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GONTINUITY OF THE IDENTITY EMBEDDING
OF NMUSIELAK-ORLICZ SEQUENCE SPACES

Marek Wisza

‘Abstract. If the Musielak-Orlicz sequence spaces lé, 1¥ con-
sist of real sequences or the functions & , ¥ are convex, then
the 1nc1u51on l < lY implies the continuity of the 1dent1tv em-
beddlng i: l-—>1 , i(£)=f, with respect to the usual norm topolo-
gies in these spaces [1], [5]. 1t is shown that this fact does
not hold in general. in the main theorem & necessary end sufficient
condition for the continuity of the embedding i is presented. Other
notions of continuity with respect to the norm and modular conver-
gences are also studied.

1. Introductlon. Throughout this psper X will denote .8 real
linear space.

1.1. DEFINITION. A function ¢ =(%), @n:x-»[o,+oo] is said
to be a ¢ -function if ’

a) i'(0)= o, & (-x)= g (x) ' for every xeX, nel\,

b) llm g (ux)= 0 for every xe {veX: & (v)<+oo}, nel,
u>0

c) én(ux+vy§s’§Ak) + 8. (y) for every u,v> J, u+v=1l, v,ve X

end n€ N,.*

If the functions 'Qn are convex on X for esch ne X then we
shall shortly write: & is convex on X.

Let ¥ be the space of all seocuences of elements of tho space
X. The functional Ig: : £»[0,+00] defined by

Ii(f)= nZ=1 §n(fn) for .f = (fn)c—% ’

is a.pseudomodular on £ [3]. ‘ .
1.2. DEFINITION. By the kusielak-Orlicz sequence space 1§‘ we

This paper is in final form and Mo versionsof it will be sub-
mitted for publication elsewhere. ’
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mean the space of all sequences f€X such that Ii(af)<+oo for
some 820, 4

1.3. DEFINITION. A seauence (f(m) of elements of ¥ is seid to,
be moduler [resp. norm] convergent to & sequence feé¥% with re-
spect to a & -function ¢ (shortly Ié—convnrper{t [rpep. Ni—con-

vergent] to f) whenever lim Ig (a(f(m)-f)) for srme 2>0
) m-»+m

[resp. for all a 0].

1.4. we say that NQ-convergenée implies Ny—convergence
(shortly: l\ii-conv. > NY-conv.) whenever each sequence (f(m)which
is Na-convergent to 0 is NY—cOnvergent to O at the seme time. In
an analogous way we define the notions Ni-conv. 2 IY-conv.
Ig-conv. > Lg-conv. , and Ig-conv. = Ng-conv. .

1.5. REMARK. The functional

lfl§ = inf {u>0: i( <u}
is &n F-pseudonorm on 1%, A sequence f(m) is Né—convergent to O
if and only if |f(m)|§‘>0 as m=>+o00.

Throughout this peper we shall use the following notetions:
(1) P (a,c,K) = {xeX: én(x)<a and ¥ (cx)>K §n(x)}

(2) : o, (8,c,K) = sup h{fn(cx): XEPn(n,c,K)}
(with sup g = 0) for every a,c,K>0 and nel.

2. The inclusion lic IY.

The "inclusion" theorems play en importent role in classical
function spaces, in particular in Orlicz and Musielek-Orlicz se-
auence spaces (cf. [2; . ror instance, it is well known ([1], [4])
that the inclusion 1°cC l holds if and only if

(Cno) there are numbers a,c,K>0, nem and- a sequence (-C ) of
nonnegative numbers z°:° o< <+oo y fuch that if & (x)8
n=n,

then ¥, (cx) € K- &, (x) +o<: for ell x€X and nn .

The above condition may be written concisely:
(Cn,) there sre numbere 8,c,K >0, nelN such that

Z <, (a,c,K)<+00 .

n=n
In this connection a very simple question .erises: can the number
n, be repiaced by 1 or not? In genersl the answer is no (cf. Exam-
ples 2.6, 2.7 below). However the conditions (cn ) and (C!) G.e.
(Cn) with n -1) are equlvalent in most ceses (Corollary 2.2) .

we etart with the following:
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2.1.PROPOSITION. If

3) VY Y [§ (x (m)) ————2 T8 -0 => 1lim sup- v, (- x(m))<+oo}
nelN (x(m)) m-»+ 00
then conditions (Cn) and (CI) are equivalent.

