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THE LEFSCHETZ TYﬁE THEOREM FOR A-CLASS OF NONCOMPACT MAPPINGS

by W. Kryszewski (k6dz)

The purpose of this note is to present some new algebraic and
topological notions related to the generalized trace theory of J. Le-
ray and their connections with the fixed poiht theory. This is well
known that the Leray trace plays a crucial role in the so-called Lef-
schetz theorem for compact mappings and some of their generalizatﬁxs.
(see (11, [2], [3], [4]). The analogous results for other classes of
mappings, e.g. A-proper mappings of Browder-Petryshyn [9], A-map-
pings [7], [51], F-mappings [7] and other mappings which arise nat-
urally when studying the fixed point problems, are unknown yet. So,
this is our aim to try to extend the algebraic tool of the Lefschetz
theorem to these more general situations.

This is the first part of a larger research, and that .is why we
shall limit ourselves only to the sketch of an algebraic setting and
its application to the class of A-mappings.

'Moreover, we give theorems (see (8.5) and (8.6)) which.seem to be
interesting from the point of view of the asymptotic fixed point the-
ory for compact mappings.

I. Trace theory

In spite of the fact that we shall need only some of the farth-
coming results, we present them (in the sketchy form), for the sake
of completeness, together with some others. It seems that this theory
may be of interest of its own. .

1. Let us recall some fundamental notions. For a finite-dimen-
sional vector space (VS) F over a field K we define two homomor-
phisms 6 : F @ KF + End (F) and e : F @ KF -+ K given (on genera--
tors) by the formulae 8(f @ x)(x') = f(x')x and e(f@® x) = f(x).
It is quite easy to see that 8 is an isomorphism. We define the

ordinary trace of an endomorphism - @ € End(F) by: tr ¢ = e(O—lw).
Here are the most useful propertles of tr.
(1.1) (1) Let the following diagram of finite-dimensional Vs'’s

This paper 4is in §inal form and no version of it will be submitted for pubLication
elsewhene. '
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over K and homomorphisms commute

then tr ¢ = tr o'.

(ii) If the following diagram of finite-dimensional VS’s and

homomorphisms commutes and has exact rows

o

0 —=F'—=F —F"—= 0
lor o o
0 — F'—F — F"—= 0,

then tr ¢ = tr ¢' + tr o".

2. Now, let F be an arbitrary VS over K and let

@ € End(E).

We put Ny = LJ ker o". It is easily seen that w_l(Nw) = N¢, hence

nz1

¢ induces a monomorphism ¢ : F ~F where F = F/N¢. We say that

¢ is a Leray endomorphism (an L-endomorphism) if dim F < » and. we

K
define the Leray trace Tr ¢ of ¢ by setting Tr ¢ = tr o.

Observe

by (1.1) (ii), that if F is finite-dimensional-and ¢ € End (F),

then ¢ is an L-endomorphism and Tr ¢ = tr ¢.
Next (see [8]).
(2.1) (i) 1If the diagram of VS’'s and homomorphisms

'
—_—

F f
o| 4|
F———.

f

¢

g e gy

commutes and ¢ is an L-endomorphism, then ¢'" 1is such and

= Tr ¢'.
(ii) If the diagram of VS’s and homomorphisms

0 —=F'—= F—=F"—= 0

]w' Jw ]cp".

0 ——F ——F —F"— 0

Tr ¢ =

are L-endomorphisms, then ¢,¢',0" are L-endomorphisms and Tro =

-
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=Tr ® 4 Tr Ov,

As an easy consequence we gét the following fact. ‘
(2.2) Let F be a VS over K and ¢ € End (F). If theréd
exists a finite-dimensional vector subspace F' of F such that

o(F')c F' and, for each x € F, there is n = n(x) such that

on(X) € F', then ¢ is an L—endomofghism and Tr ¢ = tr (¢lF').

Pr oo f. The following diagram

0 F' F F/F! - 0
(eIF") l Jw l 0"
0 F! F F/F! 0,
where ¢" 1is induced by ¢, is commutative and has exact rows.Since
F' 1is finite-dimensional, ¢lF' 1is. an L-endomorphism and Tr(w[FU=
= tr (¢IF'). Next, Ny" =F/F'. So, " 1is an L-endomorphism, too,
and Tr ¢" = 0. By (2.1)(ii), we end the proof. g.e.d.

(2.3) If ¢ € End (F) and dim Im n < » for some n x 1, then
== et tas ® === =00 ==
¢ is an L+endomorphism.

3. Although very general, the above theory does not cover many
natural situations.

(3.1) Example. Let F be a VS over K generated by the set
Z of integers, i.e. the space of all functions 2 - K - with finite

supports. Let a : Z - K be a function such that o(x) # 0 for all

. P
X € Z. We define an endomorphism ¢:F~+ F ky the formula “’(i’;‘—-l ajx; )

igl aia(xi)xi where X; € 2, a; € K, i=1,2,...,n. We see that

¢ 1is a monomorphism, hence Ng = {0} and dimKﬁ = ». Thus ¢ is not

an L-endomorphism. But' formally, one can treat the series L oal(x)
XEZ

(even if not convergent), i.e. the family { ¢ a(X)}TcZ’ card T < o

. XeT
as a generalization of the notion of the trace. .

Below, we shall construct a theory which makesit possible to deal
with situations similar to that described above.

