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Characterization of Baire-One Functions Between 
Topological Spaces 

LIBOR VESEL* 

Italy*) 

Received 10 May 1992 

Let X be a normal topological space and Y be a metric space. We give several sufficient condi­
tions under which the functions of the first Baire class from X into Y are characterized by their 
Ftf-measurability and strong a-discreteness. For example, this happens if Y is arcwise connected 
and locally arcwise connected, or if Y contains a dense subspace Y1 such that all open balls 
in yx are arcwise connected. Other sufficient conditions are stated in terms of extendability 
of continuous functions from zero-subsets of X into Y to the whole X. 

Introduction 

Let ^(X, Y) be the set of all continuous functions from a topological space X 
into a topological space Y. We use the following notation: ^t(X, Y) = {f :X -» Y; 
f is a pointwise limit of a sequence from %>(X, Y)} and ^a(X, Y) = { / :X -> Y; 
f~x(G) is an 3Fa set for any open G c Y}. The elements of ^t(X, Y) are called func­
tions of the first Baire class, and those of fFa(X, Y) are called functions of the 
first Borel class or &'^measurable functions. 

It is easy to prove that ffl^fX, Y) a 1FJ(X, Y) for any topological space X and 
any metric space y(cf. Proposition 1.10), but the two classes do not coincide in 
general: the characteristic function of any nonempty proper closed subset of [0, 1] 
belongs to #",([0, 1], { 0 , 1 } ) \ ^ 1 ( [ 0 , 1 ] , {0,1 }) (note that ^ ( [ 0 , 1], {0, 1}) con­
tains constant functions only). 

The research of relations between Baire-one functions and /^-measurable func­
tions begins with Baire's paper [1] from 1899, which contains results of his PhD. 
thesis. 

The equality &t(X, Y) = ^a(X, Y) holds in any of the following situations: 
(I) X is an interval of reals R, Y = R (Baire [1]); (II) X is metric, Y = R (Lebesgue 
[10]); (III) X is metric, Y = [0, 1]" (nel\l) or Y = [0, i]N ([7, p. 391]); (IV) X is 

*) Via S. Vitale 4, 40125 Bologna, Italy. 
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metric, Yis a separable convex subset of a Banach space (Rolewicz [13]); (V) X is 
a complete metric space, Y is a Banach space (Stegall [14]); (VI) X is a normal 
topological space, Y = R (Laczkovich [9] without proof, for a proof see [11, Exer­
cise 3.A.1]; the result was proved independently in [5]). 

All these results, except (V), deal with Y separable. In fact, the functions from 
&t(X, Y) are of countable character in some sense: they are limits of sequences 
of continuous functions. R. Hansell [4, § 3] introduced the notion of a cr-discrete 
function and observed that the functions from &i(X, Y) are always tj-discrete. 

A family of subsets of a topological space is called discrete if each point of the 
space has a neighborhood that meets at most one of the sets of the family. A family 
of sets is said to be a-discrete if the family is the union of countably many discrete 
families. A family of sets in X is a base for f :X -• y i f f _ 1 (G) is a union of sets 
from the family whenever G is an open subset of Y. A function is said to be a-discrete 
if it has a cr-discrete base. We shall denote by l(X, Y) the set of all c-discrete func­
tions from X to y 

Hansell [4] proved that Borel measurable functions defined on a complete metric 
space and functions with separable ranges are cr-discrete. Hence fFjX, Y) = 
= Fa(X, Y) n I(X, Y) holds in all the situations (I)-(VI) above. 

