USA 14

Jiř̌í Vinárek

A note on Fiedler-Moravek combinatorial problem

In: Zdeněk Frolík and Vladimír Souček and Marián J. Fabián (eds.): Proceedings of the 14th Winter School on Abstract Analysis. Circolo Matematico di Palermo, Palermo, 1987. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplements No. 14. pp. [419]--426.

Persistent URL: http://dml.cz/dmlcz/701914

Terms of use:

© Circolo Matematico di Palermo, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

A NOTE ON FIEDLER - MORAVEK COMBINATORIAL PROBLEM*

Jiří Vinárek

M.Fiedler and J.Morávek have formulated in [1] the following: 1. Problem. Let A_{1}, \ldots, A_{n} be vertices of a convex $n-g o n, E_{2}$ be the Euclidean plane. Find the smallest number $K(n)$ of convex sets $\underline{S}_{1}, \ldots$, $\underline{S}_{K(n)}$ such that

$$
M=E_{2}-\left\{A_{1}, \ldots, A_{n}\right\}=\bigcup_{i=1}^{K(n)} \underline{S}_{i} .
$$

We are going to prove the following :
Hypothesis. (J.Kratochvíl) If we consider only pairwise disjoint partitions of M then the smallest number $k(n)=\left\lceil\frac{2}{3} n\right\rceil+1$.
2.Lemma. Boundaries of parts $\underline{S}_{1}, \ldots, \underline{s}_{k(n)}$ are unions of straight lines, half-lines and abscissas.
Proof. If $X, Y \in$ bd $\underline{S}_{i} \cap$ bd \underline{S}_{j} then $X, Y \in$ cl $\underline{S}_{i} \cap$ cl \underline{S}_{j}. Since \underline{S}_{i}, \underline{S}_{j} are convex, their closures cl \underline{S}_{i}, cl \underline{S}_{j} are convex as well. Hence, the abscissa XY \subset cl $\underline{S}_{i} \cap$ $\mathrm{cl} \underline{S}_{j}$ and also XY \subset bd $\underline{S}_{i} \cap$ bd \underline{S}_{j}, q.e.d.
3.Definitions, a) Let ${ }^{y}=\left\{\underline{S}_{1} \ldots, \underline{S}_{k}\right\}$ be a partition of M (i.e. $M=\bigcup_{i=1}^{K} \underline{S}_{i}, \underline{S}_{i} \cap \underline{S}_{j}=\varnothing$ for $\left.1 \neq j\right), X \in \underline{E}_{2}$. Then a degree of X with respect to φ is defined by $\operatorname{deg}(X, \varphi)=\mid\left\{i \mid X \in\right.$ el $\left.S_{i}\right\} \mid$. b) A straight line (or its subset) p is called an edge of the partition φ if there exist i, j such that $p<c l \underline{S}_{i} n$ $n \mathrm{Cl} \underline{S}_{j}$ and for any straight line, abscissa or half-line $q \geqslant p$ with $q \subset$ cl $\underline{S}_{i} \cap$ cl \underline{S}_{j} there is $q=p$.
c) A point X is called a vertex of the partition φ
iff it is an end point of some edge of φ. It is called a proper vertex if $\operatorname{deg}(x, \varphi) \geq 3$.
4. Proposition. Let $\varphi=\left\{\underline{S}_{1}, \ldots, \underline{S}_{k}\right\}$ be a partition of \underline{M}, V be a vertex

[^0]of $\varphi, \operatorname{deg}(V, \varphi)=\mathrm{d} \geq 4 \cdot$ Then there exists a partition $2=\left\{\underline{D}_{1}, \ldots, \underline{D}_{k}-\right\}$ of M such that $k^{\prime} \leq k, \operatorname{deg}(V, \infty)=d-1$ and there is a bijection $f: E_{2} \longrightarrow E_{2}$ such that $\operatorname{deg}(f(X), D) \leq \operatorname{deg}(X, \varphi)$ or $\operatorname{deg}(f(X), \infty) \leq 3$. for any $X \in{\underset{E}{2}}^{-}$
Proof. Let p_{1}, \ldots, p_{d} be edges of φ containing V. One can suppose that the angle $\Varangle p_{i} p_{i+1}$ between p_{i} and p_{i+1} contains no other p_{j}. The Dirichlet principle implies that there exists i such that $\not \underset{j}{ } p_{i} p_{i+2} \leqslant$ $\leq 180^{\circ}$. Suppose that $p_{i+1} \subset$ bd $\underline{S}_{q} \cap$ bd $\underline{S}_{r}, q<r$.
Consider the following cases :
(i) p_{i+1} is a half-line
(ii) $p_{i+1}=V W$ with $\operatorname{deg}(w, \phi) \geq 3$
(iii) $p_{i+1}=V W$ with $\operatorname{deg}(w, \varphi)=2$

