Acta Universitatis Carolinae. Mathematic et Physica

Marco Burzio; Davide Carlo Demaria
 On a classification of Hamiltonian tournaments

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 29 (1988), No. 2, 3--14

Persistent URL: http://dml.cz/dmlcz/701937

Terms of use:

© Univerzita Karlova v Praze, 1988

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

On a Classification of Hamiltonian Tournaments*)

MARCO BURZIO, DAVIDE CARLO DEMARIA**)

Torino, Italy

Received 1 March, 1988

A partition of the hamiltonian tournaments is given in order to find a characterization of tournaments which satisfy some extremal properties.

1. Introduction

In [3] we introduced the concept of non-coned 3-cycles in a tournament and we used these cycles to obtain a graphical characterization of the simply disconnected tournaments i.e. the tournaments whose fundamental group is not trivial (see [2]).

The natural generalization of the previous definition to a k-cycle let us clasify the collection \mathscr{H}_{n} of the hamiltonian tournaments of order $n \geqq 5$ into $n-4$ different classes. In detail, the first class of cyclic characteristic 3 is formed by the tournaments which contain a non-coned 3-cycle, the second one of cyclic characteristic 4 by the tournaments which contain a non-coned 4 -cycle and whose 3-cycles are all coned,.. , the $(n-4)$ th class of cyclic characteristic $n-2$ by the tournaments which contain a non-coned ($n-2$)-cycle and whose cycles with lower length are all coned.

The Classification Theorem (see Theorem 11) states that the previous division is a proper partition of \mathscr{H}_{n}, and the cyclic characteristic is proved to be an invariant which is preserved by epimorphisms (see Proposition 5). Nevertheless, to study the classes and their relations, it is more interesting to consider, as an invariant, the difference between the order n of the tournament and the cyclic characteristic (called cyclic difference), since it does not increase for the hamiltonian subtournaments.

In particular (see Proposition 14), it follows that, for $n \geqq 7$, the class of cyclic difference 2 is a singleton and contains the only bineutral tournament A_{n} (see Definition 2), which plays a special role in this classification.

By considering the relations between the cyclic difference of a tournament and of its subtournaments, a local property of A_{n} is stated (see Theorem 17). Hence,

[^0]we can immediately characterize the A_{n} as the tournaments with the least number of hamiltonian subtournaments. The analogous problem for the cycles was studied in [6], but using our methods, in another paper we shall also give a characterization of the tournaments with the least number of 3-cycles and those, also studied in [4], with only one hamiltonian cycle.

2. Some notations

A tournament T is a directed graph in which every pair of vertices is joined by exactly one arc. The vertex set of T is denoted by $V(T)$ and the arc set by $E(T)$. If the cardinality $|V(T)|=n, T$ has order n and it is denoted by $T_{n} . T-v$ is the vertexdeleted subtournament and $\langle V(C)\rangle$ the subtournament induced by the vertices of a cycle C of T. $A \rightarrow B$ denotes that the vertices of a subtournament A are all predecessors of the vertices of a subtournament B.

A hamiltonian tournament (i.e. a tournament which contains a cycle through every vertex) is denoted by H_{n}.

A homomorphism of T_{n} into R_{m} is a mapping $p: V\left(T_{n}\right) \rightarrow V\left(R_{m}\right)$ such that if $(v, w) \in E\left(T_{n}\right)$ then either $(p(v), p(w)) \in E\left(R_{m}\right)$ or $p(v)=p(w)$. Since T_{n} can also be considered as a commutative groupoid (see [8]), a homomorphism is also an algebraic homomorphism between the two related groupoids and, if p is onto, R_{m} is isomorphic to the quotient groupoid $T_{n} \mid p$. In this case $V\left(T_{n}\right)$ can be partitioned into disjoint subtournaments $S^{(1)}, S^{(2)}, \ldots, S^{(m)}$ such that $S^{(i)} \rightarrow S^{(j)}$ if and only if $\left(v_{i}, v_{j}\right) \in E\left(R_{m}\right)$, where $w_{i}=p\left(V\left(S^{(i)}\right)\right.$ and $w_{j}=p\left(V\left(S^{(j)}\right)\right.$. Then T_{n} is the composition $T_{n}=$ $=R_{m}\left(S^{(1)}, S^{(2)}, \ldots, S^{(m)}\right)$ of the components $S^{(i)}$ with the quotient R_{m} (see [2]). Moreover, T_{n} is simple if $T_{n}=R_{m}\left(S^{(1)}, S^{(2)}, \ldots, S^{(m)}\right)$ implies that either $m=1$ or $m=n$. We can recall that:
$-R_{m}$ is isomorphic to a subtournament of T_{n};
$-\forall T_{n}$, there exists exactly one non-simple quotient tournament;
$-T_{n}$ is not hamiltonian if and only if its simple quotient is T_{2}.

3. Cyclic difference of a tournament

If we restrict the definition of neutral vertex to a hamiltonian tournament (see [5]), we obtain:

Definition 1. A vertex v of H_{n} is called a neutral vertex of H_{n} if $H_{n}-v$ is hamiltonian. The number of the neutral vertices of H_{n} is denoted by $v\left(H_{n}\right)$.