Let (S,s) be a directed set and let - ¢ = {E :E_ .+ E

s'ist ‘Bg * Eplges
: 3 T B . &
be a direct system of Vs’s (over K). We say that a pair (F,{fs.Es

> F}ses)' where F is a Vs -and ‘fs is a homomorphism fbx*any seS,

is compatible with ¢ if the diagram
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i
~stl F

is commutative for s,t € S, s s t. Let pairs (F,{£f]}), (Fh{f;})
be compatible with ¢. We say that f : F - F' is a homomorphism of
these pairs if the diagram

is commutative for each s € S. We write £ : (F,{fs}) - (F',{fé}).

Having a direct system € = " one can construct (see

(Es'lst}ses
[10)) the compatible pair (E,(is}) called the direct limit of e

and denoted by 1lim e.
SES

(3.1) [10). The following properties are satisfied

(1) U i@y ==
SES : :
(ii) For each s € S, ker i_ = LJ ker i_, ..
- T s tzs st
(iii) lim € is characterized up to isomorphism of pairs by the
SES
property that, given a compatible pair (F,{fs}). there is a unique
homomorphism of pairs f : lime = (F,(fs}) ~which will be denoted by
(£) SES
s’ses”

As a consequence one has the following simple corollary.

(3.2) If a pair (F,{fg)}) is compatible with e, then (fs)ses

is an isomorphism if and only if the following conditions are satis-

(1) U £ =,
SES s s

(ii) fs(xs) = ft(xt) for s,t €S, x_€E_, x

s s’ t € E iff there

is u 2z s,t such that lsu(xs) = itu(xt).

Suppose F 1is a VS over K, ¢ € End (F) and ¢ = {Es'istyses
is a direct system of VS’s. 1If there exist a cofinal subset sSCS,
a family {fg :E5 »F} j o+ such that a pair (F,{fg)

ible with e = {Es'ist}SGS"

is compat-
is

ses')
:lim ¢ - (F,(fs}

and
) S€ESs!

(fs)sES' sES')
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an isomorphism, a morphism of direct systems (see [10]) {o_} gt e -

s’se
- €' such that the diagram ’ £
E 5 F
s
®s l fq J M
s F

commutes for all s €S', then we say that o is~decomposabie with

respect to (w.r.t.) e and call the triple D = (e',{fs}ses.Kws}seSJ
a decomposition of ¢ w.r.t. e . If there exists a direct system e
such that ¢ is decomposable w.r.t. e, then we say that ¢ is de-

composable..

A decomposition 7 is called injective if fS is a monomorphism
for s€S'. It is easily seen, by (3.1) (1), (i1), that it is equiv-

alent to the injectivity of is for any seS'.

Obviously, any endomorphism ¢ :F+ F has a decomposition name-
ly, the trivial one, i.e. Es =F, fs = idF and ¢y = ¢ for
every s € S.

(3.3)- If an endomorphism ¢ € End (F) has a (nontrivial) Qg-

composition, then iﬁ has an ‘injective decomposition, as well.

(3.4) For ¢ € End (F) to have a nontrivial decomposition it

is necessary and sufficient that there exist-a directed set S and

an increasing family (Fs} “i.e. Fsc: F for s < t, of non-

ses’ t
trivial vector subspaces of- F such that lJ Fs = F ' and w(Fs)
CcF, for s e€s. s€S ’
Now, let ¢ € End (F) and let ¢ = {Es'lst}ses be a direct

’ = ' om-
system of VS’s. Assume D (e ,{fs}ses,,{ws}ses.) to be a decom

position of ¢ w.r.t. e. We shall say that ¢ is L-decomposable
w.r.t. ¢, D is an L-decomposition of w.r.t. e and ¢ 1is a ge-
neralized Leray endomorphism (generalized L-endomorphism) if there

o

is s_ € §' such that, for s € §', s 2 Sgr  ¥g is an L-endomor-
phism. - ’

In the set TT Ks’ where KS = K for any s € S, we intro-

SES
duce an equivalence relation "~" defined as follows: (as)ses ~
- (bs)Ses iff there is s € S such that 'aj = b, for s 2 s, . The
equivalence class of (aj) ¢ € Jg;.Ks is denoted by [(ag) cgl-

For a generalized L-endomorphism ¢ with an L-decomposition

= s
D= (e ﬁfs)sES"(ws}SES') such that, for s € 8', s 2 s, € 8',
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@ is an L-endomorphism, we define

s
Tr ¢ for s €S', s zs’
a = s . : o
s 0 for other. s.
Next, we define the generalized Leray trace of ¢ w.r.t.  as an ele-

ment of [] K./~ given by
. s
s€S

Tr (9,0) = Tlag) gl

As is easily seen, the endomorphism ¢ from (3.1) is a general-

ized L-endomorphism w.r.t. a direct system e = (ET,iTU : ET - Eu}
where TC UC 2, card U < «, ET is the vector subspaé’é of F ge-
nerated by T. If 0 = (e,(fT},(wT}) is a decomposition of ¢ w.r.t.
e, then Tr (9,0) = [( £ a(x)) 1.

XET TCZ,card T < «

It seems to be obvious that the notion of the generalized trace

depends strongly on the choice of a decomposition and a direct system

(3.5) Example. Let F be as in (3.1). Let ¢ = {ET,iTU}' and
e = (Eqsigy!

