Acta Universitatis Caroline. Mathematic et Physica

Barbara Majcher-Iwanow
 Orthogonal partitions

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 31 (1990), No. 2, 59--63
Persistent URL: http://dml.cz/dmlcz/701954

Terms of use:

© Univerzita Karlova v Praze, 1990
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Orthogonal Partitions

B. MAJCHER*)

Poland

Received 11 March $1990 \backslash$

In this paper we introduce and study a notion of orthogonal partitions of ω which is in a certain sense dual to the notion of almost disjoint subsets of ω. We consider maximal families of pairwise orthogonal partitions and dual matrices.

0. Notation

We shall use notation from [1]. Let us recall it. Let $(\omega)^{\omega}$ be the set of all infinite partitions of ω. For $X, Y \in(\omega)^{\omega} X \leqq Y$ means that X is coarset than Y (or equivalently Y is finer than X), i.e. each block of Y is a subset of some block of X. Let $(X)^{\omega}$ be the set of all infinite partitions coarser than X. For $X \in(\omega)^{\omega}$ and $n \in \omega$ we write $X[n]=\{x \cap n: x \in X\} \backslash\{\emptyset\}$. Here $n=\{0,1, \ldots, n-1\}$ and so $X[n]$ is a partition of n. It is called a segment. We write $s<{ }^{*} X$ to mean that s is a segment of X, i.e. $s=X[n]$ for some $n \in \omega$. Then we also write $\operatorname{lh}(s)=n$ and $|s|=$ the number of blocks in s.

Let s, t be segments. We write $s<{ }^{*} t$ to mean that $\operatorname{lh}(s)<\operatorname{lh}(t)$ and $s=t[\operatorname{lh}(s)]$. For any sequence $\left(s_{n}\right)$ of segments such, that for every $n \in \omega s_{n}<{ }^{*} s_{n+1}$ let $\lim s_{n}=$ $=$ the unique $Y \in(\omega)^{\omega}$ such, that for every $n \in \omega s_{n}<{ }^{*} Y$. We write $s \leqq{ }^{*} t$ to mean that $s<{ }^{*} t$ or $s=t$. We write $s \leqq t$ to mean that $\operatorname{lh}(s)=\operatorname{lh}(t)$ and s is coarser than t. Finally we write $s \leqq X$ to mean that $s \leqq X[\operatorname{lh}(s)]$. For $X \in(\omega)^{\omega}$ and $s \leqq X$ let $(s, X)=\left\{Y \in(\omega)^{\omega}: s<^{*} Y \leqq X\right\}$. We call the set a dual Ellentuck neighborhood. The dual Ellentuck topology on $(\omega)^{\omega}$ is the topology whose basic open sets are the dual Ellentuck neighborhoods.

1. Orthogonal partitions

Definition 1.We say that infinite partitions X, Y are orthogonal if there is no infinite partition which is coarser than both X and Y, i.e. $(X)^{\omega} \cap(Y)^{\omega}=\emptyset$.

[^0]Examples. Partitions X and Y below are orthogonal

$$
\begin{aligned}
& 1^{\circ} X=\{\{1,2\},\{3,4\},\{5,6\}, \ldots\} ; Y=\{\{1,2,3\},\{4,5\},\{6,7\}, \ldots\} \\
& 2^{\circ} X=\{2 N\} \cup\{\{n\}: n \in 2 N+1\} ; Y=\{\{n\}: n \in 2 N\} \cup\{2 N+1\}
\end{aligned}
$$

Proposition 1. There is a family of 2^{ω} pairwise orthogonal partitions.
Proof. Let X be an arbitrary partition of ω into ω infinite blocks, say $X=$ $=\left\{x_{i}: i \in \omega\right\} ; x_{i}=\left\{n_{i k}: k \in \omega\right\}$ for $i \in \omega$.
For every function $f \in{ }^{\omega} 2$ different from the function χ everywhere equal 1 we define a partition

$$
X_{f}=\left\{n_{i k}: f(k)=1, k \in \omega, i \in \omega\right\} \cup\left\{x_{i} \backslash\left\{n_{i k}: f(k)=1, k \in \omega\right\}: i \in \omega\right\}
$$

