
(even in the case when § is a filter over wx), Properties of the
topology Tg depend on the ultrafilter} we have taken.

(i) if ¢ is a non-principal ultrafilter over w, then the space
(Seqx,TS) is completely regular Hausdorff extremally disconnected
and dense-in-itself.

We first prove that the space (SeQK,Ti) is extremally disconn-
ected. So let s e clU, where Ue‘l‘j.

Claim. The set {Kext s~ €clU} is in ¥

Otherwise, the set A = {d€x: s~agcll § would be in §. For «¢
€A let U € Tg be an open neighborhood of s~d that is disjoint
with U. Then the set V = {s}u{sid: & € Aqu{Ud: ot € A} would be
an open neighborhood of s disjoint with U, which is impossible,
the 'claim is proved.

Now, we define inductively sets Vnc Segx, néw, in the follo-
wing way: VO ={s} Vn+1 = {s"a: seVn and s~y eclU}. Each of the
sets Vn is contained in c¢lU and, by the claim, the set V = U{Vn:
: newj}is an open neighborhood of s. This shows that the closure
of any open set is open, i.e., the space (Sedx, Tg ) 'is extremally
disconnected. ’

Undoubtly it can be verified that the space (Seax, T¢ ) is Hau-
sdorff and dense-in-itself. So we pass to the proof that it is
completely regular. We shall do this by showing that the topology
Tf has a base consisting of closed-open sets. ‘

If seU&Tg, then let Vo = {s} and Vn+1 = {teU: there are de¢
€ x and peVn such that t = p~«}and finally V -U{Vn= newi
The set V is open. To prove that it is also closed, take r out-
side V. There are possible two cases: r extends s or not. If r
extends s, then take W to be the set of all possible extensions
of r. We claim that this set, being an open neighborhood of r, is
disjoint with V. If not, then let t be an element of WAV having
the shortest lenght, say n. Then t must be a proper extension of
the sequence r. Hence t|n-1 yet extends r, so it is in W, On the
other hand, t belongs to Vm for some mew. Hence t = z~o for some
z evm_1 cU. In consequence, tin-1 = z and the;efore tin-1 is in
WA V which contradicts the choice of t.

Now assume that r does not extend s. In such a case we take W
to be the set of all possible extensions of r that are not exten-
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sions of s. Because V consists of extensions of the sequence s
only, the sets W and V are disjoint. It remains to show that W is
an open neighborhood of r. Let t&W. If domt ) dom s, then any ex-
tension of t is not extension of s and therefore {o(eK: thle W} =
=xe&¥. If domt< doms = n, then {Lex: t"LeWidow-{s(n-1)} which
is in § because § is a non-principal ultrafilter ower x. The proof
of (i) is finished.

The next property we shall establish is

(ii) if the intersection of less than y sets from g is again in
g (i.e., § is ¥-complete), then the intersection of less than ¥
sets from Tg is again in Tg.

Indeed, take RC Tg¢ with [Rj<v¥. Let s ¢ \R. For any Ue R the
set AU =] Aex: sraeU} is in ¥. By ¥-completeness of \
A = n{AU: UeR}is in §. Hence {L ex: sl e NR}= A€ .

Having (i) and (ii ) we are ready to define our space X which
satisfies the hypothesis of the theorem. It is just the space
(Segq %,Tg), where § is a non-principal Z-complete ultrafilter over
2. By (i) such a space is completely regular Hausdorff extremally
disconnected and dense-in-itself, Now, let Y be an extremally dis-
connected space such that |Y|<a. To prove that XxY is extremally
disconnected take an open set UCX xY and (p,q)eclU, For any y,
yeY, let Uy = {xeX: (x,y)eU}. Then each of the sets U _ is v
an open subset of X, Since X is extremally disconnected, clUy is
closed-open in X for every yeY. Since | Y|< A, the condition (ii)
guarantees that the set G = n{X-clU : pdclU }n[\{clU : peclU }
is an open (in fact, closed-open)nelghborhood of p. Slnce GxY 1s
an open neighborhood of the point (p,q), the set V= UAn(GxY) is
open and (p,q)eclV, In consequence, the projection of V into
the Y-axis, say H, is open in Y and contains the point q in its
closure. Since Y is extremally disconnected, clH is an open ( in
fact, closed-open ) neighborhood of q. It remains to show that
G % clH C clU., Suppose on the contrary that (x,y) ¢ clU for some
(x,y)€G x clH, There are open neighborhoods A of x and B of y,
such that (Ax B)nclU = §, Since yeclH, BAH # P and let ze BnaH.
Since z eH, pec‘U and therefore~G(clU . But (x,z)ecllU i{z}<
C(Xx{2})nclUCclU from which it follows that (x,z )éclUn(Ax B);
a contradiction a