Proof. Let condltlons (3) end (Cn ) (with numbers 8, sCy ,Kn)
' o o
be sat1sf1ed. Suppose there is a number 1< n<n, such that

1 1 ,m
Y o [—, =327 ) = +o0 .
meN P ( 2™ m . ) '

In virtue of (1) end (2) we can find a secuence (X(m) of elements
of X such that

én(x(m))é—;l and Yn(l x(m) > for all melN,
2
Therefore Qn Gc@mN>0 as m->+o00 and lim sup ¥ (- x(m)) = +00 -
m» + 00 '

in contradiction to the assumption. Thus for each 1< n<n, we
cen find numbers a ,c ,K >0 such that o« (a ,c ,K, )< +00.

Denote a= m1n &; , ¢ = min c; » K= mﬁx K; , where ie {1,2,

""no} . Since p (a,c,K)<P (al,cl,K ) for 8ll nelN eand i=t1,2,
ceeyng, L (a,c, K) oC (en,c K ) for esch n=1,2,...,n -1 end
o€, (8,c, K)SEC (an e oK) for 8ll n>n . Therefore the thesis
o o
is obvious.
é.2.UOROLLARY. Suppose one 9f the following conditions is
satisfied:

(4) X =R and the functions & .are not identically equal
to O for each nel,

(%) X =RS and 1lim inf §,(x)>0 for esch nel,

Ixll»>+ 00

(6) X =(X,0) is a linesr space with a p-homogeneous norm I
(p>0), 11m inf ¢ (x)>0 and lim sup ¥, (x) < +00 for
each neI(\"+°° x>0

(7) at least one of the implicstions Ng-conv. > Ng-conv. ,
I\i-—conv. =>. Iy~conv. , Ii-conv.% N\Z-corW. ’ Iﬁ-gonv.=>

Ig~conv. holds.
Then 1% 1¥ if ond only if condition (C1) is fulfilled.
Proof. Let nelN be fixed. To prove the corollary it suffices
to show that condition (3) is satisfied. .
The implication (4)%(5) is obvious. To prove (5)=(6) 1let us
note that the following lemme holds:

2.3. LEMMA. If X =RX then every é -function ¥ is conti-

nuous at 0, i.e. lim ¥ x)= O f'or all n=1,2,... .
llxll->0
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Froof. Let €> O be fixed. Denote e; = (O,...,0,1,0,...,O)

’ i-th place
for i=1,2,...,k. In virtue of Definition 1.1.b. there is a number

~u>0 such that ¥ (ue, )<E for i=1,2,...,k .

k
Let x Z e; be an element of R with "xl2 leilz\

< I&;— . Hence, !xil2s -—Iz for i=1,2,...,k , so lel‘ 2'11?]‘- %

4k

Thus ‘ " : "
¥ (ux) = Yn[u iZ=1lxil-s$n x;ce; + (l- iz=l lxil)'CJ <
< k I3
S 51 I’n(uei) < .
Therefore sup {Yn (x): lxll < 5= } €€ , s0 limV¥ (x) = 0.

I xll>0

Eroof of Corollary 2.2 (continued). (6)=(3). Let (x(m) be a
sequence such that lim ¢ (x(m) = O . Then it is bounded, i.e.:

m>+oo 1
Ix(m)<Kk for some K>O and sll meJN By assumption, sup ‘I/n(x)<+oo
I %l <u
for some u>O Let meJJ be a2 number such that l- x(m)" —%-K <£u
m

for all mm, . Then
11m sup ¥ (l x(m)) inf sup Y (— x(m)) <

m— + 00 . kel m
\sup‘ll(- x(m))\< sup‘Y(x)<+oo ’
mem Ixli<u

so (3) is satisfied.
(7)>(). we have
Né-conv. > Ny—conv.

- . > - . - . 1 - .
l§ conv N‘I’ conv N§ conv LI’ conv

\ I.~conv. = 1 -conv. /I

¢ v
Therefore we may assume that N§-conv. ﬁ'l\?—cqnv. « Suppose there
is a sequence (x (m)) such that I (x(m))s‘O as m->+00 . and

lim sup ¥ (- x(m\)- +00 . For brev1ty, but without loss of genera-
m->+ 00
lity, we shall assume that lim ¥ (--x(m)) = +00. Let f(m)=
. m->+ 00
(£;(m); .y be defined as follows

x(m) for 1i=n,
fi(m) =

o BiI-

otherwise.
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Let a>0 and let hlﬁm'be such a number that 4@ >a for all
m>m,. Then, for m?m o?