It is obvious that for different $f, g \in{ }^{\omega} 2 \backslash\{\chi\} X_{f}$ and X_{g} are orthogonal.
Consider maximal families of pairwise orthogonal partitions, i.e. such a family \mathscr{R} of pairwise orthogonal partitions that $|\mathscr{R}| \geqq 2$ and for every infinite partition X there is some partition $Z \in \mathscr{R}$ such, that $(X)^{\omega} \cap(Z)^{\omega} \neq \emptyset$.

Theorem 1. If \mathscr{R} is a maximal family of pairwise orthogonal partitions, then $|\mathscr{R}| \geqq \omega_{1}$.

The proof will be given in a few lemmas.
Lemma 1. For every finite family of pairwise orthogonal partitions there is a partition orthogonal to each member of the family.

Proof. Let $\mathscr{R}=\left\{X_{i}: i=1,2, \ldots, n\right\}$ be a family of n pairwise orthogonal partitions. For every $i=1,2, \ldots, n$ the set $\bigcup\{x: x \in X \&|x| \geqq 2\}$ is infinite and one of the following cases holds:
case $1^{\circ} X_{i}$ has an infinite block;
case 2° Every block of X_{i} is finite, but there are infinitely many blocks having at least two elements.

We may safely assume that the case 1° holds for first k partitions, $k \leqq n$, namely $X_{1}, X_{2}, \ldots, X_{k}$ and the case 2° holds for next $n-k$ partitions, namely X_{k+1}, X_{k+2}, \ldots \ldots, X_{n}.

For $i=1,2, \ldots, k$ let $A_{i}=\left\{a_{i j} ; j \in \omega\right\}$ be an arbitrary infinite block of X_{i}. For $i=k+1, k+2, \ldots, n$ let $B_{i}=\left\{b_{i j}: j \in \omega\right\}$ be a family of all at least two-element blocks of X_{i} and $b_{i j}=b_{i j}^{0} \cup b_{i j}^{1}$ be an arbitrary partition of $b_{i j}$ into two non-empty sets, for $j \in \omega$. Now construct a partition $X=\left\{x_{j}: j \in \omega\right\} \cup\{y\}$ as follows.

Assume inductively, that we have already constructed blocks $x_{0}, x_{1}, \ldots, x_{m}$. For $i=1,2, \ldots, k$ let

$$
\begin{aligned}
& i(m+1)=\min \left\{j: a_{i j} \notin \cup\left\{x_{1}: l=1,2, \ldots, m\right\} \cup\left\{a_{l l(m+1)}: l=1,2, \ldots, i-1\right\}\right\} . \\
& \text { For } i=k+1, k+2, \ldots, n \text { let } i(m+1)=\min \left\{j: b_{i j} \cap\left(\cup \left\{x_{l}: l=1,2, \ldots\right.\right.\right. \\
& \left.\ldots, m\} \cup\left\{a_{l(m+1)}: l=1,2, \ldots, k\right\} \cup\left\{b_{l(m+1)}: l=1,2, \ldots, i-1\right\}=\emptyset\right\} \text {. Let } \\
& x_{m+1}=\left\{a_{i l(m+1)}: i=1,2, \ldots, k\right\} \cup \bigcup\left\{b_{i i(m)}^{1} b_{i(m+1)}: i=k+1, k+2, \ldots, n\right\} .
\end{aligned}
$$

Having defined all x_{m}, for $m \in \omega$, define $y=\omega \backslash \bigcup\left\{x_{m}: m \in \omega\right\}$. It is easy to see, that the partition X is orthogonal to each X_{i}, for $i=1,2, \ldots, n$.