The equality ^t(X, Y) = &J(X9 Y) n l(X, Y) holds in any of the following situa­
tions: 
(VII) X and Y are metric spaces, every continuous function from a closed subset 
of X into yean be extended continuously to X, and for each y e Yand each neigh­
borhood U of y there is a neighborhood V of y such that each continuous function 
from a closed F c X into V admits an extension from ^(X, U) (Rogers [12]); 
(VIII) X is a paracompact space in which open sets are £?#, Y is a Banach space 
(Jayne, Orihuela, Pallares and Vera [6]); (IX) X is collectionwise normal (i.e., for 
•each discrete family {Fa; a e 91} of closed sets there is a discrete family {Ga; a e 91} 
of open sets with Fa c Ga for any a e 91), Y is a closed convex subset of a Banach 
space (Hansell [5]); (X) X is metric, Y is a metric space which is arcwise connected 
and locally arcwise connected (Fosgerau [3]). 

A complete metric space yis locally arcwise connected (and arcwise connected) if 
and only if y i s locally connected (and connected) by [8, p. 254] (and [3, proof of 
Thm.2]). M. Fosgerau [3] also proved that this property of y i s not only sufficient 
but also necessary for the equality ^A([0, 1], Y) = ^ t f([0, 1], Y). Namely, he 
proved the following theorem. 

Theorem F. Let Y be a complete metric space and let X0 be a metric space con­
taining a homeomorphic copy of [0,1] . Then the following assertions are equivalent: 

(a) y is connected and locally connected; 
(b) ax{\p91], y) = ^([o, i], y); 
(c) ax{X09 Y) = <Fa(X0, Y) n l(X0, Y); 
(d) ax{X9 Y) = &j(x9 Y) n I(X, Y) for all metric spaces X. 
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The aim of the present paper is to extend the above mentioned results (VII) and 
(X) (and hence all the result (I)—(X)) to the case when X is a normal topological 
space. Two problems arise. The proof requires to consider differences of closed sets, 
and such differences are not necessarily 3FC in non-metric spaces. The second pro­
blem concerns cr-discrete functions. In a metric space X each c-discrete cover of X 
by 3Fa sets has a refinement which covers X and is the union of countably many 
uniformly discrete families of SF^ sets. (A family of sets is uniformly discrete if 
there is a positive number less than the distance of any two distinct sets of the 
family.) This cannot be done in non-metric spaces (and this is the reason why (IX) 
requires X to be collection wise normal, and (VIII) paracompact (and hence collec-
tionwise normal, too [2, p. 214])). 

The idea how to avoid the first obstacle is contained in [11]: instead of differences 
of closed sets it is possible to consider differences of zero-sets (i.e., sets of the form 
<p-1(0) where <p is a continuous real function). Such differences are SF^ even coun­
table unions of zero-sets. The key is provided by Proposition 1.8. 

As for the second problem, we observed that the functions of ^ ( K , Y) are not 
only (7-discrete but „strongly d-discrete". This notion (see Definition 1.2) coincides 
with (7-discreteness in collectionwise normal (and hence also in paracompact and 
in metric) spaces. 

The proofs have much in common: they require to extend continuous functions. 
Not all, but only some of them. From this reason we define a (rather technical) 
property (&) for couples of spaces (X, Y). We prove that (S) is sufficient for 
^ ( X , Y) = ^J(X9 Y) n Z*(X9 Y) where Z*(X, Y) denotes the class of strongly 
(7-discrete functions, and we show that if X is normal and Y is like in (VII) or in (X) 
then (X9 Y) has the property ($). We state other sufficient conditions for (&) in 
terms of properties of a dense subspace of Y. These conditions are new and they 
cover some cases which were not covered by the results (I)—(X). 

The main results of the present paper are contained in Theorem 3.2 and Theorem 
3.7. 

The author wishes to express his thnks to L. Zajicek and P. Holicky, both for 
useful discussions, and the first one also for information about the result (VI), 
especially Proposition 1.8. 