Iz (a-f(m) = f (a-f, (m) < & (rm}_. x(m) s 57o O -

1
On the other hend, a?vﬁ, for all m2m, . Hence

Ig(a-f(m) = ¥, (a4 x(w) > ¥ (Lx@) et .,

i.e. (f(m)) is Njz-convergent to 0 and is not Ig-convergent to 0 at
the same time. This contradiction ends the proof of Corollary 2.2.

2.4 .REMARK. Corollary 2.2 (with assumption (4)) implies re-
sults of Fh.Turpin [5,Theorem 3a2] and J.Y.T. Woo [7,Froposition

2.17.

2.5. REMARK. The following result follows from the proof of
Theorem 2.6 in [1]:

If X is a Banach space, ¢, are lower-semicontinuous on X and

lim inf & (x)>0 for each nelN, then 1%c 1¥-

Ix 1>+ 00
dition (C1) holds.

Thus, the third assumption in (6) may be omitted in this case.

if and only if con-

2.6. EXAMFLE. The implication (Cno)='(C1) does not hold in ge-
neral. lMoreover, if the dimension of the normed space (X, )
infinite then Lemma 2.3 is false.

Let X = 1° be the spece'oflall real sequences X =(xk) such
that x,= O for all sufficiently lesrge keN with the norm
x| = mexIx,!. Let us denote :

kel & '
g, x) = 2 (x) = ¥ (x) = x] for n 22,

v, (x) = kZ_ klxkl .

Then 1lim inf & (x) = +o00 for all n€l end sup Qﬁ(x) = +00

Ixls+o00 IxlI<u
for all u>O. Therefore.neither condition (6) hold nor Qq is con-
tinuous at O. It is easy to verify that l§ ¥

= 1.
On the other hand,we have

+ 00
' kl(e,c,K) = Qxelo; Ixl<a and K-Ixl< ¢ }E kix,l .
Teking y(m)= (0,...,0,8,0,...) we obtain ﬂv(mJu and
Ay
‘"m-th place
+ 00

Y (c-ym) = 2 ckly (m)]=cma>K-a

for 81l m>m2 5. Thus, y@ePp,(a,c,K) for mzm, and

< (a,c,K)3 sup Y, (c'y(m) = sup' c-a-m = +00

>
m: mo m>mo
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The arbitrariness of numbers a,c,K implies that condition (C1) is

not satisfied. R

2.7. EXAWPLE. The assumption 1lim inf Qn(x)>0 cannot be omi-

2 x>+ 0o
tted. Let X = R%, &, (x,y)=Iyl, & (x,y)=¥ (x,y)= ¥ (x,y) = e,
x?+y?  for n=2,3,... . Then. 1¥.= 1%, 1in inf & (x)= 0 eng
) ix , )i+ 00 :

lim sup ¥, (x,y)= 0 . However, condition (C1) does not hold because
Iix , yI»0

taeking the sequence Xp=m ym=0 for m=1,2,... we obtain
(xp,y e P (a,c,K) and

41(a,c,K) > ~éup ey x§+ y2 = sup ¢c'm = +00

melN n meIN
for all a,c,K>0.

3

3. The identity embedding i:l—)lY; i(f)=f,

The inclusion of Orlicz and Musielak-QOrlicz sequence spaces
mey be considered both as inclusion of sets and as topological in-
clusion of f-normed spaces. th. Turpin [5] has pointed out that
these notions coincide in the case X = IR. A similar result has:
been obtsined by A. Kemiriska [1], provided (emong others) & , ¥
are convex $-functions and X is & Banach space. No any of these
assumptions can be omitted, cf. Examples 2.6, 3.4. Therefore, it
is worth to study the continuity of the identity embedding
i (f)=f in general.

" 1n the following we shall consider four comprehensions of
continuity with respect to the notions introduced in 1.5. We stert
with two lemmas which will be often used ir the sequel.

