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1992 ACTA UNIVERSITAT1S CAROLINAE—MATHEMATICA ET PHYSICA VOL. 33. NO. 2 

How Small Are the Sets Where the Metric Projection Fails 
to Be Continuous 

EVA MATOUSKOVA 

Czechoslovakia*) 

Received 10 May 1992 

Let M be a nonempty closed subset of a Banach space X with an uniformly Frechet differen-
tiable norm. It is shown that the set of points whre the nearest point mapping fails to have uni
queness is c-cone supported. It is also shown, that there exists a <r-cone supported set A c X — M 
and a cone-small set B a X — M such that the distance function dM is Frechet differentiable 
on C= (X— M) — (A u B). As a corollary in spaces which have moreover Frechet differen
tiable dual norm, the nearest point problem is well posed on C. 

1. Introduction 

For a nonempty closed subset M of a real Banach space X, let 

dM(x) = inf{||* - y\; yeM} 

be the distance function associated to M and let 

PM{x) = {yeM;\\x-yj = dM{x)} 

be the metric projection (or the nearest point mapping) of x onto M, for each xeX. 
In [2] De Blasi and Myjak use the following termnology: a point x0 e PM(x) is 

called a solution of the nearest point problem min (x, M), a sequence {x„} c M 
such that lim,..^ \xn — x[ = dM(x) is called a minimizing sequence. A nearest 
point problem is said well posed if it has a unique solution, say x0, and every mini
mizing sequence for this problem converges to x0. For M c X they define 

AU(M) = {xeX; PM(x) contains at least 2 points} 

Awp(M) = {xeX; the nearest point problem min (x, M) is not well posed} 

The set AU(M) (resp. Awp(M)) is called the ambiguous locus of uniqueness (resp. well 
posedness) of M for the nearest point mapping. 

De Blasi and Myjak show that if X uniformly convex than Awp is c-porous in X. 

*) Department of Mathematical Analysis, Charles University, Sokolovská 83, 186 00 Praha 8, 
Czechoslovakia. 
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In this note we show that under some conditions on smoothness of the space X 
(resp. X*) are the sets Au and Awp small in an even more restrictive sense (Theorem 2.9, 
Corollary 2.8). We use the fact that the properties of PM (uniqueness, well posedness) 
have very close relations to the differentiability of dM (see [3]). 

Now let us mention few definitions, which enable ,,to measure" the smallness 
of sets. 

In the following we denote by B(x, r) (resp. E(x, r)) an open (resp. closed) ball 
with a center x and a radius r. 

Definition 1.1 Let X be a metric space. A subset M of X is called porous at 
xeX if there exist y > 0 and R > 0 such that for every r e (0, R~\ there exists 
y eX such that B(y, yr) c B(x, r) n(X — M). A set is said to be porous if it is 
is porous at all its points. A set is called a-porous if it is a countable union of 
porous sets. 

Let us remind that this definition of <r-porosity differs slightly from the one in
troduced by Dolzenko in real analysis. He requires for x e X only existence of such 
y > 0 and R > 0 that for every r0 e (0, R] there exist 0 < r < r0 and y e X such 
that B(y, yr) cz B(x, r) r\(X — M). For more details see [5]. 

Definition 1.2 Let X be a Banach space. If x* eX*, x* =f= 0, and 0 < a < 1, 
define 

C(x*, a) = {xeX; a\x\ • \x*\ < <x, **>} . 

We say that a set M c X is a-cone porous at xeX if there exists R > 0 such that 
for each r > 0 there exist z e B(x, r) and 0 =}= x* e X* such that 

M n B(x, R)n(z + C(x*, a)) = 0 . 

A subset of X is said to be a-cone porous if it is oi-cone porous at all its points. 
A set is called a — a-cone porous if it can be written as a union of countably 
many a-cone porous sets. A set is said to be cone-small if it is a — a-cone porous 
for each 0 < a < 1. 

In the following we will use also an another definition of a cone. 

Definition 1.3 Let X be a Banach space. IfveX,\v\ = 1, and 0 < c < 1, define 

A(v, c) = {x; x = Xv + w, X > 0, [|w|| < cX} = \J XB(v, c) . 
A>0 

We say that a set M c X is cone supported at xeX if there exists R > 0, v e X, 
]|t>|| = 1 and 0 < c < 1 such that 

M n B(x, R)n(x + A(v, c)) = 0 . 