If, in the abcve thecrem, we take ¥ to be the absolute over
the Cantor set 2 » then, since Y is compact Hausdorff extremally
disconnected dense-m-itself and | Y] = 21,%( A (> being strongly
inaccessible cardinal), we get '
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Corollary_2,5. If there exists a measurable cardinal, then
there is a completely regular Hausdorff extremally disconnected
dense-in-itself space X and there is a compact Hausdorff extrem-
ally disconnected dense-in-itself space Y such that the space Xx Y
is extremally disconnectedg )

Corollary 2.6, If there exists a measurable cardinal, then
there are two compact Hausdorff extremally disconnected dense-in-
itself spaces W and Y such that the space Wx Y is extremally dis-
connected at a dense set of points.

Proof. As W we take the Gech-Stone compactification of the
space X from Theorem 2.4 and as Y we take the absolute over the
Cantor set. By Corollary 2.5, the space Wx Y is extremally discon-
nected at each point of the subspace Xx Y which is dense in Wx Y4

Corollary 2.7. There exists a measurable cardinal if and only
if there are two Hausdorff dense-in-itself spaces such that their
product is extremally disconnected at some poiﬁt.

Proof. The "if" part follows from Theorem 1.2 and the "only if"
part is in Corollary 2.5

Knowing that there are at least two Hausdorff dense-in-itself
spaces whose product is extremally disconnected, one can ask
whether the same can be said for products of three or more fac-
tors. We shall give some results showing that it is not the case.
But first discard the infinite case.

Theorem 2,8. Let.Xs, s ¢ S, be Hausdorff spaces such that |Xs[>
>1 for every se¢S, and let | S| > X, If X is the product of all
spaces Xs’ then X extremally disconnected at no point.

Proof. Let us decompose S into two disjoint infinite parts S1.
If Y is the, product of all spaces XS where seS1, and Z is
then X = Yx Z, In vir-

S,
tﬁe product of all. spaces XS where se-Sz,
tue of Theorem 1.3, c(¥y,Y) = §, = c(2,2) for every yeY and z ¢ Z.
Hence, by Theorem 1.1, the space Yx Z is extremally disconnected
at no point g

For new, ny 1, let Qn, Pn' Mn denote the following statements:
Qn: there are Hausdorff spaces Xo,..,Xn and non-isolated points
e Xo,..,x. eX such that the space Xox oo x)(vl is extremally

H

*o
disconnected at the point (xo,...x )

P_: ‘there are completely regular Hausdorff extremally discon-
n
nected dense-in-itself spaces XO...,Xn such that Xox oo X Xn is
an extremally disconnected space;
M : there are (at least) n different measurable cardinals.
n

Knihovna mat.-fyz. fakulty UK
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Theorem 2.9. The statements Qn, Pn and Mn are equivalent each
other,

Proof. First we show M —> P Let Xy< xp < et <y be measu-
rable cardinals and let §. be a w,-complete non-principal ultra-
filter over x. for 1¢ jg¢n. The space X, = ( Seqx.,TS;), 1< jsn,
and Xo, the absolute over the Cantor set, satisfy the requirements

of Pn. To see this it is enough to show that the space X x ,,«x Xn

is extremally disconnected., We do this by induction. Foron = 1 it
was done in Theorem 2.4, So assuming that the space Xox cee X Xn_1
is extremally disconnected we apply again Theorem 2.4 and we get
that the space (Xox cee X Xn_1) xXn is extremally disconnected,
because [ Xg* eee xX | = w i< xp.

The implication Pn — Qn is obvious.

To get on ~—f Mn we proceed as in Theorem 2.2, which is in
fact the case n= 1 g

Corollary 2.10. Con(ZFC + M_ ) —> Con(ZFC + P + 1Q ) for
n>il. ‘

Proof. From the consistency of ZFC + Mn one can easily derive
the consistency of ZFC + Mn + 1Mn+1 which, in virtue of Theorem
2.9, is the same as the consistency of ZFC + Pn + 1Q

n+1 ®

Acknoledgement, I should like to thank J.Cichont and B,Wgglorz
who have helped me by giving some comments and simplyfying the
last proof.
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