In the case (i) there is $\underline{S}_{q} \cup \underline{S}_{r}$ also convex (see Fig.l) and one can define $D=\left\{\underline{D}_{1}, \ldots, \underline{D}_{k-1}\right\}$ where

$$
\begin{aligned}
& \underline{D}_{j}=\underline{S}_{j} \text { for } j<r, j \neq q \\
& \underline{D}_{j}=\underline{S}_{q} \cup \underline{S}_{r} \text { for } j=q=q \\
& \underline{D}_{j}=\underline{S}_{j+1} \text { for } j \geq r
\end{aligned}
$$

If we put f as the identity mapping then \mathscr{D}, f satisfy assertions of Proposition.

In the case (ii) there exists an edge p with an end-vertex W such that $\Varangle \mathrm{pp}_{\mathrm{i}+1}<180^{\circ}$. Without loss of generality one can suppose that $p \subset c l \underline{S}_{q}$. Then one can choose $V^{\prime \prime} \in p_{i+2}$ such that the angle between p and W^{\prime} is less than 180° and V° is not a vertex of f (see Fig. 2). Now one can define \underline{D}_{q} as a union of \underline{S}_{q} and the triangle \underline{T}
 $D=\left\{\underline{D}_{1}, \ldots, D_{k}\right\}$ is the asked partition of M_{0} (Actually, the only new vertex is V^{\prime} with $\operatorname{deg}\left(V^{\prime}, \infty\right)=3$ and we can put f as the identity mapping.)

In the case (iii) one can suppose that $W \in\left\{A_{1}, \ldots, A_{n}\right\}$. Consider three cases :
(a) There exists a straight line m containing w such that
the half-plane $m V$ contains the $n-g o n ~ A_{1} \propto A_{n}$ (see Fig. 3).
One can suppose that m contains no vertex X of φ such that $X \neq W$. Denote by $\widetilde{m v}$ the union of the open half-plane $m V$ and the right half-line $m^{+} c m$ with the end-point w.

Fig. 2

Fig. 3

Then define for any $j \neq q, r: \underline{D}_{j}=\underline{S}_{j} \cap \tilde{m}$. Further define : $\underline{D}_{r}=\underline{E}_{2} \backslash \tilde{m} V,\{W\}, \underline{D}_{q}=\left(\underline{S}_{q} \cup \underline{S}_{r}\right) \cap$ 囟V. Clearly, $D=\left\{\underline{D}_{1}, \ldots, \underline{D}_{k}\right\}$ is a convex partition of $M_{1} \cdot \operatorname{deg}(V, \infty)=d-1$. One can put f as the identity mapping.
(b) Non(a) and cl $\underline{S}_{q} \cup$ cl \underline{S}_{r} is convex. Then choose a line m such that the only vertex of φ lying on m is W (see Fig.4). Denote by m^{+}(m^{-}, resp.) the open half-lime of m with end-point W which intersects $\underline{S}_{r}\left(\underline{S}_{q}, r e s p.\right)$. Then define $\tilde{m V}$ as the union of the open half-plane $m V$ and m^{+}. Further put :

$$
\begin{aligned}
& \underline{D}_{j}=\underline{S}_{j} \text { for } j \neq \frac{q, r}{} \\
& \underline{D}_{q}=\left(\underline{S}_{q} \cup \underline{S}_{r}\right) \cap \underset{\sim}{\tilde{D}} \\
& \underline{D}_{r}=\left(\underline{S}_{q} \cup \underline{S}_{r}\right) \backslash \underset{m V}{\tilde{m}} \cup\left(m^{-} \cap \operatorname{cl}\left(\underline{S}_{q} \cup \underline{S}_{r}\right)\right)
\end{aligned}
$$

Clearly, $D=\left\{\underline{D}_{1}, \ldots, \underline{D}_{k}\right\}$ is a convex partition of \underline{M} and $\operatorname{deg}(V, g)=$ $=\mathrm{d}-1$ 。

Fig. 4.
One can again put f as the identity mapping.
(c). Non (a) and cl $\underline{S}_{q} \cup$ el \underline{S}_{r} is not convex (see Fig.5). Then the half-line $V W$ contains another vertex U of φ. If $U \in\left\{A_{1}, \ldots, A_{n}\right\}$
then there exists a tangent t to n-gon at U. If $U \in c l \underline{S}_{u}, u \neq q, r$ then one can define $\underline{S}_{\dot{H}}^{\prime}$ as the oper half-plane opposite to t with the right half-line t^{+}added, $\underline{S}_{j}^{\prime}=\underline{S}_{j} \backslash \underline{S}_{u}^{\prime}$ and then apply (b) since cl $\underline{S}_{q}^{\prime} \cup$ cl $\underline{S}_{r}^{\prime}$ is convex.