1. Definitions and basic facts 

1.1 Definition. A family Jt of subsets of a topological space X is called strongly 
discrete if there is a discrete (indexed) family {GM; M e Jt] of open sets such that 
M c GM for any M e Jt. A family Jt is said to be strongly c-discrete if Jt can 
be decomposed into countably many strongly discrete subfamilies. Jt is called 
strongly discretely c-decomposable (shortly: sdcd) if each M e Jt can be written 
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in the form M = u HMn and for each fixed neN the family {HMn; M ~Jt} is 
strongly discrete. n = 1 

1.2 Definition. A function / : X -» y is said to be strongly a-discrete if it has 
a strongly c-discrete base. The class of all strongly rr-discrete functions from X 
into y will be denoted by I*(X, Y). 

1.3 Remark, (i) Each strongly discrete family is discrete, hence Z*(X, Y) c 
<= 2{x, y). 
(ii) In view of Definition 1.1, a space is collectionwise normal iff every discrete family 
of its subsets is strongly discrete. Therefore I*(X, Y) = l(X, Y) if X is collection-
wise normal (in particular, if X is paracompact or metric), 
(iii) Every strongly c-discrete family is sdad. 
(iv) Each metric space has a (7-discrete base of open sets (cf. [7, p. 235]). 

1.4 Definition. A subset Al of a topological space X is a zero-set if A = <p~l(0) 
for some <p e %>(X, R). A is a cozero-set if its complement is a zero-set. We denote 
by .2?, Coz, «3fff, Coza respectively the families of all zero-sets, cozero-sets, countable 
unions of zero-sets, and countable intersections of cozero-sets. 

1.5 Remark, (i) Zero-sets are closed. In metric spaces every closed set is a zero-set 
(consider <p equal to the distance from the set). 

(ii) The class 2£ is closed under finite unions and finite intersections. 
(iii) If F is a closed set in a metric space Y and <ps^(X, Y), then <P~1(F)G £?. 
(iv) Coz c 3T,. 

1.6 Lemma. Union of a strongly discrete family of zero-sets in a normal space X 
is again a zero-set. 

Prool. Let Jt be our family. By Definition 1.1 there is a discrete family 
{GM; M e Jt} of open sets such that M <=. GM for any M eJt. For M e Jt, let 
<pM e <£(X, U) be such that M = <PMX(0). By the normality of X, for every M e Jt 
there is \l/MeV(X, [0,1]) such that i//M(M) = {0} and *I/M(X\GM) = {1}. Define 
fM(x) = min {|4>M(x)| + xl/M(x), 1} and put 

K) for x 6 GM, M e Jt, 
for X$KJ{GM;M-Jt} . 

T h e n / e #(X, R) and / _ 1 (0 ) = u ^ . • 

/(*) = {í*(x) 

1.7 Lemma. Let X be a normal space, A a B c X, Ae fFa and B e &d. Then 
there exists H e Cozd such that A a H a B. 

00 

Proof. First, let us prove the lemma for B open. We can write A = \J An with An 

» = i 

closed for all n. The sets X \ B and An are disjoint and closed, therefore there exists 
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<pneV(X, [0,1]) with q>J{X\B) - {0} and <pn(A„) = {1}. Put <p = Z^n<Pn and 
n = l 

H = X\<p~ 1(0). Then H is a cozero set and AcH cz B. The assertion for a general 
&d set £ follows easily from the particular case proved above. • 

1.8 Proposition. Let X be a normal space, Y be metric, a n d / e - F ^ X , Y). Then 
/ _ 1 ( G ) e -ST, for any open G c Y. 

Prool. Let F c 7 b e closed, d(y) = dist (>>, F) for any yeY. Then the function 
g = d 0f is in ^ff(X9 R) and we have 

/ -(F) = <T-(0) = n tf-^C-l/fl, !/«)) = n g-'d-lln, 1/n]). 
n = l n = l 

The sets .An = ^ ( ( - l / n , 1/n)) are J27,,, the sets Bn = 0 _ 1 ( [ - l / n , l/n]) are 9b9 

and .An c= Bn for all n. By Lemma 1.7 there exist sets Hn e Coz^ such that An cz Hn c 
c .#„. Consequently, f~1(F) = u Hne Coz6 for any closed set F. Passing to com­
plements completes the proof. • 

1.9 Lemma. Let ^ be a d-discrete family of open sets in a space Y9 a n d / e E*(X9 Y). 
Then the family {/" *(£/); U e %] is stfVd. 