Remark. Since $v\left(H_{n}\right)$ is also the number of the hamiltonian subtournaments of order $n-1$ and in $H_{n}(n \geqq 4)$ there are at least two and at most n hamiltonian subtournaments of order $n-1$, it follows $2 \leqq v\left(H_{n}\right) \leqq n$ for $n \geqq 4$. For example, $v\left(H_{n}\right)=2$ when H_{4} is the hamiltonian tournament of order 4 and $v\left(H_{4}\right)=n$ for the
tournaments which are the compositions of non-singleton components with a hamiltonian quotient.

Definition 2. The tournament $A_{n}(n \geqq 4)$ with vertex set $V\left(A_{n}\right)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and arc set $E\left(A_{n}\right)=\left\{\left(x_{i}, x_{j}\right) / j<i-1\right.$ or $\left.j=i+1\right\}$ contains the only two neutral vertices x_{1}, x_{n} and it is called the bineutral tournament of order n (see Example a)).

Remark. Las Vergnas proved in [6] that A_{n} is the only tournament with two neutral vertices for each $n \geqq 4$.

Definition 3. A subtournament T^{\prime} of a tournament T is said to be coned by a vertex v (i.e. v cones T^{\prime}) if there exists a vertex v of $T-T^{\prime}$ such that either $v \rightarrow T^{\prime}$ or $T^{\prime} \rightarrow v$. If no vertex of $T-T^{\prime}$ cones T^{\prime}, T^{\prime} is said to be non-coned. If C is a cycle of T, C is said to be coned by v (resp. non-coned) if $\langle V(C)\rangle$ is coned by v (resp. non-coned).

Proposition 1. A tournament $T_{n}(n \geqq 5)$ is hamiltonian if, and only if, there exists a non-coned m-cycle C, where $3 \leqq m \leqq n-2$.

Proof. Let v be a neutral vertex of H_{n} and w_{1}, w_{2} two neutral vertices of $H_{n}-v$. Suppose that the two hamiltonian tournaments $H_{n}-\left\{v, w_{1}\right\}$ and $H_{n}-\left\{v, w_{2}\right\}$ are coned. Since w_{1} cannot cone $H_{n}-\left\{v, w_{1}\right\}$, otherwise $H_{n}-\left\{v, w_{2}\right\}$ is not hamiltonian, and w_{2} cannot cone $H_{n}-\left\{v, w_{2}\right\}$, otherwise $H_{n}-\left\{v, w_{1}\right\}$ is not hamiltonian, both $H_{n}-\left\{v, w_{1}\right\}$ and $H_{n}-\left\{v, w_{2}\right\}$ are coned by v. Hence v cones $H_{n}-v$, which is a contradiction since H_{n} is hamiltonian. Then at least one of the two tournaments $H_{n}-\left\{v, w_{1}\right\}$ and $H_{n}-\left\{v, w_{2}\right\}$ is non-coned (i..e in H_{n} there exists at least one non-coned ($n-2$)-cycle).

Conversely, if T_{n} is not hamiltonian, i.e. its simple quotient is T_{2}, each cycle of T_{n} is included in a component and, therefore, is coned.

Remark. Also H_{3} and H_{4} contain non-coned m-cycles, but now the condition $m \leqq n-2$ is not satisfied.

Given a non-coned cycle C of H_{n} and a vertex $v \notin V(C)$ it is possible to extend C to a cycle through all the vertices of $H_{n}-v$. Then we can give the following:

Definition 4. If C is a non-coned cycle of H_{n}, the set $P_{C}=V\left(H_{n}\right)-V(C)$ consists of neutral vertices of H_{n}, which are called poles of C.

Definition 5. A non-coned cycle C of H_{n} is said to be minimal if each cycle C^{\prime}, such that $V\left(C^{\prime}\right) \subset V(C)$, is coned by at least one vertex of H_{n}.

A minimal cycle is said to be characteristic if it possesses the shortest length of the minimal cycles.

The length of a characteristic cycle is called the cyclic characteristic of H_{n} and is denoted by $\mathrm{cc}\left(H_{n}\right)$. The difference $n-\mathrm{cc}\left(H_{n}\right)$ is called the cyclic difference of H_{n} and is denoted by cd $\left(H_{n}\right)$.

Remark. If C is a characteristic cycle in H_{n}, then $\operatorname{cd}\left(H_{n}\right)=\left|P_{C}\right|$.

4. Examples

a) The bineutral tournament A_{7} of order 7 .

- the neutral vertices are x_{1} and x_{7};
- the cycle $x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{2}$ is characteristic;
$-\operatorname{cc}\left(A_{7}\right)=5$ and $\operatorname{cd}\left(A_{7}\right)=2$.

Fig. 1

Fig. 2
b) A tournament H_{8} which contains the subtournament A_{7}.
$-x_{1} \cdot x_{8}, x_{7}, x_{1}$ is a characteristic cycle, whereas $x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{2}$ is a minimal cycle;
$-\operatorname{cc}\left(H_{8}\right)=3$ and $\operatorname{cd}\left(H_{8}\right)=5$.
c) A tournament H_{6}^{\prime} with four characteristic cycles.
$-x_{1}, x_{2}, x_{5}, x_{3}, x_{1} ; x_{1}, x_{2}, x_{5}, x_{6}, x_{1} ; x_{2}, x_{5}, x_{3}, x_{4}, x_{2} ; x_{2}, x_{5}, x_{6}, x_{4}, x_{2}$ are charactristic 4-cycles.
$-\operatorname{cd}\left(H_{6}^{\prime}\right)=2$.