For any segments s, t and the block a of s such that $0 \in a \in s$ let $s^{\wedge} t=s \backslash\{a\} \cup$ $\cup\{x \in t: x \cap \ln (s)=\emptyset\} \cup\{a \cup \bigcup\{x \backslash \ln (s): x \in t \& x \cap \operatorname{lh}(s) \neq \emptyset\}\}$.

It is obvious, that for any $s, t s \leqq{ }^{*} s^{\wedge} t$ and $\operatorname{lh}\left(s^{\wedge} t\right)=\max (\operatorname{lh}(s), \operatorname{lh}(t))$.
Lemma 2. For any orthogonal partitions X, Y the following holds $\forall s \leqq X \exists t \leqq Y$ $\left(\left|s^{\wedge} t\right|=|s|+1 \& \forall u\left(u \leqq s^{\wedge} t \& u \leqq X \Rightarrow|u| \leqq|s|\right)\right.$).

Proof. Let $v<{ }^{*} Y$ be such a segment, that $\left|s^{\wedge} v\right|=|s|+1$ and let $y_{0}, y_{1}, \ldots, y_{m}$ be segments of Y defined by v. Since $\left|s^{\wedge} t\right|=|s|+1$ we can assume, that $y_{i} \cap \operatorname{lh}(s) \neq$ $\neq \emptyset$, for $i=0,1, \ldots, m-1$, and $y_{m} \cap \operatorname{lh}(s)=\emptyset$. Since X, Y are orthogonal there are infinitely many triples $\left(z_{0}, z_{1}, z\right) \in Y \times Y \times X$ such that $z_{0} \neq z_{1}$ and $z_{0} \cap z \neq \emptyset \neq z \cap z_{1}$. Take such a triple with additional property $\operatorname{lh}(v) \cap z_{0}=\emptyset=$ $=\operatorname{lh}(v) \cap z_{1}$.

First define a partition $Y^{\prime} \leqq Y$

$$
Y^{\prime}=\left\{y_{0} \cup z_{0}, y_{1}, \ldots, y_{m-1}, y_{m} \cup z\right\} \cup Y \backslash\left\{y_{0}, y_{1}, \ldots, y_{m}, z_{0}, z_{1}\right\}
$$

Let $n=\max \left(\min z_{0} \cap z, \min z_{1} \cap z\right)$. Taking $t=Y^{\prime}[n]$ we are done.
Similarly we prove the following generalization of the Lemma 2.
Lemma 3. For any orthogonal partitions $X_{1}, X_{2}, \ldots, X_{n}, Y$, and for every $s_{1} \leqq X_{1}$, $s_{2} \leqq X_{2}, \ldots, s_{n} \leqq X_{n}$,
if $(\forall i \leqq n-1)(\forall u)\left(u \leqq s_{1}{ }^{\wedge} s_{2}{ }^{\wedge} \ldots{ }^{\wedge} s_{n} \& u \leqq X_{i} \Rightarrow|u| \leqq\left|s_{1}{ }^{\wedge} s_{2} \wedge \ldots{ }^{\wedge} s_{i}\right|\right)$
then there exists $t \leqq Y$ with $\left|s_{1} \wedge s_{2} \wedge \ldots{ }^{\wedge} s_{n} \wedge t\right|=\left|s_{1} \wedge s_{2} \wedge \ldots{ }^{\wedge} s_{n}\right|+1$ and such that

$$
(\forall i \leqq n)(\forall u)\left(u \leqq s_{1} \wedge s_{2} \wedge \ldots{ }^{\wedge} s_{n} \wedge t \& u \leqq X_{i} \Rightarrow|u| \leqq\left|s_{1} \wedge s_{2} \wedge \ldots{ }^{\wedge} s_{i}\right|\right) .
$$

Lemma 4. For any countable family of pairwise orthogonal partitions there is a partition orthogonal ot each member of the family.