00 

Proof. Let Jf = U @m be a base for / such that each 3Sm is strongly discrete. 
oo m— 1 

Write °U = \}(JUn where each °Un is discrete. For U e ^r, m, n e N put 

я - í v 
n\J,mtn ~ ]f 

\u{Be^m;Bczf-1(U)} for Ue^n, 
[0 for l / £ ^ „ . 

Obviously, f~x(U) = \J HUmn. Moreover, for fixed m, n9 the family 
m,neN 

{Hu,m,nl U etft}is strongly discrete since 88m is strongly discrete and {f~l(U)\ U e °Un\ 
is disjoint. • 

1.10 Proposition. Let X be a topological space and let Y be a metric space. Then 
at(X9 Y) cz 3Fa(X9 Y) n -T*(Z, Y). 

Proof. Let /(*) = lim/w(x) for all xeX9 fme%(X9 Y) for all m. Let U c y 
00 

be open. There exists closed sets Uk (k e ft.) such that U — \J Uk, and Uk <= int (Uk+1) 
for all fc. Then *= 1 

r1(t!)= U (\fj\Uk). 
fc.meN j ^ m 

The sets F£w = f l J ^ 1 ^ * ) a r e c l ° s e d - C o n s e q u e n t l y / e ^ X , Y). 
oo ./j^m 

Let °U = U ^n be an open base for the topology of Y with <%n discrete for all n 
n = l 

(cf. Remark U(iv)). For fixed n, fe, m e N the family ^„,k,w = {F^m9Ue^n} is 
strongly discrete since F£w c / " 1 ^ ) and {/"^CI); £ Ie^ n } is a discrete family of 
open sets. It is easy to see that 89 = (J J^*,w is a base f o r / T h u s / e .T*(X, y). D 

n,k,m 
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2. Strongly discretely 
^-decomposable families of &a sets 

2.1 Lemma. Let Jl be a sdtxd family of 2£a subsets of a normal space X. Then 
the sets HMn from Definition 1.1 can be chosen so that they are zero-sets. 

Proof. By Definition 1.1, there exist sets HMn and open sets GMn such that 
00 

HMtH c GMn for any M eJi, neN, M = \J HMn for any M e Ji, and the family 
n = l 

{GM „; M e ^ } is discrete for any neN. Since X is normal it is easy to find zero-sets 
ZM,n

 w- t r l HMf„ <= ZM>II c GM>„ for M e Ji, n e r\J. Each M e Jt is in 3£a, therefore 
00 

it can be written in the form M = U FMk
 w ^ h FMtk e 3£ for all fc. So we have 

k-i 

M = UHM,„ = UU(IIM,n n FMtk) c UU(ZM)„ n F j ^ ) e UfV,* = M , 
n n k n k k 

hence M = \J\J(ZMn n FM)k). The sets in the last union are zero-sets and for fixed 
n k 

n, k the family {ZMt„ n FMk; M e Ji} is strongly discrete since ZMn n FMk c 

<= ^M,„. ' ' n 

2.2 Proposition (Reduction lemmai. Let {Ma; a e 21} be a sdad family of &<, 
sets in a normal space X. Then there exists a disjoint sdcrd family {Fa; a e 21} of &„ 
sets such that 

(a) Fa c Ma for all a e 2t , and 
( b ) U Fa = \JMa. 

ae2l ae2l 
oo 

Prool. By Lemma 2.1, for any a e 21 we can write Ma = U Man where Man are 
n = l 

zero-sets, and for each fixed n the family {Man; a e 21} is strongly discrete. Define 
by induction 