Op = mIET,ET = ¢lEp. Then we have two distinct L-decompositions ©?

where E; = E_;. We take f, :Ej< F and f; = £ gy

and 7 of ¢ w.r.t. ¢ and g, réspectively, for which Tr(¢,D) #
# Tr (‘Plﬁ)-

However, the following simple proposition holds.

(3.6) Let ¢ € End (F), and let ¢ = {Es,lst}ses, e = {Eg/
. : I’ -—
lst}ses be two direct systems of VS's. Lgt D = (e',{fs}ses,,
{@s}ses') be an injective L-decomposition of ¢ w.r.t. ¢ and let

= = — - ; s
U= (9 '(ﬁs}sES"{ws}SES') be an injective decomposition of ¢ w.r.t.

€. If there exists a morphism {4 ) g, :€ = €', with ¢  being

an isomorphism for any s € S', such that the diagram

£'.1im (¢s)-f'1
F F
o o
F F,
£'+1lim (¢s)-f_1
where f = (fs)sES' and f' = (fs)sES" is commutative, then il

is an' L-decomposition and Tr (¢,0) = Tr (e,D).
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The proof is simple and requires some technical, algebraic con-
struction, so we shall omit it Here.
For an L-endomorphism ¢ € End (F), the trivial decompositioa

is an L-decomposition, but also

(3.7) Any injective decomposition D of ¢ is an L-decompo-
sition and Tr (¢,D) = [(Tr ¢)] (the class of the constant family).

The partial converse of (3.7) is given in

(3.8) If ¢ € End (F) has an injective L-decomposition D,

then ¢ has such a decomposition D, being finite-dimensional, and
Tr ((DID) = Tr ("Elv)-

(3.9) Let ¢ € End (F) have a decomposition 0 = (?,(fs}ses,,
{wg segr) W.r.t. a direct system e. If there exists a vector sub-
space. F'C F such that ¢(F')C F' and, for each x € F, there
is n = n(x) such that wn(x) € F', and for s € 8', s 2 So € s,

dlme (F' < », then 0V is an L-decomposition.
To prove this it is sufficient to observe that ws(f;I(F'))C
(F') and, for each x € Eg, wg(x) € f;l(F') where n = n(f_(x),

then recall (2.2) for s € 8', s 2 s

Now, we present results analogous to (2.1)

(3.10) (i) Let the following diagram of VS’'s and homomorphisms

€
Fe——ouono W F'
‘D[’/]cp'
F F!
13
be commutative. If ¢ has an injective L-decomposition 0, then ¢'
has an injective L-decomposition ?', and Tr (¢,D) = Tr (¢',D').

(ii) If the diagram of VS’s and homomorphisms

w' pll
0 F —r F"—0
l (pl l (9" lwIV
0 p ¥ . g B pe

is commutative, has exact rows and ¢ has an injective L-decomposi~

tion D, then ¢',¢" have injective L-decomposition p' and Dn,
respectively, for which

(%) Tr (¢,0) = Tr (&',0') + Tr (o",D").
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If there exists a projection p : F = F such that ker p = ker p"

and op = pe, ¢' and ¢" have injective L-decompositions, then ¢

has an injective L-decomposition 0 such that (%) holds.

Proo f. We shall prove (i). The proof of (ii) runs similarly.

Let D = ((Es’ist}SES"{fs}seS"{os}seS') be an injective L-decom-

position of ¢ w.r.t. a direct system ¢= {Es’ist)ses' Consider
the following diagram T
F/ker ——— Im ¢
v | J o
F/ker T Im ¢

where ©,T are induced homomorphisms. It is commutative. Let A =

-1 \ . s _ - . R
= fs (ker £). It is easy to verify that % = {Es/As,lst '.Es/As

Et/At ses’ is a direct system and a pair (F/kg; g,{fs : ES/AS -

F/ker)

ses! is compatible with €. By (3.2), (fs)seS' is an iso-

morphism. Thus ? = (E’(fs}’{Es})' where Es : ES/As - ES/AS for

s € S', 1is induced by 0g and is an injective L-decomposition of

9, in view of (2.1)(ii). Since T is an isomorphism, we gather
that p" = (%€, » fs},{$s)) is an L-decomposition of o'[lIm ¢.
Now, since ¢'(F') € Im g, we construct an L-decomposition D'

of ¢' such that Tr (¢',p') = Tr (¢'lIm £,p") = Tr (¢,P). Consider
the following well-defined diagram
23 £ £

s S
E/A ——2 Img ¢of_ ~— Im f «~———E

S S
O I I LR B
s Tef £ fs . s
E/A, ———+ Imf ¢ f_e—1Im f_e——E
s’ s S S S

which is commutative for each s € S'. Our assertian.now follows
from (2.1) (il. : : © g.e.d.

4. Let F = {Fq)qZO be a graded VS over K. We say that F
is of finite type if dimKFq < » for any q 2 0 and Fq = {0} for

almost all q. If ¢ = {tpq)qzo is an endomorphism of F of degree

0, then we define the (ordinary) Lefschetz number A(9) of o by
the formula: :

Mo) = £ (-1)9 tr o_.
qz0 g

Suppose now that F = (Eq)qzo is an arbitrary graded VS and
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0 = {wq}qzo is an endomorphism (of degree 0) of F. We say that
s

¢ is a Leray endomorphism (L-endomorphism) if F = {fq}

az0 is of
finite type and, in this case, we define the Lefschetz number A(d)
by the formula

AMe) = ¢ (-1)% 7r g
qz20 q

It is obvious that if F is of finite type, then A(¢) = A(@).