Proof. Let $\left\{X_{i}: i \in \omega\right\}$ be a family of pairwise orthogonal partitions. Let $s_{0}<{ }^{*} X_{0}$ be arbitrary. Define segments $s_{i} \leqq X_{i}$, for $i \in \omega$, inductively as in Lemma 3.

The partition $X=\lim _{n \in \omega}\left(s_{0}{ }^{\wedge} s_{1}{ }^{\wedge} \ldots^{\wedge} s_{n}\right)$ will work.
Finally we will see that under MA every maximal family of pairwise orthogonal partitions has power continuum.

For any family \mathscr{R} of pairwise orthogonal partitions such that $|\mathscr{R}|<2^{\omega}$ let $\boldsymbol{P}_{\mathscr{A}}=$ $=\{(s, F): s$-segment, $F \cong \mathscr{R} \&|F|<\omega\}$. We say, that a condition (s, F) is stronger than a condition (t, H) if
(i) $s^{*} \geqq t \& F \supseteq H$;
(ii) $\forall X \in H \forall r$-segment $(r \leqq s \& r \leqq X \Rightarrow|r| \leqq|t|)$.

It is easy to see, that $s \neq t$ for any incompatible (s, F) and (t, H). Hence

Proposition 2. $\boldsymbol{P}_{\mathfrak{R}}$ satisfies c.c.c.
Definition 2. For any filter G in $\boldsymbol{P}_{\mathscr{A}}$ let $X_{G}=\lim _{(s, F) \in G} s$.
The following is an easy consequence of the definitions.
Proposition 3. Let G be a filter in $P_{\mathscr{X}}$. Then for any $(s, F) \in G$ and any $X \in F$ we have $(\forall r$-segment $)\left(r \leqq X_{G} \& r \leqq X \Rightarrow|r| \leqq|s|\right)$.

Proposition 4. For any $n \in \omega$ and $X \in \mathscr{R}$ the sets $A_{n}=\{(s, F):|s| \geqq n\}$ and $B_{X}=\{(s, F): X \in F\}$ are dense in $\boldsymbol{P}_{\mathfrak{A}}$.

Proof. Density of B_{X} is obvious. To prove density of A_{n} one can use operation ' ${ }^{\prime}$ '.
Theorem 2. MA implies, that every maximal family of pairwise orthogonal partitions has power 2^{ω}.

2. Dual matrices

Definition 3. A family of maximal families of pairwise orthogonal partitions is called a dual matrix. A dual matrix \mathscr{B} is called shattering if for any infinite partition X there are a family $\mathscr{R} \in \mathscr{B}$ and partitions $X_{1}, X_{2} \in \mathscr{R}$ such, that $X_{1} \neq X_{2}$ and $\left(X_{1}\right)^{\omega} \cap(X)^{\omega} \neq \emptyset \neq\left(X_{2}\right)^{\omega} \cap(X)^{\omega}$. (Then we say that \mathscr{B} and \mathscr{R} shatter X).

Definition 4. $\lambda=\min \{|\mathscr{B}|: \mathscr{B}$ is a dual shattering matrix $\}$
Theorem 3. $\omega_{1} \leqq \lambda \leqq 2^{\omega}$.
Proof. The inequality $\lambda \leqq 2^{\omega}$ is obvious. Let us prove $\omega_{1} \leqq \lambda$.
For segments s, t let

$$
s^{*} t=\{x \cap y: x \in s, y \in t\} \cup\{x \backslash \ln (t): x \in s\} \cup\{y \backslash \ln (s): y \in t\} \backslash\{\emptyset\} .
$$

Obviously $\ln \left(s^{*} t\right)=\max (\operatorname{lh}(s), \operatorname{lh}(t))$ and $\left|s^{*} t\right| \geqq \max (|s|,|t|)$.
Let $\mathscr{B}=\left\{\mathscr{R}_{i}: i \in \omega\right\}$ be an arbitrary countable matrix. Using the operation '*' we will construct a partition X which is not shattered by \mathscr{B}.