A subset of X is said to be cone supported if it is cone supported at all its points. 
A set is called c-cone supported if it can be written as a union of countably many 
cone supported sets. 

Let us review some properties of these notions (see [6]). 
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Each „cone" C(x*9 a) contains a „cone" A(v9 c). Every cr-cone supported set and 
also every cone small set is <7-porous. In finite dimensional spaces it is easy to prove 
that each cone-small set is cr-cone supported. In R2 there exists a cr-cone supported 
set which is not cone-small. In a separable Hilbert space there exists a set which is 
cone-small, but is not cr-cone supported. 

Lemma 1.4 [6] LetX be a Banach space and let 0 < a < 1. Suppose that M cz X 
is not a — cn-cone porous (resp. cr-cone supported). Then there exists 0 =J= N cz M 
such that N is oc-cone porous (resp. cone supported) at no point of N. 

The proof of the Theorem 2.6 presented in this note depends on the fact that 
similarly as the subdifferential of a continuous convex function is a maximal mono
tone mapping, the almost superdifferential of the distance function in spaces of our 
interest proves to be locally almost nonincreasing mapping. And locally almost 
nonincreasing mappings prove to have some nice properties of maximal monotone 
mappings. So let us now define these notions. 

Definition 1.5 Let X be a Banach space and F a real function defined on an 
open set G cz X. We say that the mapping T: G -> 2X* is a uniform almost super-
differential of F on G if for any e > 0 there exists <5 > 0 such that 

(F(x + h)- F(x) - <h, x*» \\hj-1 =g e 

whenever 0 < ||h[| ^ <5, x, x + he G and x* e T(x). 

Definition 1.6 Let X be a Banach space and let G cz X be open. We say that the 
mapping T: G -> 2X* is locally almost nonincreasing on G if for any xeG and 
s > 0 there exists a neighborhood U of x such that for any y9 z eU and y* e T(y)9 

Z*€T{Z) <y-z,y*-z*y^4y-z\. 

L. Zajicek defines in [4] these notions for singlevalued mapping T; for our pur
poses is the multivaluedness more suitable. The following lemma is proved in [4] 
for the singlevalued case, but in our case the proof works similarly. 

Lemma 1.7 [4] LetX be a Banach space, F a real function defined on an open 
set G cz X and T: G -> 2X° an uniform almost superdifferential of F on G. Then 

(i) Tis locally almost nonincreasing on G, and 
(ii) if there exists a selection of T which is continuous at x e G, then is Frechet 

differentiable at x. 
In [3] Fitzpatrick proved the following relations between properties of the metric 

projection and the distance function: 

Theorem 1.8 [3] Suppose that M is a closed subset of a Banach space X such 
that the norm of X is both Frechet differ entiable and uniformly Gdteaux differen-
tiable and the norm of X* is Frechet differ entiable. Then the following are equi
valent for xeX — M: 

(i) dM is Frechet differentiable at x; 
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(ii) PM is continuous at x (so especially it is sing lev alued at x); 
(ii) every minimizing sequence in M for x converges. 

2. Results 

The following two lemmas generalize lemmas from [6] replacing monotone mappings 
by locally almost nonincreasing. 

Lemma 2.1 Let X be a Banach space and let T:X -• 2X* be a locally almost 
nonincreasing mapping with an arbitrary domain D(T) = {x; T(x) 7-= 0}, Let 
0 < 3a < A, xeX and N a D(T) be given such that 

lim diamT(B(x, d) n N) < a (l) 
Л-+O + 

and 
lim diamT(B(x, ö)) > A (2) 

Ô-+0 + 

Then N is 3a/A-cone porous at x. 

Proof: Because the mapping T is locally almost nonincreasing and (1) holds, we 
can choose R > 0 such that 

diamT(B(x, R) n N) < a and (y - z,y* - z*) = (a/2) \y - z\\ (3) 

whenever y, z e B(x, R), y* e T(y), z* e T(z). 
If T(B(x, R) n N) = 0, then the assertion of the lemma is obviously satisfied. 