Now, we extend the above notions to a larger class of graded

vs's. Let F = ({F ) ., beagraded VS and let o = {v ) ,q bean
endomorphism of F. Suppose that, for each q 2 0, eq =(Eqs'iqst}ses
is a direct system of VS’s and Dq = (fé'{qu)seS"{qu)sES') is a
decomposition of 0q w.r.t. g L?t D= {Dq}q;O' We say that . wv

is L-decomposable w.r.t. ¢ = {eé)qgo, ¢ 1is a generalized Leray

endomoréhism (generalized L-endomorphism) and D is an L-decompo-

. . ' '
sition w.r.t. ¢ if, for any s € S', s z So F s', {qu}qzo - is

an L-endomorphism of the graded Vs (Eqs}ng'

fine the generalized Lefschetz number of ¢ w.r.t. D0 by putting

In this case,we de-

Mei0) = = (-1)TTr (0,0 ).
. q20 d
Now, which is important, one can easily restate the results of sec-
tions 1, 2, 3 to get the analogous properties of AMo), M) and
Ao, D). ‘

II. Uniform spaces and filtrations

We shall now apply the algebraic theory developed above to the
‘fixed point theory of a certain type of (noncompact) mappings acting
in uniform spaces. .

In all what follows, by space we shall understand a Hausdorff
uniform space, by mapping a continuous transformation. If X is a
space with the uniform structure X, then by'vicinitz (of the diag-
onal in X x X) we mean an arbitrary. V € X open (in the product to-
pology of X=*X), if E is a locally convex topological vector
space (LCTVS), then by neighbourhood (nghbd) we mean a neighbourhood
of the origin o in E. On subsets of a space we shall always con-
sider the induced topology (and the uniform structure) of a subspace.

5. First, we shall recall and introduce some concepts and nota-
tions which are necessary in the sequel.
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Let (X,X) be a space and ZC X. For V € X we put 'V(Z) =
= {y € Xi(z,y) € V for some, z € 2}; if V 'is a nghbd in an LCTVS
E, then, for ZC E,V(Z) =V + Z. Let Y be a space and U € X,
Two mappings f,g : Y - X are said to be U-homotopic, provided
there is a mapping h : Y * [0,1] - X such that h(.,0) = £,h(*,1)=
= g and, for each y € Y, there is x € X such that h(y,t) € U(x)
“for all t € [0,1].

6. Let X be a space. By a filtration we understand a family

{Xs}sES where S is a directed set, such that Xsc X if s s t,
and cl ( LJ Xs) = X. By is :~Xs - X we denote the identity em-
SES :

bedding. In particular, if X is an LCTVS and, for each s € S,XS
is a linear subspace of X, then the filtration (Xs}ses is called
a linear filtration.

We shall give some examples. Since any uniform space may be uni-
formly embedded in an LCTVS (this simple statement follows easily, as
a corollary, from the well-known theorem due to Kuratowski) and 1li-

near filtrations play a crucial role in the sequel, subsets of an

LCTVS create the most important examples.

(6.1) Example. (i) Let X be a space and Y an open subset

of X. 1If (XS)SES is a filtration in X, then (Ys}ses, where

Ys =Y nNn Xs' is a filtration in Y.

(ii) If YC X, where X 1is a space, is filtrated by (YS}SES’
then ¢l Y is also filtrated by {Ys} and by {cl YS}.

(iii) Let G be an open, convex nghbd in an LCTVS E,G # E, and

let (Es}sES be an increasing family of vector subspaces such that
cl (lJ E,) =E. If B =bd G is the boundary of G, then {B_} ’

SES s s’'s€eS
where BS =B N Es’ is a filtration in B.

Only the last part needs a proof. Take x € B and an arbitrary
convex nghbd V. By (i), {(E N cl G) n Es}ses,(G n Es) are filtra-

tions in E \Ncl G and G, respectively. Hence there are points

y' € V(x) n (ENcl G) nE; and y" € V(x) NG n E, for sufficient-
ly large s. We denote-by p the Minkowski gauge of G. Since
p(y') > 1 and p(y") < 1, there must be a point y 1lying on the
segment joining y' and y", thus belonging to' v(x) n Eg, such
that p(y) =1 and, hence, y € B.
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The notion of a filtration is not sufficient for our purposes.
We shall need a more complex obYect.

Let (X,X) be a space. We say that a filtration (X of X

S}SES
is regular over a subset 2ZcC X, 1if, for each U’ € X, there are

Vv € X and s, €8 such that, for any s 2 s there exists a map-

o'
ping ng : V(Xs) n V(Z)‘* X, such that ns(x) = x for x exsr]V(Z)
and iso g, i V(Xs) Nnv(z) - X are U-homotopic. We shall say

that {xs) is reqular if if is regular over the entire space X.

Recall that a topological space Y is said to be r-dominated
by a space G if there are mappings r : G - Y and j : Y - G such
v
of a space (X,X) satisfies

that rej : Y - Y is the identity mapping id

We say that a filtration {XS}SES

the condition (R) over 2C X if:

(R) There are T € X and s, € S such that, for each s 2 s

1 1’
T(2) n Xs is r-dominated by an open subset of a convex set
lying in an LCTVS. (In other words, see [3], we demand that

T(Z) n Xy be a Borsuk space).

