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Recent results on three graph-theoretic problems in combinatorial design theory are surveyed. 
The leave problem asks for a characterization of leaves ("missing edge graphs") in packings by 
triples. The excess problem is dual: the characterization of excesses ("extra edge graphs") in cover
ings by triples. Finally, the neighbourhood problem asks for a characterization of possible 
neighbourhoods (pairs appearing in triples with a fixed element) in a triple system. Numerous 
open problems are mentioned. 

1. Triple systems, packings, and coverings 

In combinatorial design theory, a substantial amount of effort has been invested 
in the study of triple systems, and the related packing and covering problems for 
triples. A triple system B[3, X; v\ of order v and index A is a pair (V, B); Vis a t?-set 
of elements, and B is a collection of 3-subsets of V called triples or blocks, so that 
each 2-subset of V appears in precisely X blocks. It is well known that a B\3, X; v\ 
exists if and only if the necessary conditions Xv(v — 1) = 0(mod 6) and X(v — 1) = 0 
(mod 2) are satisfied. 

When the necessary conditions are not met, one can ask how "close" one can 
come to producing a triple system. Two natural generalizations are apparent; we 
could require the maximum number of triples containing each pair at most X times 
(a packing problem), or we could require the fewest triples containing each pair 
at least X times (a covering problem). Of course, when the necessary conditions for 
triple systems are met, both the packing and the covering problem are settled by the 
existence of triple systems. To formalize these ideas, we need some further definitions. 

A partial triple system PB[3, X; v\ is a t;-set Fand collection B of triples which 
contain each pair of Vat most X times. It is maximal when no 3-subset of Vcan be 
added to B without violating this property. It is maximum when no PB[3, X; v\ 
exists having more triples. 

A covering by triples CT(v, X) is a a-set V and a collection B of triples which 
contain each pair of Vat least X times. It is minimal when no triple in B can be 
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omitted without destroying this property. It is minimum when no CT(v, X) exists 
having fewer triples. 

We are especially concerned here with two problems that have been studied on 
partial triple systems. The embedding problem asks for the smallest triple system 
with the same index (V',B') containing a specified partial triple'system (V, B); 
that is, 7 c F ' a n d 5 c B'. Lindner [15] conjectures that \V\ ^ 2 |V| + 1 is always 
sufficient for index one, while the best result in this direction to date shows that | V | ^ 
^ 41 V| + 1 is sufficient [1]. One of the main directions taken in attacking the 
embedding problem is to develop a better understanding of the structure of partial 
triple systems, and hence it is one of the main motivations for our interest in them 
here. 

The second main problem of interest is the immersion problem; given a partial 
triple system (V, B), one is to produce a containing triple system (V, B') having the 
smallest possible index, and having B c B'. While finite bounds on the index of the 
containing system are known here [6], little progress has been made on determining 
the minimum possible indices for immersion. The key here seems to also be a good 
understanding of the structure of partial triple systems; but more comes into play. 
In the immersion problem, to immerse a P-8[3, X; v] into a B\3; X + fi; v] requires 
the production of a certain CT(v, pt), and hence the problem is also one of under
standing the structure of coverings by triples. 

2. Leaves 

Both embedding and immersion require that triples be added so as to use all 
of the pairs which are contained in fewer than X triples of the partial system; hence, 
both depend entirely of the structure of the "missing" pairs. With this in mind, 
we define the leave of a PB[3; X; v] (V, B) to be a multigraph (V, E), where E contains 
edge {x,y}s times precisely when the pair {x, y} appears in X — s triples in B. 
A multigraph is a A-leave when it is the leave of some PB[3, X; v]. The key point 
is that two partial triple systems with the same leave can be embedded identically. 

This leads to an important problem, which we call the leave problem: which multi-
graphs are A-leaves? A complete characterization seems beyond reach, because deter
mining whether a graph is a 1-leave is NP-complete [2]. Nevertheless, strong necessary 
and/or sufficient conditions seem very promising as a vehicle for addressing the 
embedding and immersion problems. 

Two more conservative problems are to characterize A-leaves of maximal systems, 
and of maximum systems. The 1-leaves of maximum partial triple systems are 
uniquely determined by the congruence class of v modulo 6; see, for example, [16]. 
Maximum partial triple systems for higher X have also been studied [17]. However, 
the characterization of leaves of maximal partial triple systems is very far from settled. 

