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ALMOST CONTINUOUS FUNCTIONS WITH CLOSED GRAPHS 

Lubica Hola 

A function f: X—»Y is almost continuous if for every X£X 

and for every open set VcY containing f(x)f f~
1 (V) is a neigh

bourhood of x. The main theorem of this paper states that if 

f: X—»Y is almost continuous with a closed graph (closed in XxY) t 

X is a locally almost countably complete space and Y is a regular 

space, which possesses a complete sequence of open coverings of Yt 
then f is continuous. 

1. Introduction 

In the theory of functions with closed graphs the notion 

of the almost continuity is essentially used. We will use this 

notion to prove a general theorem on closed graphs where the 

underlying spaces are those complete in the sense of Frolik. 

The notion of the almost continuity was introduced by Blum-

berg in 1922 and used by Ptakt Husain and several other authors. 

This paper completes the results of the papers [1] and [2] • 

The main theorem of [1] states that if f: X—>Y is almost conti

nuous with a closed graph and X and Y are complete metric spaces, 

then f is% continuous. In case X and Y are complete in the sense 

of Sech this theorem is proved in [2]. 

This paper is in final form and no version of it will be 

submitted for publication elsewhere. 

2. 

In what follows Xt Y denote topological spaces. For a subset 

A of a topological space denote X and Int A the closure and the 

interior of A respectively. 

The intersection of a family iC of sets will be denoted 
by O % • N denotes a set of all positive integers. 

Now, let us recall some definitions and basic facts which 

will be used throughout this note. 
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Definition 1. (See [4]) Let HCnl be a sequence of open fami
lies (an open family is a family consisting of open sets) in a spa
ce X. The sequence } tOnl is said to be countably complete if , 
for every centered sequence of sets \ A„ i » where A„ e &„ » the set 
^ __ "K r,k nk 

0 ^n ^ $• ^ e sequence S%„i is said to be strongly countably 
complete if the following condition, is satisfied: If I P i is 
a centered sequence of closed subsets of X and if every F is con-

«>• n 
tained in some A e 1C„ , then the set O F^ 7* 0. 

n n rw n 

Definition 2. (See t"3J ) A sequence l10nI of open coverings 
of a spaoe X is said to be complete if the following condition is 
satisfied: If F is a centered family of closed subsets of the 
spaoe X such that for every n * 1f 2, ... some F e f is contai
ned in some A e %n , then llf j- 0, 

Definition 3. (See 14J) A space X is said to be countably com
plete if there exists a countably complete sequence of open bases 
for X. X is said to be strongly oountably complete if there exists 
a strongly countably complete sequence of open coverings of X. 

It is known that a Tychonoff space is complete in the sense 
of Sech iff it has a complete sequence of open coverings. 

It is easy to see that, every regular strongly countably com
plete spaoe is a countably complete space. According to i3J» 
example 3#1 there exists a completely regular countably compact 
space, which is not complete in the sense of Sech, that means 
there exists a completely regular oountably complete space, which 
is not complete in the sense of 5eoh. 

Definition 4. (see [4J) An open almost-base for a space X is 
a family % of open subsets of X such that every non-void open sub
set of X contains some non-void Ae 16 . 

A space X is said to be an almost countably complete space 
if there exists a countably complete sequence of open almost-bases 
for X. A space X is said to be locally almost countably complete 
if and only if every xt X has a neighbourhood which is an almost 
countably complete space. 

Definition 5. (See L1J) The function f: X—*Y is almost con-
tlnuous at x g X if and only if for each open V c Y containing f(x), 
x tint f"°(V). 

Definition 6. We say that the diameter of a subset M of 
a space X is less than a covering 4C « f Aa: s d S / o f this space 

s 
(diam M* # ) provided there exists an s e S such that M<--A0. 

s 
Theorem 1» Let X be a locally almost oountably complete 

spaced be a regular space. Suppose Y possesses a complete se-
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quenoe of open coverings of Y. Let f: X—>Y be an almost conti
nuous function with a closed graph. Then f is continuous. 

Proof. Suppose f Is not continuous at a point pe X. Let U 
be an almost countably complete neighbourhood of the point p. 
Let \ ̂ //,T/ be a countably complete sequence of open in U almost 
bases for U and ( #JJ /„°T, be a complete sequence of open coverings 
of Y. 

We will inductively define a sequence \"p, \ ** of points 
of Xf a sequence \ V* / rj\ of open subsets of Yf sequences $G/J /̂ 1 f 

iU. I T<\ of open subsets of X satisfying the following conditions: 
(i) Pĵ e Utf 1 m 1f 2f ... 
(ii) £(pi2_eVif 1 - 1f 2f ... 
(ill) V ^ V ^ - 0 
(lv) if 1 and j are either both even or both odd and i *-j 

then V^ c Vt 

(v) p 1 + 2 eOj, i - 1f 2, ... 