(6.2) Example. Let E be a metrizable LCTVS filtrated by an
increasing family
of E.

{Eglgeg Oof finite-dimensional vector subspaces

(i) If X 4is an open subset of E and, for 2z C X, there is
a nghbd W such that W(2)C X, then a filtration {Xs= X nEY

of X is regqular and satisfies (R) over Z. Hence

SES
is

{xs}ses
regular and satisfies the condition (R) over any compact subset of’X.

(ii) If C is a convex subset of E filtrated by (CS =

=Cn ES) then {CS} is regular and satisfies (R).

s€s’
(iii) Let G be as in (6.1). The filtration (B, = B n E_}

SES
is reqular and satisfies (R).

(iv) Let 'X be an ANR (metric) with a trivial filtration X =

= X for any s € S. This filtration is reqular and satisfies (R).

Proof. (i) Let 4 be a metfic coﬁpatible with the topologi-
cal and convex structure of E and let U be an arbitrary nghbd.
Let e > 0 be such that cl B (0,3e)C U n W where B(o,3¢) =
{y € Eld(o,y) < 3e}. Define. V = B(o,e) - and, for any X € V(Xs)
n V(Z)' let dX = d(x,ES) £ e+ We define a multivalued mapping

]

% v(xs) nvz) ~ E ‘ for s €S by ¢(x) =cl B(x,.2dx) nEg. )

’
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has closed, convex and complete values. Moreover, ¢ is lower semi-
continuous. Indeed, for an open D C:Es, the .set

¢+1(D)

{x € EI®(x) n D # @) = {x € ElB(x,ZdX) n D.# gy =

{x € Elx € B(o,ZdX) + D}

is open in E. Hence, by the Michael Selection Theorem, there is a
mapping ng V(Xs) nv(z) » Eg such that ns(x) € ¢(x). Obviously

fig satisfies the conditions of regularity. It is clear that, for any

nghbd TC W, T(Z) n Xy is a Borsuk space.
(ii) The proof is almost the same as in case (i).

(iii) Take any nghbd U and let V =

construct n; : V(Bs) -~ E, as in {i). If p is the Minkowski gauge

[T

U. For any 's € S, we

of G and r(x) = x/p(x) for x ¢ p-l(O), then n_ =r . n; :

V(BS) - Bs satisfies our conditions. Moreover, for any s € S, B
is an ANR.

S

Let H denote the singular homology functeor with coefficients

in a field K, from the categdry-bf topological spaces and continu-
ous mappings to the category of graded VS’s over K and homomor-

where

phisms of degree 0. Thus, for a space X, H(X) = {Hq(X))qao
Hq(x) is the g-th singular homology group of . X, and, for a mapping
f : XY, H(f) = (Hq(f) : Hq(x) - Hq(Y)}. We assume to be known

that H satisfies all the Eilenberg-Steenrod axioms for homology.

Let X be a space with a filtration (xs)ses' By ist P X, -

- xt, s £ t, is : XS + X we..denote the identity embeddings. It is
easy to see that, for each q 2 0, €q = {Hq(Xs),Hq(ist))sES is a
direct system of VS’s and a pair (Hq(x)'{Hq(is))oeS) is compat-

ible with ¢ .
q

We shall now prove a result which is essential for further con-
siderations.

(6.3) If a filtration (Xs}sES of X is regular over any com-
pact subset of X, then ’

iéE {Hq(xs),Hq(ist)) = Hq(X).

and this isomorphism is realized by (Hq(is)?ses"

Proo f. According to (3.2) it .is sufficient to prove that
Hq(is)(Hq(xs)) = Hq(x) and that, for any gq-homology classes

U

SES

-
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cg € Hq(Xs), Cy € Hq(xt), Hq(lg(cs) = Hq(it)(ct) iff there is u2
s
2 s,t such that Hq(isu)(cs) = Hq(ltu)(ct)'
Let ¢ = [C] € H (X) and let ¢ = R a;0,, where a, € K and
q i=1 i“i’ i

9y is a singular g-simplex for i =1,2,...,p, Dbe a g-cycle in X.

_ , o P ,
By A we denote a support supp ¢ of ¢, i.e. ‘A =LJ oi(Aq) where
) : : i=1

Aq is the standard g-simplex in Rq+l. Since {xs}seS is regular
over A, thus, for U = XX, there exist V € X and sy, € S such
that, for s 2 Sor there is a mapping ng V(Xs) nv(Aa) - Xy for

which iS g is homotopic to i : V(XS) NV(A) - X. Since LJ Xs
SES

is dense in X, one can find s, 2 So such that A C:V(Xs ). Let
; 1

1
HSJ A : A -~ X. If we denote by . sq(x) .the VS of singular

g=i’-
S1
g-chains in X, then the homomorphisms Sq(g)': Sq(A) - sq(x) and

sq(i) : Sq(A) - sq(x) are chain homotopic. Hence we have a homomor-

phism D :,sq(A) - Sq+l(A) such that 3D + Db = Sq(g) - Sq(i). Thus

c. But [Sq(g)(E)] =

aDC-= Sq(g)(E) - ¢ and, herce, [Sq(g)(E)]
= [Sq(isl)sq(ﬂsl)(c)l = Hq(isl)[Sq(ﬂél)(C)J.
Now, let [c].= Hq(is)(cs) = Hq(it)(ct) = [c']. There is a g+l-

-chain d such that ¢ - c{.= 9d. Similarly as above, we show the

existence of a chain homomorphism ¢, : Sq(A) - Sq(Xﬁ) where A=
= = = - ' = i
supp d,u 2 s/t such that 3 ed pad o(c c') Sq(lsu)(cs) +

- Sq(itu)(ct), which proves our assertion completely. g.e.d.