Otherwise choose fe T(B(x, R) n N) and consider an arbitrary r > 0. By (2) we 
can find z e B(x, r) and z* e T(z) such that \z* - f\> A/2. To show that N is 
3a/_4-cone porous at x it is sufficient to prove that 

B(x, R)nNn{yeX;(y- z,f - z*> 

>(3aM)||z*-/ | -D^-z|}=0. 
Suppose on the contrary that there exists y e B(x, R)nN for which 

<j-z,f- z*> > (3a\A) \z* - f \ - \ y - z\ 

and choose y* e T(y). Since (3) implies \y* — f\ < a we obtain 

a\y - z\ = <y - z,f - >>*> = <y - z, z* - y*> + 

+ (y - z,f - z*> = (y - z,f - z*> - (a\l) \y - z\ > 

> (3alA)\z* -f\-\y - z\ -(al2)\y - z\^ 

= (3a/A) (Aj2) \ y - u \ - (a/2) \y - < | = a\y - z\ . 

This is a contradiction which completes the proof. 

Lemma 2.2 Let X be a Banach space and T: X -> 2** be a locally almost non-
increasing mapping with an arbitrary domain D(T) = {x; T(x) # 0}. LetH c 
c D(T), x e H, v eX, \v\\ = 1, c e R, e > 0, x* e T(x), 
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(i) <i>, x*> > c + e and 
(ii) l i m ^ 0 + diamT(B(x, 8) n H) < K. 
Then there exists Q > 0 such that for every 

y e B(x, o)nH n (x + A(-v, e/2K)) and y* e T(y) 

the inequality <i>, y*> > c holds. 

Proof: Because the mapping T is locally almost nonincreasing and (ii) holds, we 
can choose Q > 0 such that for every y e B(x, Q) n H and y* e T(y) holds that 
||x* - y*\\ = K and 

<x _ y9 x* _ y*y = (£iC/(2K + £)) ||x - y\\ . (4) 

Suppose that y e B(x, Q) n H n (x + A(—v, sj2K)) and y* e T(y) are given. By 
Definition 1.3 we can find X > 0 and w e X, [|w|| < XsjlK such that y = x — h> + w. 

By (4) it holds 

(eK/(2K + e)) |]x - y\ = (eK/(2K + s)) |w - Ai>|| = <>>* - x*, w - At;> , 

hence 
<Xv, y*} = <At;, x*> + <w, y* - x*> - (eKJ(2K + e)) ||w - Xv\ > 

> K* +«) - h i 1^ - *1 - (e^/(2^ + *)) (hi + ^W) = 
= ^(c + s) - Ae/2 - (&K\(2K + e)) (A + XE\2K) = kc . 

Consequently <r, j;*> > c. 

Proposition 2.3 Let X be an Asplund space and let T:X -*2X* be a locally 
bounded and locally almost nonincreasing mapping with an arbitrary domain 
D(T) = {x; T(x) ^ 0}. Then there exists a a-cone supported set A c: D(T) such 
that T is single-valued at each point of D(T) — A. 

Proof: Suppose on the contrary that 

A:= {xe D(T); Tis not single-valued at x} 

is not (T-cone supported. Obviously A = \Jns=l An where 

An = {xe D(T); diamT(x) > ljn} . 

Consequently we can choose a positive integer n such that An is not tr-cone sup
ported. By Lemma 1.4 there exists a set 0 7-= N c An which is cone supported at no 
its point. Choose x e IV. Since T is locally bounded, there exists r > 0 such that 
T(B(x, r)) is bounded. Putting H := N n B(x9 r), we easily see that 0 ^ H is cone 
supported at no point of H and T(H) is a bounded (let us say by a number K) subset 
of X*. Since X is an Asplund space, every nonempty bounded subset of X* admits 
weak* slices of arbitrarily small diameters. Consequently there exist veX, flrfl = 1 
and c > 0 such that the weak* slice of T(H) 

S:= {x* e T(H); <v, x*> > c} 

is nonempty and has diameter less that 1/n. Since S ^ 0, we can choose xeH and 
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x* e T(x) n S. Choose s > 0 such that <v, x*> > c + e. By Lemma 2.2 there exists 
Q > 0 such that for each j e B(x, Q) n H n (x + A(-v, e/(2K))) and >>* e T(y) 
the inequality <r, y*} > c holds. Since H is not cone supported at x we can choose 
y e B(x, o)nH n(x + A(-v, £J(2K))). Since H a An we have diamT(y) > \\n. 
But T(j;) c 5 and diamS < \jni and that is a contradiction. 