Fig. 5.
If $U \notin\left\{A_{1}, \ldots, A_{n}\right\}$ is a point of the interior of the given n-gon, $U \in$ bd $\underline{S}_{q} \cap$ bd $\underline{S}_{r} \cap$ bd $\underline{S}_{u}, u \neq q, r, U \dot{U}_{1} \subset$ bd $\underline{S}_{q} \backslash$ bd $\underline{S}_{r}, U_{2} \subset$ c. bd \underline{S}_{r} - bd $\underline{S}_{q}{ }^{\text {are }}$ border lines such that $U_{1} \neq p_{i+1} \neq U U_{2}$. If there exists $A \in U U_{2} \cap\left\{A_{1}, \ldots, A_{n}\right\}$ then put $U_{3}=A$ otherwise choose $U_{3} \in U U_{2}$ arbitraily. Then define a point $V^{\prime} \in p_{i}$ as the intersection of p_{i} and $U_{3} W$ and U^{\prime} as the point of intersection of lines $V U_{3}$ and $U_{1} U$ (see Fig.6). Further put U_{2}^{\prime} as the point of intersection of bd \underline{S}_{u} and $V^{\prime \prime} U^{\prime}$ distinct from U_{3} (see Fig.6). Now use points $U^{\prime}, U_{2}^{\prime}$ as new vertices of a partition (instead of $\left.U, U_{2}\right)$, connect $U^{\prime}\left(U_{2}^{\prime} ;\right.$ resp.) with any vertex X of $\varphi, X \neq V(X \neq U, r e s p$.$) such that U \backslash\left(U_{2} X, r e s p.\right)$ is an edge of φ. Of course, connect also $U^{\prime} V$ ".

The new partition D has again k elements, $\operatorname{deg}\left(U^{\prime}, D\right)=\operatorname{deg}(U, \varphi)$, $\operatorname{deg}(V, \mathscr{D})=\mathrm{a}-1, \operatorname{deg}\left(U_{3}, \mathscr{D}\right)=3, \operatorname{deg}\left(V^{*}, \not\right)=3$ and $\operatorname{deg}(\mathrm{X}, \infty)=$ $=\operatorname{deg}(X, \varphi)$ for any $X \neq / V, V^{\prime}, U, U^{\prime}, U_{2} ; U_{2}^{\prime}, U_{3}$. Put $f(U)=U_{0}^{\prime}$, $f\left(U^{*}\right)=U, f\left(U_{2}\right)=U_{2}^{\prime}, f\left(U_{2}^{\prime}\right)=U_{2}, f(X)=X$ for any $X \neq U_{1} U^{\prime}, U_{2}, U_{2}^{\prime}{ }^{\prime}$
Q.E.D.
2. Using this Proposition and the method of induction one can suppose that the given partition φ of M has only vertices of degrees 2 and 3 (and that all vertices of degree 2 are vertices of the given n-gon). Let δ be the diameter of the set of vertices of φ and let $\left\{p_{1}, \ldots, p_{s}\right\}$ be the set of all half-line edges of φ. If $p_{j}=X_{i} Y_{i}$ then denote, by P_{i} the point of p_{i} such that $\rho\left(X_{i}, P_{i}\right)=\delta$. It is evident that all the vertices of φ are situated inside the smgon \underline{G} with vertices P_{1}, \ldots, P_{s} (see Fig. 7).

Fig.7.
Moreover, φ induces a partition $\tilde{\rho}$ of the interior of G with the same number of elements.So, it suffices to count the number k of elements of $\tilde{\rho}$. Denote by $\tilde{\mathrm{v}}$ the number of proper vertices of $\tilde{\varphi}$ (if v is the number of proper vertices of φ then $\widetilde{v}=v+s$ where s is the number of half-lines of φ), $\widetilde{\mathrm{h}}$ the number of edges of $\widetilde{\rho}$

Euler formula implies that $k+\tilde{v}=\tilde{h}+$ l.Clearly, $\tilde{h}=\frac{3}{2} \tilde{v}_{0}$ Hence, $k=\frac{\underset{v}{v}}{2}+l_{\text {e }}$
G.Our goal is to minimize $\widetilde{\mathrm{V}}$. We shall study the number adj X of proper vertices of $\tilde{\varphi}$ adjacent to avertex. $x \cdot \theta f /$ the given n-gon. (If a vertex X is adjacent to two vertices A, B of $\tilde{\varphi}$ we shall count only $\frac{1}{2}$ of vertex X adjacent to A and $\frac{1}{2}$ of X adjacent to B ets). Of course, if $X \in\left\{A_{1}, \ldots, A_{n}\right\}$ is a proper vertex of $\tilde{\varphi}$ then X is adjacent to X.