From now on, we shall consider only filtrations of a space X

which are regular over any compact subset of X.

III. A-mappings

7. Let (Y,Y) and (X,X) be uniform spaces with filtrations

and respectively. We say that a mapping f : Y-

(Ys}ses {xs}ses’
+ X 1is an admissible mapping (A-mapping) w.r.t. {Ys),(xs} if, for
each V € X, there is s, €8 such that .f(Ys)c: v(xs) for s 2s .

We shall say that f is a strong A-mapping if, for any V€ X, there

are W €Y and sg € S such that’ f(W(yg))c V() for s 2 Sy

Observe that if f : Y » X 1is a uniformly continuous A—mapping, then
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f 1is a strong A-mapping. Moreover, if (2,Z) 1is a space with a fil-

tration (Zs) and g : X - 2 1is a strong’ A-mapping, then, for

SES
any A-mapping f : Y - X, the superposition ge¢f : ¥ - Z is an A-

-mapping w.r.t. (Ys} and {ZS}.

(7.1) Example. (i) Any compact mapping (i.e. such that cl F(X)
is compact)is an A-mapping w.r.t. arbitrary filtrations {Ys),(xs}in
Y and X, respectively.

(ii) Let E be an LCTVS filtrated by an increasing family of
vector subspaces. Any linear combination, with coefficients being
bounded scalar functions,‘of A-mappings X - E is, again, an A-map-
ping. ‘

(iii) Let L : domL - F, where dom L is a vector subspaces

of E and F is an LCTVS filtrated, similarly as in (ii), by
(Fs}ses' be a linear and continuous Fredholm operator of index kz0
such that Im L = F. There is an increasing family (Es}ses of

linear subspaces of E, creating a filtration in E, such that L
and any (nonlinear) L-compact mapping f : E - F are A-mappings
w.r.t. (Es}'(Fs}‘ For the proof, see [5].

(iv) Several, more concrete examples of A-mappings arise quite
naturally when studying integral or ordinary differential equations
tsee [6], [7]).

(7.2) Let (X,X) be a space with filtration {X_}

s'ses ‘which

is regular over a subset ZC X. If f : X - X is an A-mapping

such that f(X)c 2, then, for any q 2 0, Hq(f) is decomposable

w.r.t. the direct system e = {Hq(XS),Hq(iSt))

q SES”

Probd f. Let U € X. By the definition, there are V €X and
s € S such that vC U and, for t 2 s

° o’ there is a mapping My d
: V(z) n V(Xt) + Xy such that nt(x) =x for x € vV(Z) n X, . There
are symmetric vicinities W,V' € X, WC V', V'eV'C V, s 2 So
and sequences {n! : W(XJ) n W(z) - XS}SZSI' {hy :[W(Xg) n W(z)]~
«~[0,1] ~ X}sgsl such that né(x) = x for X € XS'ﬂ wW(z),
h;(x,O) = is -n;(x) and hé(x,l) =x, for sz s,. Moreover, we

know that, for s 2 Sy

h; is a V'-homotopy. Let s, 2 s, be
such that, for s 2 s,, f(Xs)c: W(Xs). Define .f_ = n'

S
s s-f:Xs*Xs

for s 2 Sy Observe that, for t 2 & 2 Sy ist. fs,: Xs - xt and
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ft 'ist : XS - Xt are homotopic to each other. Indeed, a homotopy
h : X, x [0,1] » X given by thé formula
I'It’ hs'(.f(x),Zt) X € XS’ t e [Oll/z]l
h(x,t) =
n e ht(f(x);z -2t) X € X, t € Fl/z,l]
joins i, e fs and ft- ige- Thus (Hq(fs)}Sgsz is an endomor-
phism of the direct system eq = {Hq(XS),Hq(l st)}sgsz By (6.3),
. . s . : 1
we gather that the pair (Hq(X)’{Hq(ls)}sgsz) is cqmpatlble with g
and (Hq(ls))szsz : lim e - Hq(X) is an isomorphism. At last, since
szs,
' . _ .
S = (s € Sls 2 sz) is cofinal with s, -f i = les and ig fs
are (even V'-) homotopic to each other and, hence, the following dia-
gram '
,Hq(is)
H (X « H (X
%) g X)
Ho(£) (j | (l | Hy (f)
H (X n H (X
q'’s Hq(ls) q
commutes for s 2 Syr  We gather that DU,q f {eq, {Hq(ls)}ses,,

(Hq(fs)}ses«) is the wanted decomposition of’ Hq(f) w.r.t. eq.
5 in the above proof does not depend
on g z 0. ) : g.e.d.