Fig. 3
d) tournament H_{8} with $\operatorname{cd}\left(H_{8}\right)=3$, whose subtournaments H_{7} have all the same cyclic difference $\operatorname{cd}\left(H_{7}\right)=3$.

Fig. 4

5. The partition of the hamiltonian tournaments

Proposition 2. A vertex v of H_{n} is neutral if and only if in H_{n} there exists a minimal cycle C such that $v \in P_{C}$.

Proof. If v is neutral, $H_{n}-v$ is hamiltonian (and non-coned). Then there exists a minimal cycle C included in $H_{n}-v$ and $v \in P_{C}$. The converse follows directly from Definition 4.

Remark. If v is a neutral vertex of H_{n}, in general there is no characteristic cycle C such that $v \in P_{C}$ (see Example b)).

Corollary 3. The set of the neutral vertices of H_{n} is the union of the sets of the poles of the minimal cycles of H_{n}. Hence it follows $\operatorname{cd}\left(H_{n}\right) \leqq v\left(H_{n}\right)$.

Proposition 4. $\operatorname{cd}\left(H_{n}\right)=v\left(H_{n}\right)$ if and only if in H_{n} there is only one minimal cycle (the characteristic one).

Proof. Suppose that in H_{n} there exactly $m(m>1)$ minimal cycles. Then at least one, e.g. C, is characteristic. Moreover, if C^{\prime} is a minimal cycle different from C, there exists a neutral vertex $v \in P_{C^{\prime}}$ which is not an element of P_{C}, i.e. $\left|P_{C}\right|<v\left(H_{n}\right)$. Then also $\operatorname{cd}\left(H_{n}\right)<v\left(H_{n}\right)$ by Remark to Definition 5.

Conversely, if C is a characteristic cycle and $\operatorname{cd}\left(H_{n}\right)<v\left(H_{n}\right)$, there exists a neutral vertex v such that $v \notin P_{C}$. Then a new minimal cycle C^{\prime} different from C can be found by Proposition 2.

Proposition 5. If H_{n} is the composition $H_{n}=H_{m}^{\prime}\left(S^{(1)}, S^{(2)}, \ldots, S^{(m)}\right)$ of m tournaments $S^{(i)}$ with quotient tournament H_{m}^{\prime}, then $\operatorname{cc}\left(H_{n}\right)=\operatorname{cc}\left(H_{m}^{\prime}\right)$.

Proof. If C is a non-coned r-cycle in H_{n}, the r vertices of C are elements of r different components, i.e. $p(C)$ is a non-coned r-cycle in H_{m}^{\prime}, where $p: V\left(H_{n}\right) \rightarrow V\left(H_{m}^{\prime}\right)$ is the canonical projection.

Conversely, let $H_{m}^{\prime \prime}$ be a subtournament of H_{n} isomorphic to H_{m}^{\prime}. The image in $H_{m}^{\prime \prime}$ of a non-coned m-cycle of H_{m}^{\prime} is a non-coned m-cycle of H_{n}.

Proposition 6. Let $H_{n}=H_{m}^{\prime}\left(S^{(1)}, S^{(2)}, \ldots, S^{(m)}\right)$, then v is a neutral vertex of H_{n} if, and only if, either v is included in a non-singleton component or $p(v)$ is a neutral vertex of H_{m}^{\prime}, where $p: V\left(H_{n}\right) \rightarrow V\left(H_{m}^{\prime}\right)$ is the canonical projection.

Proposition 7. Let H_{m}^{\prime} a hamiltonian subtournament of H_{n}. Then $\operatorname{cd}\left(H_{m}^{\prime}\right) \leqq \operatorname{cd}\left(H_{n}\right)$.
Proof. We must similarly prove that $\operatorname{cc}\left(H_{m}^{\prime}\right) \geqq \operatorname{cc}\left(H_{n}\right)-n+m$.
i) At first we can see that the last inequality is true for $m=n-1$, i.e. $\operatorname{cc}\left(H_{n-1}^{\prime}\right) \geqq$ $\geqq \operatorname{cc}\left(H_{n}\right)-1$.

Let $\mathrm{cc}\left(H_{n-1}^{\prime}\right)=h$ and consider a characteristic cycle C_{h} in $H_{n-1}^{\prime}=H_{n}-v$. - If v does not cone C_{h}, then C_{h} is a non-coned cycle in H_{n}. It follows that $\operatorname{cc}\left(H_{n-1}^{\prime}\right) \geqq \operatorname{cc}\left(H_{n}\right)$. Thus $\operatorname{cc}\left(H_{n-1}^{\prime}\right)>\operatorname{cc}\left(H_{n}\right)-1$.