Fa.i = Afa>1 for all a e 2 I , 
n 

F*,n+i=Matn+1\\J \JMatk for all a e « l . 
fc=l ae2l 

By Lemma 1.6 and Remark 1.5(ii) the last union is a zero-set. Hence, by Remark 
1.5(iv), Fa „ e && for any a e 2l? n e N. It is clear that {Fat„; a e 21, n e N} is a dis­
joint cover of U-^a, ar-d Fan <= M a w for all a, M. Consequently the sets Fa = 

oo a 

= U F<x,n ( a G 21) Wave the required properties. • 
n = l 

2.3 Lemma. Let X be a normal space, and for any s e N, let Jis a £P& be a dis­
joint sdad family that covers X. Then there exist families s/n(s, neN) satisfying 
the following properties: 

(a) s/n is a strongly discrete family of zero-sets; 
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(b) for each F es/n there exists (necessarily unique) M e Jts with F c M; 

(c) U ( u < ) = Z; 
11=1 

(d) U J / ; c U J / ; + 1 ; 

(e) for each H e s/n
+ 1 there exists (necessarily unique) F e s/n with I7cF. 

Proof. 1. Fix se N. By Lemma 2.1, each M eJts can be written in the form 
00 

M = U ZM,« where ZMne2£ for each n, so that { Z M j „ ; M e ^ } is strongly discrete 
» = i 

for any fixed n. Denote Zn = \j{ZMn; M e Jts}. 
Let meN, m = 2, j e N. By Lemma 1.6 and Remark 1.5(ii) there exists cpm e 

m - l 

e #(X, [0, +oo)) such that ^ ( O ) = U Z,. Put 
i = l 

#w,y = U (ZM,n n ^ ( [ l / I , +oo))), 
MeJ( 

and observe that HmJ is the union of a strongly disctete family of zero-sets. More­
over m_! 

HwJc=ZM\UZf. (1) 

n 

Put 5 i = Zl9 Bs
n = Zx u U #* „ for n = 2. Then £* is a disjoint union of finitely 

many sets, each of which is the union of a strongly discrete family of zero-sets. 
The normality of X implies that Bn is the union of a strongly discrete family gtn of 
zero-sets, where 

X = {ZMA; M 6 # } u ( J {ZMtk n % ' ( [ . l /* , + oo)); M e / } . 
k = 2 

For n = 2 we have 

B\ C U ^ Z ^ U ^ C Z ^ U ^ H C ^ . (2) 
k=2 k=2 

Moreover ^ n 

XNZ1=U U ^ , w . (3) 
n = 2 k = 2 

fc-1 

(In fact, if x eX\Zx then there exists fc = 2 such that xeZk\ \J Zt = [J (ZMk n 
oo i = l Me,vtf 

n <P*" (̂O* + °°))) = U #*,.,• So x e ifk j for somef. Take n ^ max {k,j} and observe 
I=i 

that HkJ c Hfc w. We have found k ^ 2 and n ^ fc such that x eH k n . ) 
Using (3) we get 

U 2 5 - Z - . U U U H M = - Y . (4) 
»=1 n = 2 l = 2 

2. Define ^ = {F. n . . . n F.; f, e ^ , 1 = i = s}, A* = u J ? ; . Hence ^ = 
S CO 

= fl -& By (2), As
n <= As

n+1 for all s,neN. Moreover U As
n = X for all s,e IM. 

» = 1 1 1 = 1 
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(In fact, if x eX then for 1 _ i ^ s there is n, e N with x e Bni. For n = max. 
a 

. {*,•; 1 = i = s} we have x e f l ^ = -4J.) Obviously A*+1 c ^ for all s,neN. 
»=i 

Each set As
n is the union of the strongly discrete family s7n of zero-sets. For fixed 

n we can inductively define strongly discrete families s/s
n c _? (s e N) such that 

each element of s/n
+* is contained in some element of s/n. It suffices to take 

^n=s7l
n, < + 1 = {TlnT2;Tles*s

n,T2esJs
n
+1}. 

