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On a Class of Universal Orlicz Function Spaces 

C. RUIZ*) 
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Received 11 March 1990 

In [L-T I] , J. Lindenstrauss and L. Tzafriri have given, for every 1 ^ c < d < oo, 
examples of universal Orlicz sequence spaces lw for every Orlicz sequence space I* 
with (p an Orlicz function c-convex and d-concave. Moreover it was proved that 
every F is isomorphic to a complemented subspace of l*. 

The aim of this paper is to show a class of universal Orlicz function spaces L^fO, 1], 
which are universal for a prefixed class of Orlicz sequence spaces F. In our case we 
also get complemented subspaces. 

As a consequence we deduce that every separable Nakano sequence space Z(Pn> 

can be isomorphically represented as a weighted Orlicz sequence space Z (̂w) for 
a suitable Orlicz function *F and some weight sequence w = (wn) with finite sum, 

oo * • 

Z W n<CO- K * , 
n -=l 

Let us start recalling some topics about Orlicz spaces. Let (p be an Orlicz function 
(i.e. (p: [0, oo) -* [0, oo) is a non-decreasing convex continuous function such that 
(p(0) = 0, (p(x) > 0 if x > 0, q>(i) = 1 and lim (p(x) = oo). By q>'~ and (p'+ we 

JC-+00 

mean the left and the right derivative of the function (p respectively. Recall that 
a non-decreasing convex continuous function (p verify that: 0 = (p'~(x) ^ (p'+(x) 
for every x = 0, (Lemma 1.1 [K-R]). 

Two Orlicz functions (p and \j/ are equivalent at oo, we write q> ~°° xj/, (resp. at 0, 
(p ~° \j/) if there exist K > 1 and x0 > 0 such that: K~1(p(x) = \J/(x) = K(p(x) 
for every x = x0, (resp. x = x0). (p and xj/ are equivalent if they are equivalent at 
oc and 0. 

Next Definition and Proposition can be seen in [M] and [Wo II]. 

Definition. Let I g c < d < oo. A Orlicz function (p is said to be between c 
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and d if (p(x)\xc is non-decreasing on (0, oo), and (p(x)jxd is non-increasing on (0, oo). 
By X(c, d) it is denoted the set of all Orlicz function between c and d. 

It easy to prove that (p e X(c, d) if and only if 

. X(p'~(x) . x(p,+(x) 
c = ——----- ^ — — ^ = d for every x > 0 . 

<K*) <p(x) 
Proposition. Let 1 = c < d < oo. For every Orlicz function (peX*(c,d) there 

exists an Orlicz function \j/ e C/C(c, d) with continuous derivative, and a constant 
K > 1 which only depends of c and d, such that: 

(1) K"1 (p(x) = xj/(x) = K (p(x) for every x = 0 . 

Associated to an Orlicz function (p e JT(l, d), for some d < oo, it is defined the 
following compact subsets of C[0, oo) (the space of all continuous functions on 
[0, oo) equipped with the compact-open topology): 

[(p(s) J A>0 

[ <p(s) J A>O 

If we consider the space C[l , oo) instead of C[0, oo), the following sets are also 
compact in C[l , oo): 

l <KS) ) ~>o 
It is easy to prove if K x(p(x) ^ \l/(x) = K(p(x) for every x = 0, then for every 
^ e E ^ (or E£, or E ^ , or F£A, or . . . ) there exists ^ E ^ (or E~, or Ej tAf or 
F£A , or . . . ) such that 

(2) K"2^(x) = £(x) = K2(j)(x) for every x = 0 

For further information about these sets see [L-T I] and [H-P I and II]. 
Let (Q, n) be a measure space. The Orlicz space L9(Q) is the set of all real \i-

measurable functions f on Q such that: 

W / w ) = 5a P ( | / ( 0 I / U ) d K 0 < °° for some u > ° > 
equipped with the Luxemburg norm, ||f|^, = inf {u > 0:/fl(f/w) ^ 1}. Our at
tention is concentred in three cases: when (Q, pi) = ([0,1], fi) and \i is the Lebesgue 
measure, or (Q, fi) = (N, /i) and \x is the cardinal measure, or (Q, /x) = (/V, /i) and 
^(n) = wn, for an arbitrary sequence (wn) of positive numbers. So we get the Orlicz 
spaces L*[0,1], I*, and P(w) respectively. Moreover let us recall that (p ~° \j/ (resp. 
<p ~°° ij/), if and only if F = J* (resp. L*[0,1] = L*[0,1]) and the identity is an 
isomorphism. 
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From the existence of the averaging projection, it is known that if q> is equivalent 
at 0 to <t> e E£ (resp. <j) e EjjJ), then F = F is isomorphic to a complemented subspace 
ofL*[0 , l ] , 