- If v cones C_{h}, there exists $w \in V\left(H_{n-1}^{\prime}\right)-V\left(C_{h}\right)$ such that v does not cone $\left\langle V\left(C_{h}\right) \cup\{w\}\right\rangle$, since H_{n} is hamiltonian. Since w does not cone C_{h}, we can construct a cycle C_{h+1}, whose vertex set is $V\left(C_{h}\right) \cup\{w\}$, which is non-coned in H_{n}. Then $\mathrm{cc}\left(H_{n-1}^{\prime}\right) \geqq \operatorname{cc}\left(H_{n}\right)-1$.
ii) Now consider the general case with $3 \leqq m \leqq n-1$.

Two different possibilities must be considered:

1) There exists a chain of hamiltonian subtournaments $H_{m+1}^{\prime}, H_{m+2}^{\prime}, \ldots, H_{n-1}^{\prime}$ such that $V\left(H_{m}^{\prime}\right) \subset V\left(H_{m+1}^{\prime}\right) \subset \ldots \subset V\left(H_{n-1}^{\prime}\right) \subset V\left(H_{n}\right)$. Then, step by step, from i) we obtain $\mathrm{cc}\left(H_{m}^{\prime}\right) \geqq \mathrm{cc}\left(H_{n}\right)-n+m$.
2) There exists a hamiltonian tournament $H_{s}^{\prime}(m \leqq s<n)$, such that between H_{m}^{\prime} and H_{s}^{\prime} there is a chain of hamiltonian tournaments as in 1), whereas, for each tournament T_{s+1}^{\prime} such that $V\left(H_{s}^{\prime}\right) \subset V\left(T_{s+1}^{\prime}\right), T_{s+1}^{\prime}$ is not hamiltonian, i.e. H_{s}^{\prime} is coned by all the vertices of $V\left(H_{n}\right)-V\left(H_{s}^{\prime}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-s}\right\}$. Then H_{n} is the composition $H_{n}=H_{n-s+1}^{\prime}\left(\left\{v_{1}\right\},\left\{v_{2}\right\}, \ldots,\left\{v_{n-s}\right\}, H_{s}^{\prime}\right)$ and it follows that $\operatorname{cc}\left(\left(H_{n}\right)=\right.$ $=\operatorname{cc}\left(H_{n-s+1}^{\prime}\right)<n-s$ by Propositions 5 and 1. Hence, we obtain $\operatorname{cc}\left(H_{n}\right)-$ $-n+m<-s+m<\operatorname{cc}\left(H_{s}^{\prime}\right)-s+m \leqq \operatorname{cc}\left(H_{m}^{\prime}\right)$, where the last inequality follows by 1).

Remark. We could have defined a characteristic cycle as a minimal cycle with maximal length. But in this case only a property similar to Proposition 5 would hold, whereas a property similar to Proposition 7 would fail. In fact in H_{8} of Example b) the 5 -cycle $x_{2}, x_{3}, \ldots, x_{6}, x_{2}$ is minimal with maximal length k, i.e. $8-k=3$, whereas:

- in $H_{8}-x_{4}$ each minimal 3-cycle has maximal length k_{1}, i.e. $7-k_{1}=4$;
- in $H_{8}-x_{1}$ the 4 -cycle $x_{2}, x_{3}, x_{4}, x_{5}, x_{2}$ is minimal with maximal length k_{2}, i.e. $7-k_{2}=3$;
- in $H_{8}-x_{8}$ the 5 -cycle $x_{2}, x_{3}, \ldots, x_{6}, x_{2}$ is minimal with maximal length k_{3}, i.e. $7-k_{3}=2$.

Corollary 8. If C is a characteristic cycle of H_{n} and $v \in P_{C}$ is a pole of C, it follows that $\operatorname{cd}\left(H_{n}\right) \geqq \operatorname{cd}\left(H_{n}-v\right) \geqq \operatorname{cd}\left(H_{n}\right)-1$.

Proof. Since $v \in P_{C}, C$ is also a non-coned cycle of $H_{n}-v$. Then $\operatorname{cc}\left(H_{n}-v\right) \leqq$ $\leqq \operatorname{cc}\left(H_{n}\right)$. Therefore $n-1-\operatorname{cc}\left(H_{n}-v\right) \geqq n-1-\operatorname{cc}\left(H_{n}\right)$ i.e. $\operatorname{cd}\left(H_{n}-v\right) \geqq$ $\geqq \operatorname{cd}\left(H_{n}\right)-1$.

Remark. Afterwards, (see Lemma 15) we shall state when $\operatorname{cd}\left(H_{n}\right)=\operatorname{cd}\left(H_{n}-v\right)$.

Proposition 9. Let H_{m}^{\prime} be a hamiltonian subtournament of H_{n}, then $v\left(H_{m}^{\prime}\right) \leqq v\left(H_{n}\right)$.

Proof. At first we will prove the inequality for $m=n-1$. Suppose u is a neutral vertex of $H_{n-1}=H_{n}-v$ and u is not a nautral vertex of H_{n} (i.e. $H_{n}-u$ is not hamiltonian). Then the simple quotient of $H_{n}-u$ is T_{2} and a component is necessary $\{v\}$, otherwise also $H_{n}-\{u, v\}$ is not hamiltonian. Then it follows that either $u \rightarrow$ $\rightarrow v \rightarrow H_{n}-\{u, v\}$ or $u \leftarrow v \leftarrow H_{n}-\{u, v\}$. Now if u^{\prime} is a neutral vertex of $H_{n}-v$ different from u, since v can not cone $H_{n}-\left\{u^{\prime}, v\right\}, u^{\prime}$ is also a neutral vertex of H_{n}. Then there exists at most a neutral vertex of H_{n-1} which is not a neutral vertex of H_{n}. Since v is a neutral vertex of H_{n} and not of $H_{n}-v$, it follows that $v\left(H_{n-1}^{\prime}\right) \leqq v\left(H_{n}\right)$.