Proposition 2.4 Let X be an Asplund space and let T:X ->XX* be a locally 
bounded and locally almost nonincreasing mapping with a domain D(T) = 
= {x; T(x) # 0} which has a nonempty interior G = Int D(T). Let moreover T 
be norm-to-weak* upper semicontinous. Then the set A of all points z e G at which 
T is single-valued but is not norm-to-norm upper semicontinuous is cone-small. 

Proof: Suppose on the contrary that A is not cone small. Then there exists 
0 < a < 1 such that A is not a — a-cone porous. Obviously A = \J*= x An, where 

An = {xe A; lim diamT(B(x, 8)) > lfn} . 
5^0 + 

Consequently we can choose a positive integer n such that An is not a — a-cone 
porous. By Lemma 1.4 there exists a set 0 7-= N <-- An which is a-cone porous at no 
point of N. Choose xeN. Since Tis locally bounded at every point of G we can 
choose r > 0 such that T(B(x, r)) is bounded. Since X is an Asplund space, there 
exist veX, ||t;[| = 1 and c > 0 such that the weak* slice 

S:={x*e T(B(x, r) n N); (v, x*} > c] 

of the set T(B(x, r) n N) is nonempty and has diameter less than a/3/i. Hence there 
exists y e B(x, r) n N such that (v, T(y)y > c (here T(y) eX*, since T is single-
-valued on N cz A). Since {x*; \v, x*} > c] is weak* open and since Tis norm-to-
-weak* upper semicontinuous, there exists d > 0 such that B(y, d) cz B(x, r) and 
T(B(y, d)) cz {x; (v, x*} > c}. Consequently T(B(y, d)nN) a S and therefore 

lim diam(T(B(y, d)) n N) = diamS < a/3n . 
a-*o+ 

Since y eN c An, we have lirn^ + o diamT(B(y, 8)) > 1/n. Using Lemma 2.1 with 
x = y, a = a/3n, A = 1/n we obtain that N is a-cone porous at y, which is a con
tradiction. 

In the proof of the next theorem we will need the following easy lemma: 

Lemma 2.5 Let X be an Asplund space, G cz X an open set and {fa;<xe A} 
be a system of functions on G such that each fa is Frechet differentiable on G, 
and the limit limA_0 (fa(x + hv) — fa(x)) h'1 is uniform with respect to (a, v, x) e 
eA x {v; jvj = 1} x G. Then the mappings x <->fa(x) (f'a(x) denotes the Frechet 
derivative of fa at x) are equally continuous on G with respect to a e A. 

Proof: We need to prove that for every xeG and e > 0, there exists 8 > 0 
such that ||fa(x) - f«(y)|| < £ whenever yeG and ||x - y\ < 8. So let x e G and 
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£ > 0 be given. Then there exists 5 > 0 such that 

\Uy + hv) -/Mb'1 -f&)(v)\ < 6/2 

whenever (a, v, y) e A x {v; \\v\\ = 1} x G, 0 < \h\ < 5, y + hv e G. Consequently 
for every y e G, 0 < ||x - yj < 5 and veX, \v\\ = 1 we have 

[/:(*) to -/.WO0I <. I/&0O) - (LW -LW)/||x - j | | + 
+ |(LW - L(y))l(- II* - jfl " M) tol ^ e • 

Theorem 2.6 Lei* Z be an Asplund space, G c X an open set and {fk; a e A} 
be a system of K-Lipschitz functions on G9for which the following conditions hold: 

(i) Each fa is Frechet differentiable on G, and the limit l im^o (f*(x + hv) — 
— fjx)) h"1 is uniform with respect to (a, v, x) e A x {v; [|i?|| = 1} x G. 