(3) F = Z*c£L*[0,1] 

(resp. F = Z*c£ /*) (see [L-TI] and [H-PII]). 
Lindenstrauss and Tzafriri proved the following result in [L-TII] (Theorem 

4.b.l2): 

Theorem. For every 1 — c < d < oo there exists an Orlicz function W = *FCtd 

such that: 
i) c = x W'(x)IV(x) = d for all x e [0 ,1] , 

ii) for every Orlicz function q> with c = x (p'(x)\(p(x) = d for all x e [0 ,1] , 
there exists a function in __J equivalent at 0 to q>. Hence, F c£ t

F. 

We are going to use of the argument of Lindenstrauss and Tzafriri to build a now 
Orlicz functions W near oo such that the Orlicz spaces L^fO, 1] are universal spaces 
for a prefixed class of Orlicz sequence spaces F: 

Proposition 1. Let 1 ^ c < d < oo. There exists an Orlicz function T = *FCtd 

with continuous derivative such that: 

i)Ve X(c, d), 
ii) there exists a constant K = Kcd > 1 such that for all Orlicz functions Me 

€ X(c, d) there exists another Orlicz function (j) e F% verifying that: 

K"1 M(x) = <j)(x) ^ K M(x) for every x = l . 

Proof. Assume first that c > 1. We consider the subset of C[l , oo): J f = {xj/e 
e tf(c, d): ij/ has continuous derivative and ^'(1) = d}. If xj/ e X, then xc ̂  \j/(x) ^ 
^ xd for every x = 1. Moreover K is an equicontinuous set of C[l , oo) because: 

\ij,(y) - tfx)\ = p(X) X\y - x\ = X"d\y - x\ 

for every tyeX and 1 _ x — y = X. Since J f is relative-compact set of C[l , oo), 
we can find a sequence (\j/„) e X dense in 3T. 

Put x„ = 22""1 n = 1, 2 , . . . and define 

(4\ «P.V> - M * ) i f 1 = x = T l 

(V nx)~\U*hn)V(rm) if xn = x^x„+1 n = l , 2 , . . . 

We have, W'+(x„) = (djx„) W(xn) n = 1, 2 , . . . , and for n = 2 

W'~(xn) = ti-tWr^) (l/r^i) ^ . . 0 = (5) 

_ ^-i^t.-OC^T-O ( 1 /TB) ^ = ^ _ (TB) = _ / + ( T B ) _ 
^n-l(V"t»-l) 

By (4) and (5) W is an Orlicz function and W e X(c, d). From (l) and (2), we may 
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assume that V has a continuous derivative. Moreover, for all n e A/, (T(Tnx))j ^(tn)) = 
= ij/Jx) for every 1 = x ^ T„ what implies that the set F£ contains all functions 
which belong to X. 

Let M be now an Orlicz function belonging to Jf (c, d). From (1) we may assume 
that M has a continuous derivative. Choose xx = x c d such that 

..&-JJ-2 
c(d - 1) 

and x2 such that 

d(M(Xl) + M'(Xl)(x2 - *.)) = M'(x.) x2 . 

It is easy to verify that 

2 = XI^JZJ)<X2<XI, 
\(d-l)- 2 -

Ifput: 

fM(x) if xt = x 
$o(x) = sM(x1) + M'(xx) (x — xx) if x2 ^ x = xx 

[(M(xj) + M'(xx) (x2 - x-)) (x/x2)d if 1 = x = x2 , 

then the Orlicz function <£(x) = 0o(*)/0o(l) e «^ a n d therefore </> e F£. Moreover, 
taking 

K = max {xt, (djc) xl"c, (x\ + x? dxx) (1/2)'} 

we get that K_1M(x) = <£(x) = KM(x) for every x = 1. 
The case c = 1 has an easy solution in view of the following facts: 

JT(19 d) = {il/(x)jx : x// e X (2, d + 1)} and if ^(x) = ^ 2 > d + 1 ^ , 
x 

t h e n F - = {0 (x ) /x :0eF^ 2 d + 1 } . • 

Theorem 2. Let 1 ^ c < d < oo. There exists an Orlicz function Y = !Fc#d 

wffh continuous derivative such that 

i) We Jf(c, d), 
ii) for every Orlicz function Me3f(c,d) and for all <p e E^ it holds that 

Z%£L*[0, l ] . 