In the general case, if there exists a chain of hamiltonian subtournaments H_{m+1}^{\prime}, \ldots \ldots, H_{n-1}^{\prime} such that $V\left(H_{m}^{\prime}\right) \subset V\left(H_{m+1}^{\prime}\right) \subset \ldots \subset V\left(H_{n-1}^{\prime}\right) \subset V\left(H_{n}\right)$, then $v\left(H_{m}^{\prime}\right) \leqq$ $\leqq v\left(H_{m+1}^{\prime}\right) \leqq \ldots \leqq v\left(H_{n}\right)$. Otherwise, there exists H_{s}^{\prime} as in 2) of Proposition 7. Then $v\left(H_{m}^{\prime}\right) \leqq v\left(H_{s}^{\prime}\right)$ and also $v\left(H_{s}^{\prime}\right) \leqq v\left(H_{n}\right)$ by Proposition 6 since H_{s}^{\prime} is a component of H_{n}.

Proposition 10. For each $n \geqq 5$, the bineutral tournament A_{n} has its cyclic difference equal to 2 and it contains the only minimal cycle $x_{2}, x_{3}, \ldots, x_{n-1} ; x_{2}$.

Proof. We proceed by induction on n.
For $n=5, x_{2}, x_{3}, x_{4}, x_{2}$ is the only minimal cycle and $\operatorname{cd}\left(A_{5}\right)=2$.
Assume that $\operatorname{cd}\left(A_{n-1}\right)=2$ and A_{n-1} contains only the minimal cycle x_{2}, x_{3}, \ldots \ldots, x_{n-2}, x_{2}. Consider A_{n} obtained from A_{n-1} by adding the vertex x_{n} successor of x_{n-1} and predecessor of all the other vertices of A_{n-1}. In A_{n} all the $(n-3)$-cycles are coned, in fact $x_{2}, x_{3}, \ldots, x_{n-2}, x_{2}$, non-coned in A_{n-1}, is coned by x_{n} and the only $(n-3)$-cycle including x_{n} is $x_{4}, x_{5}, \ldots, x_{n}, x_{4}$, which is coned by x_{1}. Moreover, the $(n-2)$-cycle $x_{2}, x_{3}, \ldots, x_{n-1}, x_{2}$ is the only one non-coned $(n-2)$-cycle. Consequently $\operatorname{cd}\left(A_{n}\right)=2$.

Theorem 11. (Classification Theorem). Let $H_{n}(n \geqq 5)$ be a hamiltonian tournament of order n, then $2 \leqq \operatorname{cd}\left(H_{n}\right) \leqq n-3\left(3 \leqq \operatorname{cc}\left(H_{n}\right) \leqq n-2\right)$.

Conversely, for each $n \geqq 5$ and for each h such that $2 \leqq h \leqq n-3$, there exist hamiltonian tournaments H_{n} with $\operatorname{cd}\left(H_{n}\right)=h$.

Proof. The first part follows directly from Proposition 1.
Conversely, for each $n \geqq 5$ and $h=2$, the bineutral tournament A_{n} satisfies the condition $\operatorname{cd}\left(A_{n}\right)=2$. Now let $V\left(A_{n-h+2}\right)=\left\{x_{1}, x_{2}, \ldots, x_{n-h+2}\right\}$, where A_{n-h+2} is the bineutral tournament of order $n-h+2$ and $H_{n}=A_{n-h+2}\left(T_{h-1},\left\{x_{2}\right\}, \ldots\right.$ $\left.\ldots,\left\{x_{n-h+2}\right\}\right)$ the composition obtained from A_{n-h+2} by replacing the singleton $\left\{x_{1}\right\}$ with any tournament T_{h-1} whatever. It follows that $\operatorname{cc}\left(A_{n-h+2}\right)=n-h=\operatorname{cc}\left(H_{n}\right)$ by Proposition 5. Therefore $\operatorname{cd}\left(H_{n}\right)=h$.

Remark 1. For $n=4$ it is $\operatorname{cd}\left(H_{4}\right)=1$ and $\operatorname{cc}\left(H_{4}\right)=3$. For $n=3$ it is $\operatorname{cd}\left(H_{3}\right)=0$ and $\operatorname{cc}\left(H_{3}\right)=3$.

Remark 2. A simple tournament H_{n} with $\operatorname{cd}\left(H_{n}\right)=h$ can be obtained from a bineutral tournament A_{n} by reversing the $\operatorname{arc}\left(x_{i}, x_{i+h-1}\right)$ for each $i \geqq 3$ and $h \geqq 3$ such that $i+h \leqq n-1$. Thus, for each admissible h, there also exist simple tournaments H_{n} with $\operatorname{cd}\left(H_{n}\right)=h \geqq 4$. Moreover it is easy to construct simple tournaments H_{n} with $\operatorname{cf}\left(H_{n}\right)=3$.