3.1. LEMMA. Suppose there are sequehces (am),(cm),(xm) of
positive numbers and s number O <b<+00 such theat

+00
> «.(a,c ,K )3 b for all nel,
Z Tnmm’ o

Then there exist sequences (g(m)) of elements of ¥ and (jn(m)) of
numbers such that, for all n,mé€N,

() <0< (m) <+o0 ,
(9) §n(gn(m»\<am ’
(10) Y, (c g, @) > j (m) > K& (g m) ,
an :
1 j (m)Y xb .
:’;1 ’n 2

m'cm’Kmbo}

(it is nonempty), Af = {nea;: < (aj,c ,K) <+qo}, AL = A S Al

Froof. Let melN be fixed. Denote A = {nelN: £ (a

R3
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Then for each nea  we can find an element gn(m)ex such that

(12) g,(m) € P (a ,c ,K )
and
b !
. < (a e ,K ) - e—n—:-f for neap ,
’I’n(cmgn(m)) > .
mex {n, 2} for neAl.
Let us define g (m)=.0 for néAm. Then
+00 .
- b
r%-‘ \I/n(cmgn(m)) > 5 .

rurther, denote By = {neN: ¥, (c g (m)= +00]} (Byca)), and

¥ (c_g _(m)) ' for né¢B
“3) jn(m) - n" m-n . m’
' max {Km-in(gn (m)) , g } otherwise.
rhen (8) holds. yoreover, if B _#@ then '

+00 D 4o . b
nZ=l jp(m) = nz.ﬂ \I/n(cmgn(m))?z .

Since the above inequality is obvious for By # @, (11) is proved.
Furthermore, (9) and (10) follow immediately from (12) end (13),
so the proof is finished.

3.2. LEMMA. By the assumptions of Lemma 3.1 there exists a se-
quence {f(m)) of elements of ¥ -such that f (m)ey (a ,c ,K ) and
: :

(14) Iy (f(m) s'ﬁ;b +a
(15) Ly (c £ (m) > 4b

for all n,meN.
Proof. Let melN be fixed. In virtue of  (8) and (11) we can
find a set J = {1,2,...,nm} such that |
Z jn(m) )% and Z jn(m) < g

neJ - neJﬁinJ

(we assume > = 0) . Let us denote f(m) = (f_‘n(m)) by
neg@

g (m) for neJ
f (m) = n Sm
n 0 otherwise.
By (9) and (10) we infer that
+00 _
@) = 3 g () - :L:J 3 (g, (m) <
m

"

1 . : b
=-j (m) + & (g (W) K 57— + a .
nst\\nn} Kp 0 “n Pm Km n
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Furthermore, by (10) we obtain

oo ’ S b
IY(cmf(m)) = nz—l ¥, (c f (m) > Jpm) > 5 .
= . neJ
3.3. THEOREM. The following conditions:
(i) 12<1¥  ang I\'i—conv. 4 Ng-conv.
(ii) ' 12c1¥  ana N —conv. > I_-conv.

Y ’
(NN) tYo = c;—é K__-L Z) £, (a,c,K)<E

are pairwise equivalent.
Froof. The implication (i)=(ii) is obvious.
(ii) (NN) . Suppose

In virtue of Lemma 3.2, there is a sequence (f(m)) such that

1g (f m) < — 0

5_ x}x m—+ 00
and I\Y(a-f(m) > 5 .
pefine g(m) =ﬁli. f(m). In an analogous fashion as in the proof of
the implication (7)9(3) in Remark 2.2, we deduce that (g(m)) is
Né-convergent to O and is not IY convergent to O at the same t:Lme,
in contradiction to (ii). -

(N)>(@E) . It suffices to show that Né-'conv. > NY-conv. . Let
(f(m)) be an arbltrary sequence 1\'§—convergent to O in the space l§
and, moreover, let u>0, €>0 be fixed. Then, by (NN), we can find

numbers a,c,K >0 (depending on &) such that
00
p 3
> « (a,c,K) < .
e n't%r*y é
Denote v=g . Since Ii(vf(m))—>0 as m—»>+00, we infer that

3 Y I§(vf(m)) < .min i%l( , al .

m(¢,u) mm (g,u)
Hence in(vf(m))se for all neN and m3m(e,u). (1) and (2).

imply |, (ex) € KE,(X) + £ (a,0,K)
for all nelN and xe{yeX: &, (y)<¢ a} . Therefore, for m>m(e,u),
_ A . +00
1y (uf(m) = L (v-c-f(m) < K-I§(vf(m)) + 2_:':1 €, (@,0c,K) <g

so (f(m) is Ng-convergent to O. N

J.4. EXAMPLE. Ji-convergence mey not imply NI;-convergence '

even then 1%2<1¥, (et ]RZ, 2, (x,J’)- 2:’1, ¥ (xX,y)= _n_ly_l__
for n=1,2,... . Since ' 2%z +1yl)
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, 1 |
Z £ (acK) E sup \},’(cx cy) £ — = 1"< +00
n— (x,y)e]R2 ’ n=1 2¢