Observe that the choice of s

(7.3) Suppose that X, (XS}SES' zCc X, f : X - X satisfy the
assumptions of (7.2). For any U € X, there is U' € X such that,
for each T, wWC U', D =D

T,q W,q’

Proof. Let V, Sq € S, My for t 2 s, be as in the proof
of (7.2). We take U' € X such that U'sU'C V. Let T,WC U' and
let, for sz,gz'g Sor DW,q = {eé,(Hq(is))sgsz,(Hq(fs))sgsz),

DT,q = (s&’{Hq(is))szgz'(Hq(fs))szsz)' We know that f *i  and

i« f , for

i e fs, for s z sy, are W-homotopic and f -is, s s

s
s 2 52, are T-homotopic to each other, too. Let sy 2 52,52. For
t 2 85, let hg : X, x[0,1] - X be a W-homotopy such that h.(-,0)=

=i £ and 'ht(-,l) = f -it, let gy 3 X« [0,1] + X be a T-

-homotopy such that g (+,0) = i * ?t and g (+,1) = £°+4 Let

t°
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ke = X v [0,1) - X be given by the formula

t
Mo bt(x,Za) x € X, ac€lo,1/2],
kt(x,a) =
U g, (%x,2 - 2a) X €X, ac [1/2,1].
We see that kt is a homotopy joining ft and Et‘ gq.e.d.

IV. Lefschetz mappings

8. Let (X,X)” be a space. We say that a mapping f : X -~ X
is a generalized Lefschetz mapping (generalized L-mapping) if there

exists a filtration (Xs)sES of X (regular over compact subsets
of X) which is regular over f(X), £ is an A-mapping w.r.t. {Xs}
and, for each U € X, there is V g X, V C U, such that DV =
= {Dv,q}qzo is an L-decomposition of H(f) w.r.t. e = {eq}ng' For

such a mapping, we define the ggneraiized Lefschetz number

) = 1lim A(H(£),D
v

ALEL(XQ) )

SES \%

where the limit is taken w.r.t. the net of elements of X, directed
by the inverse inclusion. The generalized Lefschetz number of £ w.

r.t. {Xs}sES is well-defined in view of (7.?).

(8.1) Example. If X is a Borsuk space (e:g. an ANR (metric))
and f : X » X 1is a compact mapping, then f 1is a generalized Lef-
schetz mapping. This is a simple consequence of the results from [4].

The next important example is given in teh following proposition.

(8.2) Let (X,X) be a space with a filtration {xs}sES
gular over compact subsets of X. Let Z C X be such that:
(13 (Xs)ses
(ii) there exists W € X such that, for s 2 s, € s, ,w(z)nxs

is contained in a compact subset ZS of Xs‘

re-

is regular and satisfies the condition (R) over Z,

Any A-mapping f : X - X such that £f(X)C Z is a generalized
L-mapping. Let K = Q. If A(f,{xs}) # 0, then f has an approxi-
mate fixed point, i.e. for any V € X, there is x € X such that
(£(x),x) € V.

Proo f. Take a vicinity U € X such that U+UC T n W.
There exists s, € § such that, for q 2 0, DU i constructed in
. ’
(7.2) (see the proof of (7.2)) is a decomposition of Hq(f) w.r.t.eq.
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Let S3 2 so,sl,s2 where s comes from the formulation of the con-

1
dition (R), and let s z sj. We shall show that {Hq(fs)}qgo is
an L-endomorphism of {Hq(xs)}qzo' First, we observe that fs(Xs)cf
CU(zZ) and cl U(Z)C U°U(2)C T(2) and cl U(Z)C W(Z). Hence,

A, =cl u(z) n X, C %5 1is compact énd A; C T(Z) n X, = Y . By (R),

there exist a convex subset Cs of an LCTVS Es,‘ an open subset GS

of Cq and mappings ry ¢ Gs - Ys’ ig ¢ Ys - GS such that rydg =
= id Y.* The following diagram
s .
Js

L ——
.Ys Xg.
(%) g | J £s J £
s fsrs fle s

X

s .
G -— Y = .
. s
. Js ]
where gg = jéférs, is commutative .and gs‘Gs)(: ]S(AS). Using the..
t&chnique of Schauder’s projection (see [3]) we establish the exist-
ence of a finite, compact polyhedron PS such that js(As)CZ Pé: Gs

and a mapping §s : Gs - PS which is homotopic to 9gr hence

Hq(gs) = Hq(Es) for any q 2 0. The following diagram is commutats

ive

Hq(Ps) .Hq(GS)

H (Gg1Rg) H(3g) .

Hq(Ps) ‘ Hq(Gs).
Since dimKHq(Ps) < o for all g 2 0 and Hq(PS) = 0 for almost

all gq, we gather that Hg(ESIPs) is an L-endomorphism, hence, by
(2.1) (i), Hq(Es) and Hq(gs) are L-endomorphisms, too, and

THq(Gs)}qu is of finite type. Passing to the homological analogue
of (%*), by (2.1) (i), we gather that {Hq(fs)}qzo is an L-endo-

‘morphism of a graded VS {Hé(xs))qzo'

The last part of the theorem follows easily, if K = Q ( the
field of rational numbers), from Granas’ version of the famous Lef-
schetz-Hopf theorem. Indeed, let V € X. Take a symmetric W € X
such that WeWC V. If A(f,{xs}) # 0 and W is sufficiently
small we know that A(H(f),Dw) # 0. So, for sufficiently large s,
A(H(fs)) # 0. By [4], this means that there is a point x € X such
that fs(x) = x. Thus (f(x),f_(x)) = (f(x),x), e WeWC V. g.e.d.
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The next result is related to the fixed point theory of'compact
mappings. ’

(8.3 ) Observe that if X, satisfy the assumptions

{Xs)ses
of (8.2) and f : X » X is a compact mapping, then f is a gene-

ralized L-mapping, and if A(f,{xs}) # 0, then f has a fixed point.