Let $s_{0}<{ }^{*} X_{0} \in \mathscr{R}_{0}$ be arbitrary. Assume inductively that we have already constructed sequences $s_{i}<{ }^{*} X_{i} \leqq Y_{i} \in \mathscr{R}_{i}$, for $i=0,1, \ldots, n$. Since \mathscr{R}_{n+1} is maximal there is some $Y_{n+1} \in \mathscr{R}_{n+1}$ such that $\left(X_{n}\right)^{\omega} \cap\left(Y_{n+1}\right)^{\omega} \neq \emptyset$. Let X_{n+1} be an arbitrary element of that intersection and $s_{n+1}<{ }^{*} X_{n+1}$ such, that $\left|s_{n+1}\right|=\left|s_{n}\right|+1$. Let $X=\lim _{n \in \omega} s_{0} * s_{1} * \ldots * s_{n}$. From construction follows, that for any $n \in \omega$ and $j \geqq n s_{j} \leqq X_{n}$. Thus for any $n \in \omega\left(s_{n}, X\right) \cong\left(X_{n}\right)^{\omega}$, so X cannot be shattered by any $\mathscr{R}_{i} \in \mathscr{B}$.

Lemma 5. Let \mathscr{B} be a dual matrix of power less than λ. Then there is a maximal family \mathscr{R} of pairwise orthogonal partitions such, that
(i) $\forall X \in \mathscr{R} \forall \mathscr{R}^{\prime} \in \mathscr{B} \exists X^{\prime} \in \mathscr{R}^{\prime} \exists s\left(s \leqq X \& s \leqq X^{\prime} \&(s, X) \leqq\left(s, X^{\prime}\right)\right)$;
(ii) $\forall X \in(\omega)^{\omega}$ (X is shattered by $\mathscr{B} \Rightarrow X$ is shattered by $\left.\mathscr{R}\right)$.

Proof. The set of all infinite partitions which are not shattered by \mathscr{B} is open and dense in the dual Ellentuck topology. Thus we can construct a maximal family of pairwise orthogonal partitions from elements of the set. Such a family obviously satisfies (i), (ii).

As an easy consequence of the above lemma we obtain
Theorem 4. λ is a regular cardinal.
Proposition 5. Con (ZFC $\left.+\lambda<2^{\omega}\right)$.
Proof. Let $M_{0} \subseteq M_{1} \subseteq \ldots \subseteq M_{\alpha} \subseteq \ldots \subseteq M$ be models of ZFC such, that $M_{0} \vdash \mathrm{CH}, M_{1} \vdash \mathrm{MA}+2^{\omega}=\omega_{1}, \ldots, M_{\alpha} \vdash \mathrm{MA}+2^{\omega}=\omega_{\alpha}, \ldots,\left(\alpha<\omega_{1}\right)$ and $M \vdash$ $\vdash 2^{\omega}=\omega_{\omega_{1}}$. Then $M \vdash \lambda<2^{\omega}$.

Proposition 6. There is a family of λ nowhere dense sets in the dual Ellentuck topology which covers the set of all infinite partitions of ω.

Proof. It is simple reformulation of the analogous proposition from [2].
Remark. All results of this paragraph were inspired by analogous results from [2] and [3].

References

[1] Carlson T. J., Simpson S. G., A dual form of Ramsey Theorem, Advances in Math. 53, 265-290 (1984).
[2] Plewik Sz., On completely Ramsey sets, Fund. Math. 127 (1986).
[3] Balcar B., Pelant J., Simon P., The space of ultrafilters on N covered by nowhere dense sets, Fund. Math. 110, 11-24 (1980).

[^0]: *) Mathematical Institute, University of Wroclaw, Plac Grunwaldzki 2/4, 50-384 Wroclaw, Poland