It is easy to see that the properties of the sets As
n imply (a), (c), (d), (e). It remains 

to show (b). If F e An then F is contained in some Te s4s
n, Tis contained in some 

B e J£ , and finally, B is contained in some M e Jts. The proof is complete. • 

By a refinement of a family sf of sets we mean any family $ of sets such that 
\jffl = us/ and any element of 28 is contained in some element of st. 

2.4 Remark. Let each of J(, Jr be a disjoint sdad family of 2£a sets that covers X. 
Then the family {M n N;M e M, N e JT} has the same properties. (Indeed, by 
Lemma 2.1 there exist zero-sets FMi and HNJ and open sets UMti and VNJ such that 
FM,i <= UMti and HNJ c V^. for Me*V, Nejr, i,jeN,*M = \JFMti, N = 

i 

= \JHNJ, and for fixed i,j the families {UMti; M e Jt}, {VNJ; N e Jf} are discrete. 
j 

It is easy to see that M n N = \J(FMi n HNJ) and the family {UMti n P^>y; M eJt, 
N e Jr} is discrete.) i,J 

2.5 Theorem. Let X be normal, Y be metric, and fe&a(X, Y) n Z*(X, Y). 
For each s e N, let °US be an open cover of Y. Then there exist families Jis of sets 
in X ( s e N ) and open sets W(x, s) (xeX, seN) with the following properties: 
(a) Jls c 2£a and *#5 is a disjoint stfVd cover of X; 
(b) Vt̂ Xi, s) = W(x2, s) whenever xl9 x2e M e Jls; 
(c) W(x, s) is contained in some element of °US; 
(d) W(x, s + 1) c TV(x, s); 
(e)/(x)GPV(x,s). 

Proof. Let us proceed by induction with respect to s. Let iV1 = {Wa;(x.e^Xx} 
be a (7-discrete open refinement of °UX (cf. Remark 1.3(iv)). By Proposition 1.8 and 
Lemma 1.9, {f~1(Wa); a e 91J consists of 2£& sets and is sdad. By Proposition 2.2 
there exists a disjoint sdcrd family Jil = {Ma; a e 9IX} c _r, such that Ma c 
c / _ 1 ( ^ r ) for all a e 9li and uJ/1 = X. We can define W(x, 1) = Wa for x e M«, 
a e Mj. Clearly f(x) e JV(x, 1). 

Suppose that we have already defined disjoint index sets 91,, sdad families Jil = 
= {Ma; a e 91,} of _*, sets, and open sets W(x, i) (xeX) for i = 1, 2 , . . . , s, such 
that each Jt1 is disjoint and covers X, W(., i) is constant on each member of Jtx, 
and for every xeX each W(x, i) is contained in an element of <%\ f(x) e W(x, s) c 
c W(x,s - 1) c ... c W(x, 1). 
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Let #" 5 + 1 = {Wfi;pe<Bs+1} be a ex-discrete open refinement of ^ s + 1 . Then, as 
above, {f~l(Wfi); /?e93s+1} cz S9 is sdcrd. Hence by Proposition 2.2 there exists 
a disjoint family J^ s + 1 = {Nfi;Pe<Bs+1} c ^ such that N, c f 1 ^ ) for all 
0 e 2 3 5 + 1 and u ^ r s + 1 = X. We define V(x9 s + 1) = W$ for x e N , , j 8 e » - + 1 . 
Obviously f(x) e V(x9 s + 1) for all x. Define J?s+l = {Ma nNfi;<xe %, p e 235+1}. 
By Remark 2.4, Jts+1 is a disjoint sdad family of ^ sets that covers X. For x e M . n 
n Nfi9 OLE %9 pe<Bs+1 define W(x9 s + 1) = JV(x, s) n V(x, s + 1). Then 
W(.9 s + 1) is constant on each Ma n N^, since W(.9 s), V(., 5 + 1) are constant 
respectively on Ma, N^. The other required properties are evident. The induction 
is complete (obviously we can write JisArX = {Ma; a e 9 I s + 1 } where 9t s + 1 = 
= _4S x £ s + 1 ) . D 