Remark 3. Obviously, the simple disconnected tournaments (see [2]) have cyclic characterists equal to 3 .

Corollary 12. The collection $\mathscr{H}_{n, h}=\left\{H_{n}\right.$: tournaments with $\left.\operatorname{cd}\left(H_{n}\right)=h\right\}$, for each $n \geqq 5$ and for each h such that $2 \leqq h \leqq n-3$, is a partition of the set of the hamiltonian tournaments of order $\geqq 5$.

Remark. If we add the classes $\mathscr{H}_{3,0}=\left\{H_{3}: 3\right.$-cycle $\}$ and $\mathscr{H}_{4,1}=\left\{H_{4}\right.$: the hamiltonian tournament of order 4$\}$, we obtain a partition of all the hamiltonian tournaments.

6. Tournaments whose cyclic difference is equal to 2

Proposition 13. Each $H_{n}(n \geqq 6)$ with $\operatorname{cd}\left(H_{n}\right)=2$ is simple.
Proof. Suppose H_{n} is non-simple and consider the composition $H_{n}=H_{m}\left(S^{(1)}\right.$, $S^{(2)}, \ldots, S^{(m)}$, where H_{m} is the simple quotient related to H_{n}. Now, let C be a nonconed ($m-2$)-cycle of H_{m} (see the proof of Proposition 1). Since H_{m} can be identified with a subtournament of H_{n}, C can also be considered as a non-coned cycle of H_{n}, which yields the contradiction $\operatorname{cd}\left(H_{n}\right)>2$.

Now it is possible to obtain the structural characterization of the tournaments H_{n} with $\operatorname{cd}\left(H_{n}\right)=2$.
In fact, for each H_{5} it follows that $\operatorname{cd}\left(H_{5}\right)=2$ from Proposition 1.
For $n=6$, it is easy to check that there are only two tournaments H_{6} with $\operatorname{cd}\left(H_{6}\right)=2$, namely the bineutral one A_{6} and the tournament H_{6}^{\prime} obtained from A_{6} by reversing the arc $\left(x_{2}, x_{5}\right)$ (see Example c)).

Moreover, in the general case, we have:

Proposition 14. For $n \geqq 7$, the bineutral tournaments A_{n} are the only tournaments with cyclic differences equal to 2 .

Proof. We proceed by induction on n.

For $n=7$, with $\operatorname{cd}\left(H_{7}\right)=2$ can only be obtained by adding a vertex v either to A_{6} or to H_{6}^{\prime} (see Proposition 7).

If we consider A_{6}, since v must cone the characteristic cycle of A_{6}, we obtain eight different possibilities with regards to the adjacencies of v, but it is easy to check that only for $H_{7}=A_{7}$, is the condition $\operatorname{cd}\left(H_{7}\right)=2$ satisfied, whereas in the other cases either H_{7} contains a hamiltonian subtournament with cyclic difference equal to 3 or it is not hamiltonian.

If we consider H_{6}^{\prime}, since v must cone the four characteristic 4-cycles of H_{6}^{\prime}, v must necessary cone H_{6}^{\prime}. Then, starting from H_{6}^{\prime}, a tournament H_{7} with $\operatorname{cd}\left(H_{7}\right)=2$ cannot be constructed.

Now assume that, for $n>7, A_{n}$ is the only tournament with $\operatorname{cd}\left(A_{n}\right)=2$, and consider H_{n+1}. Since cd $\left(H_{n+1}\right)$ must be equal to 2 and H_{n+1} can not include a subtournament H_{n} with $\operatorname{cd}\left(H_{n}\right)>2, H_{n+1}$ can only be obtained by adding a vertex v to A_{n}. Similarly as before, we obtain eight different cases, but the condition $\operatorname{cd}\left(H_{n+1}\right)=$ $=2$ is satisfied only when $H_{n+1}=A_{n+1}$.

Remark. From Corollary 3 and Proposition 14 it again follows that A_{n} is the only tournament with two neutral vertices for each $n \geqq 4$. (see [6]).

7. Cyclic difference of subtournaments

Lemma 15. Let C be a minimal k-cycle of $H_{n}(k>3), P_{C}=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ the set of poles of C and $W=\left\{w_{1}, w_{2}, \ldots, w_{r}\right\}$ the set of the neutral vertices of $\langle V(C)\rangle$. Then the collection of subsets of P_{C} :

$$
P_{C}^{i}=\left\{v \in P_{C} / v \text { cones }\left\langle V(C)-w_{i}\right\rangle\right\}, \text { for each } w_{i} \in W
$$

is a partition of $P_{C}-P_{C}^{*}$, where $P_{C}^{*}=\left\{v \in P_{C} \mid v\right.$ does not cone $\left\langle V(C)-w_{i}\right\rangle$, $\forall i=1,2, \ldots, r\}$. Therefore $\left|P_{c}\right|=p \geqq r=|W|$.

Moreover, if C is a characteristic cycle and $\{v\}=P_{C}^{i}$ (i.e. P_{C}^{i} is a singleton) then $\operatorname{cd}\left(H_{n}-v\right)=\operatorname{cd}\left(H_{n}\right)$.