‘for all a,c,K >0, 12c1¥ by corollary 2.2,
on the other hand (2, )GP (u, u,u) , 80

2
¥, (ulx,y) > ¥, (u( ) = \yﬂ(“—z,ﬂ =;%?1

+
8

o ( u,u, = sup
n U) y)eP (u, u!u)

for every u>0. Let a,c,K be arbitrary positive numbers. Then we
can choose u>O such' that O<u <m1n {a, c,K} Therefore

Zoc(acK) Zoc(uu,)/

In virtue of Theorem 3.3 N

-convergence does not imply N_-con-
vergence. '

$ Y
5.5. THEOREM. 1%<c1¥ and Iz-conv. d Ng-conv. if and only
if
an) \7’ v 3 3 ZoC(acx)<£.
c 0O a0 KO n=l
Proof. (<-=) Assume I§(f(’m))—>0 as m->+00. Let c,& be arbitra-
ry positive numbers. Then

+00 S ¢
2:1 °Cn(8,C,K) < 5

for some &,K>0 (depending on & and c). Moreover
Iz (@) < min {a, fﬁ}
for all m»m(c,e) . Thus, by (1) and (2),
Ip(efm) < K-Ip € m)+ Z £, (a,c,K) <€
n=1
for all m>m(c,¢) . Therefore ¢ (m) 1s-NYrconvergent to O.
(=) Suppose that

3 3 Ve (lem)se .

&0 ¢>0 mdN n=1
In virtue'of Lemma 3.2, there is a sequence (f(m)) such that

I (f @) € £ + 1 ana Ly (cf (m)>

m
for all meK.Thus (f(m) is 1§-—convergent to O and is not NY-con-
vergent to O - a contradiction. i

3.6. REMARK. If & =Y then condition (IN) is equivalent

t?a‘z’) v 3 3 ¥ £ (a,2,K) < £,

&0 8a>0 K>O n=1
(in other words: for every ¢>0 there are a,K>0 and a sequence
. . +
(oCn) o_f nonnegative numbers such that r?;) L <E and

g (x)<a > ‘?n'(cx)£2 2 () + &
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for all xeX and neN.

J
3.7. THEOREM. 1%<1Y ana Ig-conv. © I~conv. if and
only if

(11) c>O £>0 ;L 30 : £ (acK)<€ .

Proof. (<) Assume Iy (f(m))—>0. as m—>+00. Let £> 0 be fixed.
Then, by (II), ’

%’? eCn(a’cnK)< g
n=

for some a,K>0 (depending on £) and an absolute constant c¢>O.

Moreover, I (f @) € min {a , é-]' for all m >ml(e). Thus
K + 00

IY(Cf(m))\ K-I§(f(m)) + 21 £, (ayc,K) <g

for m3ym(), so (f(m) is I_Y-convergent to O.

‘(=) Suppose (II) does not hold. In particular,
Z £ ‘m+r) > Ep o
relN l>‘Er>O meN n=1 <m+r’ r
In virtue of Lemma 3.2 there are sequences g(m,r) such that

r 1 1 1
Ii(g(m,r)) < TGS .+ ye and IY<F-g(m,r))> 252‘

for all m,relN. Now, we shall construct one sequence (k) from
the sequences (g(m,r). Denote sp=1+2+...+p, peN ; .£M=g(,1),

£x) = g(pk+2-lk, lk) for k=2,3,... ,
where numbers pk,lke I are defined by
‘ : <k < 1l = k- f k= cee o
spk spk+1_ ’ X spk or 2,3,

Then
_ 1 1
I (£ 0N = I (8(Pr2-Lely) < zpamy * 5oz Eove” O

On the other hand, the sequence f(k) is not Iy-convergent

to O. Indeed, let u>0. Then u>l for some r<N. Thus

I?(ug(m,r)) > I‘I’( g (m, r)) é En > O .
3ince (g(m,r)) mey 18 @ subsequence of ) , () is not
Iw-convergent to O - a contradiction.

3.8, REMARK. Analogous theorems concerning the continuity
of the identity embedding i(f) = f of Musielak-Orlicz spaces
in the non-atomic measure case were presented in [6].
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