(ii) F(x) := inf {fa; a e A} > - c o for each xeG. 
Then there exists a a-cone supported set A c G and a cone-small set B cz G 

such that F is Frechet differ entiable on G — (Au B). 

Proof: For an arbitrary x e G let US denote by 2Fx the filter on X* with the 
filter basis 

{{ax);tix)<F(x) + s};e>0}. 
Since every function fa is K-Lipschitz, we have ||fa(x)|| ^ K. Since the set {g e 

eX*; ||g[| ^ K} is weak*-compact, the set T(x) of all points of accumulation of <Fx 

in weak* topology is nonempty whenever x e G. Moreover, the mapping T: x h-> T(x) 
is locally bounded (in fact it is bounded by K). Let us show that Tis norm-to-weak* 
upper semicontinuous on G. 

We must show that if x e G and W is any weak* open subset of X* containing 
T(x), then for any sequence { x j a G with §xn — x|| -> 0, we have T(xn) c IV 
for all sufficiently large n. If not, then there exists a subsequence (call it {xn}) and 
x* e T(xn) — W. Since the mapping T is bounded, there exists weak* cluster point 
x* of the sequence {x*}. Clearly x* eX* — W, but we will prove that x* e T(x), 
which is a contradiction. To do so, it is sufficient to show that for arbitrary s > 0, 
co > 0 and nonzero vteX, i = 1, ..., k there exists a e A such that 

fa(x)<F(x) + e and |<^,fa(x) - x*>| < co i=l,...,k. 

Let e > 0, co > 0 and nonzero vteX, i = 1, . . . , k be given. Let us choose n large 
enough, such that ||x — x j < e/2K, [|fa(x) — fa(xn)[| < G>/3 • max [[̂ fl whenever 
a G A (this is possible, because fa are by Lemma 2.5 equally continuous with respect 
to a) and <#., x* — x*> < <y/3. Now let us take a e A such that 

fa(x„) < F(x„) + e/2 and [^- / t fx , ) - x*>| < co/3 i = l,...,k 

Then using the fact that every fa is K-Lipschitz we get 

fa(x) = fa(xn) + K||x - JC.II < F(x„) + c/2 + K • s/2K = F(x„) + 6 . 
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Moreover 
|<»„/i(x) - x*>| < \<v„ffrm) - X„*>| + \<v„ x* - x*>| + 

+ \<v„f.(x) -f.(xm)y\ < 2o>/3 + ||i>([| a>/3 max flt>,.|| <. o> 

Hence x* e T(x) and the mapping T is norm-to-weak* upper semicontinuous. Now 
we will show that T is a uniform superdifferential of F on G. Let e > 0 be given. 
Since fa are uniformly Frechet differentiate on G, there exists S > 0 such that 

| / . (* + *) - fJix) - <A,/.(*)>| < «/2 ||/t|| , (5) 

whenever x e G, x + h e G, 0 < []h|| < S9 a e A. 

Let x e F, h e X, 0 < ||ft|| < <5 and n > 0 be fixed. Since T(x) is the set of points 
of accumulation of &x in weak* topology, for an arbitrary g(x) e T(x) there exists 
a e A such that 

fa(x) < F(x) + n and |<ft/I|A||,/i(x) - ^(x)>| < a/2 (6) 

By (5) and (6) it holds that 

F(x + h) = fa(x + h) ^ F(x) + n + (h, g(x)> + 2e/2 ||h|J 

and because rj > 0 is an arbitrary number 

F(x + h)-F(x)-<h,a(x)>^e||h[|, 

whenever 0 < [|h|| < S, xeG, x + heG, g(x)eT(x). Hence T is a uniform 
superdifferential of F on G and by Lemma 1.7(i) it is locally almost nonincreasing 
on G. 

By Proposition 2.3 there exists a <r-cone supported set A c D(T) = G such that 
T is single-valued on G — A. By Proposition 2.4 the set B of all points where T 
is single-valued, but is not norm-to-norm upper semicontinuous is cone small. So 
if x G G — (A u B) then T(x) is single-valued and T is norm-to-norm upper semi-
continuous at x, consequently every selection of Fis continuous at x and by Lemma 
1.7(ii) F is Frechet differentiable at x. 