Proof. Since $k>3, W$ is not empty. Moreover, since C is minimal, at least one vertex $v_{i} \in P_{C}$ must cone $\left\langle V(C)-w_{i}\right\rangle$, i.e. $P_{C}^{i} \neq \emptyset, \forall i=1,2, \ldots, r$. Finally, $P_{C}^{i} \cap$ $\cap P_{C}^{j}=\emptyset, \forall i, j=1,2, \ldots, r, i \neq j$, since, otherwise, $v \in P_{C}^{i} \cap P_{C}^{j}$ would cone C. Then $\left\{P_{C}^{i}\right\}_{i=1,2, \ldots, r}$ is a partition of $P_{C}-P_{C}^{*}$ and $p \geqq r$.

Now, if C is a characteristic cycle and $\{v\}=P_{C}^{i}$ is a singleton, $\left\langle V(C)-w_{i}\right\rangle$ is non-coned in $H_{n}-v$. Then $\operatorname{cc}\left(H_{n}-v\right) \leqq k-1=\operatorname{cc}\left(H_{n}\right)-1$, i.e. $\operatorname{cd}\left(H_{n}-v\right)=$ $=\operatorname{cd}\left(\boldsymbol{H}_{n}\right)$.

Proposition 16. For each $H_{n}(n \geqq 7)$ with $\operatorname{cd}\left(H_{n}\right) \geqq 3$ and for each k such that $6 \leqq k \leqq n$, there exists a subtournament H_{k} of H_{n} with $\operatorname{cd}\left(H_{k}\right) \geqq 3$. In particular there exists a subtournament H_{6} with $\operatorname{cd}\left(H_{6}\right)=3$.

Proof. If $\operatorname{cd}\left(H_{n}\right)=3$, let C be a characteristic $(n-3)$-cycle of H_{n} and $P_{C}=$ $=\left\{v_{1}, v_{2}, v_{3}\right\}$ the set of the poles of C. Since in $\langle V(C)\rangle$ there are at least two neutral vertices w_{1}, w_{2}, the partition of $P_{C}-P_{C}^{*} \subseteq\left\{v_{1}, v_{2}, v_{3}\right\}$ contains at least two sets and one at least is a singleton. Thus in H_{n} there exists a subtournament H_{n-1} with $\operatorname{cd}\left(H_{n-1}\right)=3$ by Lemma 15 .

If $\operatorname{cd}\left(H_{n}\right)=h>3$, let C be a characteristic $(n-h)$-cycle of H_{n} and $v \in P_{C}$ a pole of C. Since $h \geqq 4$, it follows that $\operatorname{cd}\left(H_{n}-v\right) \geqq h-1 \geqq 3$ from Corollary 8.

By recurrence, the assertion follows for each k such that $6 \leqq k \leqq n$, in particular the equality follows for $k=6$ since it is in general $\operatorname{cd}\left(H_{n}\right) \leqq 3$.

Remark. In general, it is not true that:

- in each H_{n} with $\operatorname{cd}\left(H_{n}\right)=h \geqq 3$ there exists a subtournament H_{n-1} with $\operatorname{cd}\left(H_{n-1}\right)=h-1($ see Example d) $)$;
- in each H_{n} with $\operatorname{cd}\left(H_{n}\right)=h^{\prime} \geqq 4$, there exists a subtournament H_{n-1} with $\operatorname{cd}\left(H_{n-1}\right)=h^{\prime}$. For example, consider $H_{7}=A_{5}\left\{T_{2},\left\{x_{2}\right\},\left\{x_{3}\right\},\left\{x_{4}\right\}, T_{2}\right\}$, obtained from A_{5} by replacing the two neutral vertices x_{1}, x_{5} of A_{5} with T_{2}.

8. Some properties of the bineutral tournaments

Theorem 17. A tournament $H_{n}(n \geqq 5)$ is isomorphic to the bineutral tournament A_{n} if and only if there exists $k(5 \leqq k \leqq n)$ such that each subtournament H_{k} is isomorphic to A_{k}.

Proof. If $H_{n} \simeq A_{n}$ then, for each k, the condition holds.
Conversely, for $n=6$ and $k=5$, it follows that:

- in $H_{6}^{\prime} \not \not A_{6}$ with $\operatorname{cd}\left(H_{6}^{\prime}\right)=2$ (see Example c)) there is, e.g., $\left\langle x_{1}, \ldots, x_{5}, x_{1}\right\rangle \neq$ $\neq A_{5}$;
- in H_{6} with $\operatorname{cd}\left(H_{6}\right)>2$, if $V\left(H_{6}\right)=\left\{x_{1}, \ldots, x_{6}\right\}$ and $C: x_{1}, x_{2}, x_{3}, x_{1}$ is a characteristic 3-cycle of H_{6}, the three subtournaments $\left\langle x_{1}, \ldots, x_{5}, x_{1}\right\rangle,\left\langle x_{1}, \ldots, x_{4}, x_{6}, x_{1}\right\rangle$ and $\left\langle x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{1}\right\rangle$ cannot be at the same time isomorphic to A_{5}.
Thus only A_{6} contains all the subtournaments H_{5} isomorphic to A_{5}.
Now suppose that $H_{n} \neq A_{n}$ for $n \geqq 7$ and there exists $k(5 \leqq k \leqq n)$ such that $H_{k} \simeq A_{k}$ for each subtournament H_{k}.