Proof. Take W the Orlicz function of the above Proposition. By (3) we need only 
to prove that there exists <£ e E£ such that 0 ~ ° q>. By Proposition 1 and (2) we may 
assume that M e F£ . So for some scalar sequence (s„) convergent to oo we have: 

M(x) = lim ^ n * for every x = 1 . 
n-oo W(sn) 

If <p e Ej£, then for some scalar sequence (fm) convergent to oo: 
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(p(x) = lim —> m -• for every x _ 0 . 
m-+oo M ( f w ) 

Therefore 

<p(x) = lim lim ^ m 5 " * ) 
w->oo«-+oo -r(^m5nJ 

for every x ^ 0. Now, as E£ is a compact set we deduce that (peE£. D 
We need two definitions before to present a remarkable consequence of the above 

Theorem. An Orlicz function cp is minimal at co (resp. at 0) if for function \j/ e E*j 
(resp. I ^ G E J ( 1 ) , then E*fl = E^°fl (resp. E j t l = Ej f l). This concept of minimality 
was introduced by Hernandez and Peirats in [H-P I] extending the one given by 
Lindenstrauss and Tzafriri, [L-TI] . Basic properties of minimal functions at oo 
or at 0 are the following: E£fl = E* = E£ = E j f l and q> e EJ . The functions xp 

are minimal Orlicz functions, (for further information see [H-P I and II]). 
Let N = (q>n) be a sequence of Orlicz functions. The vector space 

JN = {(*„): 3 « > 0 f «p„(|x„|/«) < oo} 
n=- l 

equipped with the norm 

| | (x„) | |N-inf{ti>0: i ^ | * , | / « ) _ - } 
n-1 

is what is called modular sequence space (or also Musielak-Orlicz sequence space). 
If N = (xPn), where (pn) is a positive scalar sequence, then the space l(Pn) is called 
Nakano sequence space. 

Recall that if cp e J f (c, d) (resp. <pn e X(c, d) for every ne N) for some 1 = c < 
< d < co, then the unit vectors sequence, (en), is base of I* (resp. ZN, where N = (<?>„)). 

Corollary 3. Let V = Wcd be the Orlicz function of the above Theorem. 

i) For every minimal function <peX'(c,d) V9 is isomorphic to a complemented 
subspace of lf[0, 1]. In particular lp c£ L^[0, l ] for all p e [c, d\. 

ii) For every sequence of minimal Orlicz functions N = (<pn) with cpne X(c, d) 
for all ne N, there exists a weight sequence of finite sum w = (wn) such that /N « 
« /^(w) c£ lf[0,1]. In particular l(Pn)

 c£ lT[0,1], for every Nakano separable 
space l(Pn) with pn e [c, d] for all ne N. 

Proof, ii) From Proposition 1 and the proof of Theorem 2 there exist K > 1 and 
(<j)n)eEy such that K"" 1 ^*) _i <p£x) g K0M(x) for every x ^ 0 and ne N. Hence, 
j(4>n) __ flvn) a n ( j t n e identity is an isomorphism (see [Wo I] . We can take an increasing 

oo 

scalar sequence c = (cn) with £ (llW(cn)) < 1 such that 

Чc) U ) = 1/2" foг all x є [0,1] and nєN. 
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If w = (wn = [l/^(c«)])5 then the canonical basis of /(*n) is equivalent to the basis 
(cnen) of /^(w), which implies that l(4>n) is isomorphic to /^(w). Let (A„) be a sequence 
of measurable sets of [0,1], mutually disjoint, such that fi(An) = wn for every 
ne N. Then the complemented subspace of L^[0, 1] spanned by the sequence of 
characteristic functions of the sets A., is isometric to lv(w). So ZN = Z(*n) « 

Remark. In [H-Ru], has been proved that every modular separable space /N 

can be isomorphically represeted as a weighted Orlicz sequence space lv(w) for some 
Orlicz function ¥ and w = (wn) with wn -> oo. Notice that Corollary 3 part ii) 

00 

gives a result of this kind for a weight sequence w = (wn) with £ w„ < oo. 
n = l 

Remark. We do not know whether there exists an Orlicz function W e X(c, d) 
such that for every function cp e Jf(c, d) (p e E£, and so F c£ L^[0, 1]. Of course, 
if this kind of Orlicz function spaces exists, then the function W as in Proposition 1 
will be one of them. 

This paper is part of the author's Doctoral Thesis prepared under the supervision 
of F. L. Hernandez. 
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