First we consider basic necessary conditions. Let us suppose that G is a u-vertex 
e-edge multigraph which is a A-leave. Naturally, no edge in G appears more than X 
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times. Consider a PB[3, X; i?] whose leave is G; let C be the multigraph whose 
edges are the unordered pairs (with multiplicities) which appear in triples of the 
partial triple system. Evidently, G u C is precisely XKV, the complete y-vertex graph 
with each edge repeated X times. Now C necessarily has a number of edges which 
is a multiple of three, and hence we have 

(1) e = >lQ(mod3) 

Considering a particular vertex x of G, the construction of C ensures that degc(x) = 0 
(mod 2), and hence 

(2) degG(x) = X(v - 1) (mod 2) for all x 

Conditions (1) and (2) are simple numerical conditions, and are not sufficient for 
characterizing A-leaves. One candidate graph which meets conditions (l) and (2) 
but is not a 1-leave is C4 u C5, with v = e = 9. This candidate and many others are 
ruled out by a simple density condition. Suppose that G is a v-vertex e-edge graph 
having an edge-cutset of size c whose removal breaks G into two components, of sizes 
s and v — s. Considering the means in which triples can use edges from inside these 
components, and between these components, leads to the necessary condition: 

(3) l(x(Cj + * (" ~ S) - e + c\ = Xs(v - s) - c 

For C4 u C5 we have v = e = 9, X = 1, c = 0, and s = 4; the condition 14 *> 20 
fails, and hence C4 u C5 is not a 1-leave (notice that the condition does not rule 
out C4 u C5 as a 2-leave; in fact, it is a 2-leave!). 

The three necessary conditions developed thus far are still not sufficient; Stinson 
and Wallis [18] give infinite families of graphs which meet the necessary conditions 
for 1-leaves given here, but are not 1-leaves. Hence the main open question here 
is the following. 

Problem, Produce stronger necessary conditions for a multigraph to be a A-leave. 

If we restrict our attention to leaves of maximal partial triple systems, we obtain 
a fourth necessary condition: G is triangle-free. Since the Stinson-Wallis examples 
are all triangle-free, better necessary conditions are needed in this restricted case 
as well. However, while determining in general whether a graph is a 1-leave is NP-
complete, the following remains open: 

Conjecture: Determining whether a graph is a 1-leave of a maximal partial triple 
system is NP-complete. 

If true, this conjecture explains in part the difficulty of obtaining good general 
necessary conditions. 
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A second approach is to develop strong sufficient conditions for a graph to be 
a A-Ieave. The only general result in this area is independently proved in [8,13]: 

Theorem. Let G be a graph in which each vertex has degree zero or two. If G 
meets the necessary conditions (1), (2) and (3) above, G is a 1-leave. 

While the proofs of this theorem do not seem amenable to generalization to higher 
vertex degrees, the theorem suggests the following: 

Conjecture: Let G be a graph in which each vertex has maximum degree fc. Then 
there is a constant nk so that if G satisfies conditions (1) and (2) above, and has more 
than nk vertices, then G is a 1-leave. 

The theorem above actually establishes that n2 = 9, since C4 u C5 is the largest such 
graph which fails to meet condition (3). We should remark that this conjecture is 
a relaxation of an old conjecture of Nash-Williams; he makes the stronger conjecture 
that nk ^ 4fc + 1. The immense gap between the current state of knowledge and the 
conjectured state of affairs leaves much room for new ideas here! 

Finally, we should remark in support of the last conjecture that every simple 
graph meeting conditions (1) and (2) is a component of a 1-leave which is polynomially 
larger than the given graph [3]; hence, any structural necessary condition must take 
the number of vertices into account. 

3. Excesses 

There is a natural duality between packing and covering problems; hence we may 
ask what the covering analogue to the leave problem is. To develop this, we define 
the excess of a CT(v9 X) to be a multigraph whose vertices are the elements of the 
covering, and in which edge {x, y) appears s times in the covering precisely when the 
corresponding pair appears in X + s triples of the covering. A multigraph is a A-excess 
when it is the excess of some CT(v9 X). 

A multigraph is a 0-excess if and only of it has an edge-partition into triangles; hence 
determining whether a multigraph is a 0-excess is NP-complete [14]. One might there
fore consider asking for a characterization of excesses of minimal, or even minimum, 
coverings. Excesses of minimum coverings for index one are completely determined 
in [12]; for higher indices, see [11,17]. As with maximal packing, the characteriza
tion of excess of minimal coverings remains open; we suspect that it is computationally 
difficult: 

Conjecture: Determining whether a multigraph is a 1-excess of a minimal covering 
by triples is NP-complete. 

Once again, the lack of a complete characterization leads us to consider strong 
necessary conditions, and strong sufficient conditions. First we examine necessary 
conditions. Let G be a v-vertex e-edge excess of a CT(v9 X). We note that the graph C 
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of edges covered in the covering has the property that XKV u G = C. Hence we have 
the conditions: 

{!') e= -A Q (mod 3) 

(2)' degG(x) = X(v - 1) (mod 2) 
Notice that when v = 0,1 (mod 3), any multigraph which meets the necessary con
ditions to be a leave also meets these conditions to be an excess. At first glance, one 
might hope that every 1-leave with v = 0,1 (mod 3) is also a 1-excess; this would 
imply that every PB[391; v] with v = 0,1 (mod 3) has an immersion into a B[3; 2; u]. 
However, this does not hold [6]. Consider the complete bipartite graph KHtH-2 

with n = 3 (mod 6). Such graphs are all 1-leaves, but are not 1-excesses. We develop 
a general necessary condition which excludes K„tn-2, among others. 