Then $\operatorname{cd}\left(H_{n}\right) \geqq 3$ from Proposition 14, which immediately yields a contradiction since, by Proposition 16, if $k \geqq 6$, there exists $H_{k} \not \not A_{k}$ and, if $k=5$, there exists a H_{6} with $\operatorname{cd}\left(H_{6}\right)=3$, which contains a $H_{5} \not \not A_{5}$, as seen earlier.

Proposition 18. If $H_{n}(n \geqq 5)$ is not isomorphic to the bineutral tournaments A_{n}, then it contains at least $n-k+2 H_{k}$ hamiltonian subtournaments with $4 \leqq k \leqq$ $\leqq n-1$.

Proof. For $n=5$, since H_{5} is not isomorphic to A_{n}, it contains three neutral vertices (see [6]) i.e. three hamiltonian subtournaments of order 4.

For $n=6$, since $H_{6} \not \not A_{6}$, by Theorem 17 we can consider a subtournament $H_{5} \neq A_{5}$. Then in H_{6} there are three H_{4} contained in H_{5} and one more, including the vertex v such that $H_{5}=H_{6}-v$, since each vertex is contained in a k-cycle ($3 \leqq k \leqq n$) (see [7]). Moreover, if $\operatorname{cd}\left(H_{6}\right)=3$, in H_{6} there are at least three neutral vertices i.e. at least three H_{5}; otherwise $H_{6}=H_{6}^{\prime}$ of Example c) and it contains four H_{5}.

Then the property holds for $n=5,6$.
Now we proceed by induction on n. Suppose each $H_{n-1}(n-1 \geqq 7)$, not isomorphic to A_{n-1}, contains at least $n-k+1 H_{k}$ with $4 \leqq k \leqq n-2$ and consider H_{n} such that $H_{n} \not \not A_{n}$. Then $\operatorname{cd}\left(H_{n}\right) \geqq 3$. Consider a subtournament H_{n-1} with $\operatorname{cd}\left(H_{n-1}\right) \geqq 3$ by Proposition 16. It follows that $H_{n-1} \not ⿻ A_{n-1}$ and in H_{n-1} there are at least $n-k+1 H_{k}(4 \leqq k \leqq n-2)$. Then H_{n} contains $n-k+2 H_{k}$, such that $n-k+1$ are contained in H_{n-1} and one includes the vertex v such that $H_{n-1}=$ $=H_{n}-v$, since each vertex is contained in a k-cycle.

Finally, consider the three hamiltonian subtournaments $H_{n-1}-w_{1}, H_{n-1}-w_{2}$, $H_{n-1}-w_{3}$ of H_{n-1}, where w_{1}, w_{2}, w_{3} are the neutral vertices of H_{n-1}. The vertex v cones at most one of the $H_{n-1}-w_{i}, i=1,2,3$, e.g. $H_{n-1}-w_{1}$, since H_{n} is hamiltonian. Then $H_{n}-w_{2}, H_{n}-w_{3}, H_{n-1}$ are hamiltonian subtournaments of order $n-1$.

Hence the proposition holds for each $k=4,5, \ldots, n-1$.
Remark. As a consequence, we again obtain the following extremal property, proved by Las Vergnas in [6]: "If $H_{n} \not \not A_{n}$, then it contains at least $n-k+2$ k-cycles for $4 \leqq k \leqq n-1$ '.

References

[1] Beineke L. W. and Reid K. B., Tournaments, Selected Topics in Graph Theory. Edited by Beineke L. W. and Wilson R. J.. Academic Press, New York (1979).
[2] Burzio M. and Demaria D.C., On simply disconnected tournaments to appear in Ars Combin. (Waterloo, Ont.).
[3] Burzio M. and Demaria D. C., Characterization of Tournaments by Coned 3-cycles, Acta Univ. Carolin. - Math. Phys., Prague, Vol 28. No 2 (1987), 25-30.
[4] Douglas R. J., Tournaments that admit exactly one Hamiltonian circuit, Proc. London Math. Soc. 21 (1970), 716-730.
[5] Harary F., Norman R. Z. and Cartwright D., Structural models, An Introduction to the Theory of Directed Graphs. Wiley, New York (1965).
[6] Las Vergnas M., Sur le nombre de circuit dans un tournoi fortement connexe, Cahiers du CERO, Bruxelles 17 (1975), 261-265.
[7] Moon J. W., On subtournaments of a tournament, Canad. Math. Bull., vol. 9, no. 3 (1966), 297-301.
[8] Müller V., Nešetřil J. and Pelant J., Either tournaments or algebras?, Discrete Math. 11 (1975), 37-66.

[^0]: *) Work performed under the auspices of the Consiglio Nazionale delle Ricerche (CNR, GNSAGA) and of the Gruppo Nazionale di Topologia (Fondi M.P.I. 40\%).
 **) Universita di Torino, Dipartimento di Matematica, Via Principe Amedeo, 8, 10123 Torino, Italy.