3. The property (^) 

3.1 Definition. We shall say that a couple (.X", Y) of spaces satisfies the property 
(&) if X is normal, Y*is metric, and for each zero-set F a X there is a nonempty set 
#(F) cz #(X, Y) such that the following properties are satisfied: 

(i) 0(FX) cz $(F2) whenever Fx => F2; 
(ii) there exists f0 e $(X) such that for every pair Fl9 F2 of disjoint zero-sets in X 

and every open Vcz Ythere exists fe #(Fi) withf(Fx) cz Vandfj^ = fo\p2; 
(iii) for any y e Y and any s > 0 there exists a neighborhood U of y satisfying: if 
Fl9 F2 are two disjoint zero-sets in X,fe ^ F ^ f ^ ) cz U and Vis an open subset 
of U9 then there exists g e ^(Fx) with g(F±) cz V, ^|F2 = f | F 2 and d(f(x))9 g(x)) < e 
for all xeX. 

3.2 Theorem. If a couple (X, 7) satisfies the property (S)9 then ^ ( X , Y) = 
= ^ ( z , y) n i*(z, y). 

Proof. One inclusion is contained in Proposition 1.10. To prove the other one, 
take an arbitrary function fetFa(X9 Y) n Z*(X9 Y). Choose a sequence {es} cz 

00 

c (0, + oo) so that Yt es < + °°- For any yeY there exists aneighborhood U = Uy 

satisfying the property (iii) from Definition 3.1 with s = ss. Without any loss of 
generality we can suppose that Uy is open and diam (Uy) < es. 

Let J(s and W(x9 s) (seN9xeX) be the families and the open sets produced 
by Lemma 2.5 for the open coverings °US = {Uy; ye Y}. They have the following 
properties: 

( + ) J/s cz j2?rf is a disjoint sdad cover of X; 
( + + ) W(.9 s) is constant on each element of Jts; 

(+ + +) diam (W(x9 s)) < ss and W(x9 s) contains f(x); 
(+ + + + ) if Fl9 F2 are two disjoint zero-sets, fx e 0(Ft)9 f^Fj cz W(x9 s), then 

there exists g e 0(Ft) such that g(Ft) cz W(x9 s + 1), g\r2 = fx\r2, 
d(fi(x)9 g(x)) < es for all x. 
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Let s/n be the families from Lemma 2.3 applied to the families Jis. Since each 
s/n is a strongly discrete family of zero-sets, there exist discrete families ^ = 
= {UF; F e s/s

n} of open sets such that F c UF whenever Fes/n, s,neN. Because 
of the property (e) from Lemma 2.3, we can suppose that any element of Q)s+ * is 
contained in an element of &n. In other words, UH c UF whenever Hes/s

n
+1

y 

F e s/s
n,H c F. Moreover, it is possible to suppose 9Fn a Coz. 

Fix neN. We shall inductively construct functions hsne^(X, Y) (seN) with 
the property: 

(§) K,n(F) c W(F, s), and hsn coincides on UF with a function gF e #(F) whenever 
FG<. 

(In view of ( + + ) the meaning of W(F, s) is clear.) 
s = 1. Let f0e$(X) be as in Definition 3.1(ii). For any F es/\ there exists 

gF e <P(F) such that gF(F) c JV(F, 1) and gF\XXUF = / 0 [ X W F . So it is possible to 
define hlt„ e %>(X, Y) by the formula 

\gF(x) if xeUF,Fe s/\ ; 

0(x) if xeX\v@n . 