More generally, if all the assumptions of (8.2) are satisfied and f

satisfies the so-called Palais-Smale condition, i.e.

’

(PS) vV € X Iix € X (f(x),x) ev => Ix, € X f(xo)=xO

then we shall obtain the existence of fixed points.

Thus, we see that our algebraic setting is applicable for spaces
which, in some sense, are more general than Borsuk ones (e.g. ANRs
(metric) ).

As a simply corollary we get:

(8.4) Suppose X, {Xs}ses' Z C X satisfy the assumEtloqs of
(8.2). Let K =0Q. If, for any s 2 sy Xg is acyclic, then any
A-mapping f : X°'» X such that f£(X)C 2 has an approximate’ fixed
point.

Recall that a space is called acyclic if HO(X) =Q and

Hq(x; =0 for g > 0.
The next results seem to be most interesting.

(8.5) Let X, {Xs}ses' 7Z2C X be as in (8.2) and let f: X

- X be a uniformly continuous A-mapping spch that (XS) is regul-

ar over f(X) and, for some positive integer n, fn(x)c: Z. Then

there exist an open subset G of X and V € X such that £Y(X)C

cCG and* V(f(G))C G. Moféover, we claim that f 1is a general-

ized Lefschetz mapping, and if A(f,{XS)) # 0, then f possesses
an approximate fixed point, provided K = Q. Additionally, .if, for

s 2 Sy xs is acyclic, then any A-mapping with the above-mentﬂxmd

properties has such a fixed point.

Proof. Let UE X, UCT NnW. Take a vicinity (open) Wn

such that Wn° Wn C U. Next, we take vicinities V',WI,WZ,...,Wn_l

c °
such that v'C w, € w,& ... Cw & w and V'ew, Cw, , for
- - -n+
Y () e ne M hw (2).

i= 1{2,...)n-1. We define G = Wn(Z) n f n-1

Since f' for any i 1is uniformly continuous, there is v, € X such

that, for any y, 2z € X, if (y,z) €V then (fi(y),fi(z)) E V'.:

il
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n
Let V = ﬂ vy Now, let z € V(£f(G)). Then, there is y € £(G)
v
such that (y,z) € V. Since y € £(G)c W__ (2) n ... nf ™2 (z))n
n £71(2), therefore, for any i =0,1,...,n-1, y € f-l(hgrl_i(z))
where Wo = AX' £2 = id. so, for i =20,1,...,n-1, there is aiez
such that (ai,fl(y)) S — Since (fl(y),fi(z)) € V', we ga-
- i s -i
ther that (ai,f (z)) e Vv'o Woo1-1C Wn i Thus 2z € f (wn_i(z)) for
any i =0,1,...,n-1. This shows that =z € G.
Observe that G 1is filtrated by {Gs =Gn Xs)ses in view of

(6.1), and that the filtration (GS} is regular over any compact
subset of G, it is regular and satisfies (R) over £(G), since

any open subset of a Borsuk space is again a Borsuk space.

Now, we construct a sequence . U 'Ué’Ul"U{""’Un’fo CV of ele-

ments of X such that U ° U cC Ul+l' Uic Ui, for i =0,1,...,
n-1, and such that, for (x,y) €Uy, (£(x),£(y)) € U]!.. Let s € S

and D = (D } where D = (eq’{Hq(is)}s;so’(Hq(fs))sgs )

Uo Uorq'q20’ Ugrd
be a decomposition of H(f) w.r.t. e =(eq)q20 (see (7.2)). We know
that, for any s z s, (f(x),f5(x)) € U, C.U;. By inductionwe prove

that (fl(x),f;(x)') €eu,CcV for i=20,1,...,n. Hence, for sz Sgr

i
i=0,1,...,n-1, s“l(s ) € £.(6g) and £+ £.1(G ) -~ £ (c,)

for i =0,1,...,n. Taking a sufficiently small UO we may assume

that, in view of (8..2), DUOI G =-{DU°'ql G}qgo where DUo,q i G =

'{Hq(iSIGS)}s%SO'{Hq(fs,le)}sgso) is an

= ((H(6,)/H, (1,16,))

s’’'szs
o
L-decomposition of (Hq(flG)}qzo' Now, look at the following diagram

(sgs).
c;e_.f G);—f .. n+1(G)"——fn = X
Yey) —= £1%(c ) e ... ‘““ = x.

It is commutative, so, by applying (2.1) (i) several times to the a-
dequate homology diagram we get that Duo is an L-decomposition of
(Hq(f”qzo' The last part is rather obvious. g.e.d.
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The following theorem has connections with the asymptotic fixed

point theory of compact mappings.

(8.6) Let B denote the unit ball in a normed space E. Let

{Bglges be a filtration of B of the form B, =B N E;, where E,

for
cl (

s € S, is a finite-dimensional vector subspace of 'E and

LJ E ) = E. Any uniformly continuous A-mapping such that, for
SES

some positive integer n, fn(x) is compact, has a fixed point.

and
the

[2])

[(3r

[4]
[5]
[6)
(71
(8]

L9

[10

Proo f. By (6.2) (ii), the filtration (Bs}sesb is regular

satisfies (R). Since) for any s € S, By is acyclic, we get

.assertion. i g.e.d.
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