(vl) Gj c UiH> Ui+2 c Gi» Gi+1 C Gi' i - !• 2, ... 
(vii) U ^ f^(V i) f U l + 1cU l f 1 - 1, 2f ... 
(viii) diam (V,)* ̂  f diam (V^ < fl£f f diam {V±)<Vjf f 1 * 2,3,.« 
Put p1 • p. There is an open set V containing f(p,) such that 
f~ (V) is not a neighbourhood of p.- • Let V.. be an open set con
taining f(p^) such that diam (Vn )< 1/1 a n d T ^ T . By the almost 
continuity of f at p. f pn c Int jTr(v!jl# Put ̂  « Int f " 1 ^ ) D 
Hint U. Then ^ c r ^ ^ V j , There must be a point P2 *

 ui suoh thai; 

f(P2)/ v (J^hus f(P2)/^)^ Let v2 be an open set containing f(p2) 
such that V^f)T2 - 0f diam (V2)< V\ » diam (Vg)< ̂  . The almost 
continuity of f at p2 Implies p2 e Int f^tVp). Put U 2 « 
Int f""1(V2)nU1. Then Ug c U1 and UgCf'^Vg). There exists G,*^ 
such that Ĝ  £ 0} G.c Up and G1 is open in X. The inclusions 
G1 c U2 and U 2 C U1* U1 c * M ^ V1' ^ P ^ t h© r e exists d point p~ er G.J 
such that f(p3) € V1# 

Let i >/ 2. Suppose now we have defined V, f U^f p^ for all 
i^j and G% for all 14 (j - 1) satisfying a)-Cviii}. Since G. ^ 
is open in Xand 0 { G, ̂ U . c U , 1 and U, 1 c ̂ ( V * <,) there 
is a point p.,+1 e G4 1 suoh that f(p.+1)e V4_-|. Let V.+1 be an open 
set containing f(p4+1) suoh that 1T+1 <- V. -| and diam (V.+1)

 < VI f 
diam (V4+-))

 c Vjti . The almost continuity of f at p 4 + 1 implies 
p j + 1£lnt f " 1 ^ . ^ ) . Put U.+1 - Int f*

l(V4+1)nGJw1. Then 
u-*+1 c Gi-t» U1+1(: f~ ^Vi+v* Since Ui+1 is »on-«mpty open set 
in X and U 4 + 1 c G4 1f there exists a non-empty open set G,e *&• 
such that G 4cu. + 1 and G4 CO. '̂ . This completes the inductive 
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definitions. 
Q G* i* 0. (U is almost countab^y complete, that means CS (GLOU) 
J* 0). Let x e H GL* Let H be a neighbourhood of x. Since C\ & c 
c (̂  f~ (Vg-i.-j) there exists a net 5x?i-1 ̂  i«1 sucl1 that 

x2i-1*fe H and f^x2i-1^€ Y2i-1 for 1 a 1f 2» ••• 
Let £7 be an open neighbourhood base at the point x. tT* N 

is directed set. (If (Ufn) e CT * N and (Vfm) <• cTx N then (U,n)£ 
^ (Vfm) if and only if U c V and n ^ m ) . Define a net i xQ n: 0 e cT f 
neN/ as follows. Let 0 e (7 , ne N. 0 is a neighbourhood of xf 
xe '""'(^n-l^* Let x0 n be suoh Polnt in ° for which f(xo n^eV2n-V 
It is clear that the net txQ n» Oe C f neN/ converges to x. 
(Let V be a neighbourhood of x. If (Bfm)^(Vf1) then * B f m £ V ) . 
There exists a cluster point of the net /f(xQ n ) : OccT , neN/. 
Put AQ n =» If(xB m ) : (B,m) ̂  (0fn)/. The system /AQ>n: 0 e CT f 
ne N/ satisfies the conditions of Definition 3. for complete se
quence of open coverings of Yf that is tO I AQ n: Oe C , 
n f H i / 0. Let y, £ H }IQ ni Of cT , n* Ni. By Theorem 2.2 in [6J 
y1 is a cluster point of the net / f(xQ n ) : 0 ^ , ne$l. 

Since ,Q ̂  c Q f~< (v 2 1) f ' x * Q t'< (V 2 l). We will 
define analogical the nets I yQ n: 0 e CT f ne N/ andif(yQfn): 
0 € CT f nt N/ such that yQ n c 6 and f( y 0 # n )

£ V2n# The net 

/y0 : Qe (T f ne N / converges to x and there exists a cluster 
poiAt y2 of the net ff(yQ n)i 0 e t7 f ne N/ by similar argument 
as above. 

Since y 1€V 1 and y2 e V2> y1 4 y2. But the points" (x,y1) 
and (xfy2) are both limit points of the graph of ff contradicting 
the fact the graph of f is closed. 

Corollary 1. (See f2j) Let X, Y be spaces complete in the 
sense of 5ech. If f: X—*Y is an almost continuous function 
with a closed graph, then f is continuous. 

Theorem 2. Let X be a first countable locally complete spacef 
Y be a regular strongly countably complete space. If f: X—*Y is 
an almost continuous function with a closed graph, thenf is con
tinuous. 

Proof. We will proceed as well as in the proof of Theorem 1• 
Since there exists a countable open neighbourhood base at the 
point xf the systems (7 and \ AQ : 0 e O f ne N^ in the proof 
of Theorem 1. are countable. 

Definition ?• A subset of a topological space is called 
almost open if it is in the interior of its closure, a function 
is called almost open if the image of every open subset is 
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almost open. 

Corollary 2. Let X, Y be topological spaces. Let Y be a lo

cally almost countably complete spaoe, X be a regular space. 

Suppose X possesses a complete sequence of open coverings of X. 

Let f: X—»Y be a bijective almost open function with a closed 

graph. Then f is open. 

Acknowledgement. The author thanks to Prof.T.Neubrunn for dis

cussing the paper. 
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