L. Zajicek proved in [4] that if X is a Banach space with separable dual and 
uniformly Frechet differentiable norm then the set of points where the distance 
function fails to be Frechet differentiable is cone-small (in fact he proved that it is 
angle-small, but in separable spaces this notion coincides with our definition of 
cone-small sets). Using the previous theorem, we can prove without the presumption 
of a separable dual a result which is only slightly weaker. 

Theorem 2.7 Let X be a Banach space with an uniformly Frechet differentiable 
norm (a.e. the limit l im^o (\x + 5v\\ — |)x||) S"1 is uniform with respect to 
(x, v)e Si x Sl9 where St denotes the unit sphere of X) and let M be a closed 
subset ofX. Then there exist a a-cone supported set A a X — M and a cone small 
set B c X — M such that the distance function dM is Frechet differentiable on 
(X - M) - (A u B). 
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Proof: Denote by F(x) := dM, for a e M denote fa(x) := ||x — a[|, and for 
a positive integer n denote Gn := X — (M + J3(0, Ijn)). Since the norm on X is 
uniformly Frechet differentiable the limit lim^_0 (\x + 5v\ — \x\)S~l is uniform 
also with respect to (x, v)eVx Sl9 where Vis an arbitrary set such that X — V 
is a neighborhood of zero. If we define Vn : = X — B(0, ljn), then obviously Vn 

satisfies this condition and whenever xe Gn and a e M it holds that x — a e V„. 
Consequently the functions fa satisfy the condition (ii) of Theorem 2.6. The norm 
on X is Frechet differentiable, so X is an Asplund space and we can apply Theorem 
2.6 to obtain that there exist a cone-small set Bn cz Gn and a cr-cone supported set 
An c= Gn such that F is Frechet differentiable on Gn — (An u Bn). Because X — M = 
= \Jn=t Gn we have also that there exist a cone-small set B cz G and a cr-cone sup
ported set A cz G such that F is Frechet differentiable on G — (A u J5). 

As a corollary we obtain using Theorem 1.8 the following: 

Corollary 2.8 Let X be a Banach space with an uniformly Frechet differentiable 
norm and Frechet differentiable norm on X* and let M be a closed subset of X. 
Then there exist a a-cone supported set A cz X — M and a cone small set B cz 
cz X - M such that Awp(M) C y 4 u 5 . 

De Blasi and Myjak proved in [2] that if X is uniformly convex than the set Awp 

is cr-porous. Corollary 2.8 provides an improvement of their result for example for 
spaces lp, where 1 < p < oo. These are uniformly convex, consequently also their 
duals are uniformly convex and by [7] the norm on lp, 1 < p < oo is uniformly 
Frechet differentiable. 

Now let us deal with the set AU(M) where the metric projection on M contains 
at least two points. 

Theorem 2.9 Let X be a strictly convex Banach space with a uniformly Frechet 
differentiable norm and let M be a closed subset of X. Then there exists a a-cone 
supported set A cz X — M such that AU(M) CZ A. 

Proof: If we define F(x) := dM, fa(x) := \x — a[| for a e M , and Gn := X — 
(M + B(0,1/n)) for a positive integer n, we obtain in the same way as in the proof 
of Theorem 2.7 that the conditions of Theorem 2.6 are satisfied. Consequently we 
can define the mapping Tn: Gn-* 2X* as in the proof of Theorem 2.6 and obtain 
that Tn is a uniform almost superdifferential of dM on Gn. Moreover we obtain 
that there exists a cr-cone supported set An cz D(T) = Gn such that Tn is single-
valued on Gn — An. If we define A : = [)„*= t An, then A cz X — M is a cr-cone 
supported subset of X — M. 

We will prove that AU(M) cz A. 
Let x e AU(M) and y, z e PjJ^x) such that y # z be fixed. Choose a positive integer 

n such that x e Gn. Since fy(x) = fz(x) = F(x), we have by the definition of Tn that 
bothfy(x) andfz'(x) belong to 7 ,̂(x). Since X is strictly convex, [|x — >>[[ = [[ x — z||, 
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and x — y ¥" x — z w e have thatf^(x) ¥" f'z{x). Consequently Tn is not singlevalued 
at x. 
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