For vertices $X=A_{i}, Y=A_{i+1}, Z=A_{i+2}$ we have the following configurations :

(i)

(ii)

Fig.82

In the first case (see Fig.9) we have adj $X \geq 1$ (at least halfpoints A and B are adjacent to X), adj $Y=2$ (adjacent points Y, C), adj $Z \geq 1$ (at least half-points D, E adjacent to Z).

Fig. 9
Similarly one can check the other configurations:
(ii) adj $X \geq 1, a d j Y=2$, adj $Z \geq 2$
(iii) adj $X \geq 1$,adj $Y=2$, adj $Z \geq 2$
(iv) adj $X \geq \frac{4}{3}$, adj $Y=\frac{4}{3}$, adj $Z \geq \frac{4}{3}$
(v) adj $X \geq \frac{1}{2}$, adj $Y=\frac{2}{2}$, adj $Z \geq 2$
(vi) adj $X \geq \frac{3}{2}$, adj $Y=\frac{3}{2}$, adj $Z \geq \frac{3}{2}$
(vii) adj $X \geq 1$, adj $Y=1$, adj $Z \geq 2$
(viii) adj $X \geq 1$, adj $Y=\frac{3}{2}$, adj $Z \geq \frac{3}{2}$

Hence, adj $A_{1}+$ adj $A_{i+1}+\operatorname{adj} \cdot A_{i+2} \geq 4$ 。
Since $\tilde{v} \geq \sum_{i=1}^{n^{i}}$ adj A_{i} there is $\tilde{v} \geq\left\lceil\frac{4}{3} n\right\rceil$. By $(*)$ we have $k \geq\left\lceil\frac{2}{3}\right\rceil+1$,
7. Construction. One can construct a partition φ of M as follows : for $j=1, \ldots,\left\lceil\frac{n}{3}\right\rceil$ denote by B_{j} the point of intersection of lines $A_{3 j-2} A_{3 j-1}$ and $A_{3 j} A_{3 j+1}$. Further define $m_{2 j-1}$ as an open half-line which is the axis of the exterior angle $G B_{j-1} A_{3 j-2} B_{j}, \cdot m_{2 j}$ as a closed half-line which is the axis of the exterior angle $\& A_{j} j-2_{j} A_{j} A_{j+1}$, ${ }^{G_{2 j-1}}$ as the open set with the border lines $m_{2 j-1}, A_{3 j-2} B_{j}, m_{2 j}$, $\underline{\mathrm{C}}_{2 j}$ as the open set with the border lines $m_{2 j}, B_{j} A_{3 j+1}, \mathbb{m}_{2 j+1}$. Finally define $\underline{D}_{2 j-1}=\underline{C}_{2 j-1} \cup m_{2 j-1} \cup A_{3 j-2} A_{3 j-1}$ (as the open abscissa), ${ }^{-\underline{D}_{2 j}}=\underline{C}_{2 j} \cup \mathbb{m}_{2 j} \cup A_{3 j} A_{3 j+1}$ (as the open abscissa), $\left.\underline{Z}_{2}{ }_{2} n\right]+1=$ $=\sum_{j=1}^{\left[\frac{m}{3}\right]}{ }_{j} A_{3 j} \left\lvert\, \cup \sum_{j=1}^{\left[\frac{n}{3}\right]} A_{3 j-1} B_{j} \cup\right.$ int \underline{P} where \underline{P} is the polygon $A_{1} B_{1} A_{4} B_{2} \ldots A_{n}$ (see Fig.10).

Fig. 10 .
One can check that $\mathscr{D}=\left\{\underline{D}_{1}, \ldots, \underline{D}_{k}\right\}$ is the asked partition of M.
8.Non-dis.jeint case. If one does not suppose the assumption of pairwise disjointness of a partition then generally $K(n) \neq k(n)$. e.g. while $k(8)=7, K(8) \leq 6$ (see Fig.11) :

Fig. 11

426 A NOTE ON FIEDLER - MORAVEK COMBINATORIAL PROBLEM

REFERENCES
[1] "Problems of Czechoslovak conference on combinatorics and graph theory", Luhačovice, May 20-24,1985 (Czech)
[2] KRATOCHVfL J., private communication

MATEMATICKO-FYZIKALNf FAKULTA
UNIVERZITY KARIOVY
SOKOLOVSKA 83
28600 PRAHA 8
CZECHOSLOVAKIA

[^0]: *) This paper is in final form and no version of it will we submitted for publication elsewhere.