Let G be a A-excess with v vertices and e edges. Suppose that the vertex set of G 
is partitioned into two classes, of size s and v — s, so that c of the e edges cross 
between the classes. Examining how triples can use those edges which cross between 
classes, we find 

(3') 2 ^ Q + x(° ~ °\ + e - c) £ Xs(v - s) + c 

For K„t„-2> we have v = In — 2, e = n(n — 2), A = 1, s = n, and c = n(n — 2); 
hence we would require n(n — 1) + (n — 2) (n — 3) = (n — 1) (n — 2) -f n(n — 2), 
which does not hold for n > 3. Observe, however, than K„tn-2 is a 3-excess. In fact, 
we can restate a conjecture of [6] in terms of leaves and excesses as follows: 

Conjecture: Let G be a 1-leave on v vertices. Then G is a 2-excess provided that 
v = 1 (mod 2); it is a 3-excess provided that v = 0,1 (mod 3); and it is always 
a 5-excess. 

It appears to be important to refine the necessary conditions prior to attacking 
this conjecture. Ultimately, however, what is needed is strong sufficient conditions. 
As with leaves, the only positive results here concern the case of very small vertex 
degrees. Colbourn and Rosa [10] prove the following: 

Theorem. Let G be a multigraph satisfying conditions (1') and (2'), and having 
maximum degree two. Then G is a 1-excess of a (not necessarily minimal) covering 
by triples. 

This suggests the following natural conjecture: 

Conjecture. For each degree fe, there is an absolute constant mk so that all graphs 
meeting conditions (1') and (2'), having maximum degree fc, and at least mk vertices, 
are A-excesses. 

One of the most appealing directions here is to try to develop a closer relation 
between excesses and leaves. In particular, the immersion problem suggests that 
A-leaves are all ^-excesses for some \i closely related to A; this relationship is poorly 
understood at the present time. 
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4. Neighbourhoods 

In this section, we introduce a third graph-theoretic problem on triple systems, 
which is also closely related to the leave problem. In a triple system B[3, X; v\, the 
neighbourhood N(x) of an element x is a multigraph whose vertices are all elements 
of the triple system, excluding x, and whose edges are those unordered pairs appear
ing in triples with x. The neighbourhood problem is to characterize multigraphs 
which are neighbourhoods. With this in mind, we observe that a multigraph is 
a neighbourhood if and only if it is A-regular and is a A-leave. To see the latter, 
observe that if N(x) = G in a J5[3, X; v\, omitting all triples containing x gives 
a PB[3, X; v — 1] whose leave is G. We suspect that, unlike characterization of leaves 
or excesses, a simple characterization of neighbourhoods is possible; in fact, we 
believe the following: 

Conjecture: Let G be a A-regular multigraph which meets conditions (1), (2), and 
(3) to be a A-leave. Then G is a A-leave and hence a neighbourhood. 

If true, this implies that all possible neighbourhoods actually arise, and the struc
ture of designs (in this respect) is as rich as one could expect. 

Much more progress has been made on the neighbourhood problem than on the 
(more general) leave problem. For X = 1, the conjecture is trivially true. For X = 2, 
Colbourn and Rosa [9] employed the sufficiency condition for 1-leaves to establish 
the conjecture. For X = 3, Colbourn and McKay [7] developed useful path-factoriza
tions of cubic multigraphs to exploit the results on 1-leaves and neighbourhoods 
with X = 2. Hence the conjecture has been verified for A = 3. For higher X, Col
bourn [4] established that every simple graph meeting the necessary conditions 
is a neighbourhood. In fact, many of the techniques used apply equally well to multi-
graphs; for example, the methods used in [4] establish the conjecture for all X = 2, 4 
(mod 6) for muZffgraphs. It appears that relatively little work remains to establish 
the conjecture in full; however, present techniques fall somewhat short of this goal. 

A nice generalization of the neighbourhood problem is the double neighbourhood 
problem: for prescribed (labelled) multigraphs G and H, can one construct a triple 
system with N(x) = G and N(y) = HI The basic necessary conditions are that each 
is a neighbourhood, and that the graphs are consistent: if G contains {y,z},H must 
contain {x, z], Moreover, their union must not have an edge covered more than X 
times. The double neighbourhood problem is settled only for X = 1 [5], where these 
necessary conditions are in fact sufficient. Settling X = 2 seems to require some new 
ideas. Nevertheless,!the double neighbourhood problem may prove to be more 
tractable than the leave problem, and hence merits further study. 

5. Concluding Remarks 

Structural properties of triple systems have long been of interest, in part due to 
the extensive investigation of embedding problems. The recent emphasis on graph-
theoretical problems in design theory has spawned a number of interesting problems 
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on the borderline between graph theory and design theory. In each of the three prob
lems mentioned here, the successes to date have resulted from finding the appropriate 
mixture of graph-theoretic and design-theoretic tools. The development and refine
ment of such tools seems to be a very important goal in the understanding of embed
ding, immersion, and the structure of triple systems. 
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