Suppose we have already defined hln, h2t„,..., hsn. For any i / e i j + 1 there is 
(by Lemma 2.3(e)) a unique F e s/n with H cz F (and also Ufl - HF). Let #F be 
as in (§). Then gF e $(H) and gF(H) cz JV(F, 5). By (+ + + +) there exists a function 
GH 6 # ( # ) with £H(#) cz TV(#, s + 1), gH\x\uH = 0F|XWH and d(gH(x), gF(x)) < es. 
Define hs+Un e<#(X, Y) by 

i, M_W*) i f ^eUH,He<+1; 
s + 1 'w l >~ {K,n(x) if X 6 l \ U ^ + 1 . 

The induction is done. 

The functions hStH satisfy d(hsn(x), hs+ln(x)) < es for xeX, and h5,nvx) e W(x, s) 
for JC G Uc*/*. We shall show that the diagonal sequence {hnn} converges pointwise 
t o / . 

Let x G X and e > 0 be arbitrary. Choose 5 G N so that J] es < e. By the properties 
i = s 

(c), (d) from Lemma 2.3, there exists an index n0 > s such that x e us/n for all 
n = n0. For n = n0 we have 

d(Mx),/(x)) ^ d(hs»,/(*)) + I1d(h I >(x), hi+1,„(x)) 5£ 
i = s 

n— 1 00 

= diam (W(x, s)) + £ £,• < e, + £ £* < 2e . 
i = s i = s 

Consequently,/G ^ ( X , Y). D 

The following two theorems give sufficient conditions for the property (£). 

3.3 Theorem. Let X be normal, and let Y be a metric space containing a dense 
arcwise connected subset Yt. Suppose that Y satisfies the following condition. 
(A) There exists D cz Y with D n Yx dense in Y and such that for any e > 0 and 
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any y e Y there exists a neighborhood U of y satisfying: any two points of 
D nU can be joined (in Y) with an arc of diameter less than e. 

Then (X, Y) satisfies the property ($). 

Prool. Choose y0eY1nD and set f0(x) = y0 for all xeX. For any zero-set 
F c X define 

<p(F) = {fe <g(X, Y); there exist an open set G=> F, <pe <g(G, [0, 1]), 
p e #([0 ,1] , y) such that f\G = p o <p, <p(F) = {1} and p(l) e D}. 

Observe that any function from #(F) is constant on F, f0 e <&(X), and #(Fi) <= 
<= <P(F2) whenever Ft <= F2. 

Let Fl9 F2 be two disjoint zero-sets in X and V <= Ybe open. Choose an arbitrary 
j i e Vn yx n D and find Pe#([0, 1], Y) with p(0) = y0 and p(l) = J V The 
space X is normal, so there exists <p e ^(X, [0, 1]) with <p(Fx) = {1} and <p(F2) = {0}. 
Then the function f = p o <p belongs to #(Fi) and satisfies f(Fi) = {yi} c: V and 
f\p2 — p(0) = yo — /O|F2- Thus the condition (ii) from Definition 3.1 is verified. 

Let us prove the condition (iii) of Definition 3.L Let y e Y and e > 0 be given. 
Let U be the neighborhood of y ffom (A). Suppose that Fu F2 are two disjoint 
zero-sets in X, fe $(Fi), f(Ft) <= U, Vis an open subset of U. Take an open set 
G ID Fi and functions cp e <g(G, [0, 1]), p e #( [0 ,1] , Y) such that f = p o <p on G, 
<p(Ft) = {1} and p(l) = y 1 eD. We can suppose G n F2 = 0. Choose arbitrarily ueVn 
n D and find a e ^([0, 1], Y) with a(0) = yl9 q(l) = w and diam (q([0, 1])) < e. 
The normality of X assures the existence of \l/e^(X, [0, 1]) with *A(Fi) = {1} 
and \I/(X\G) = {0}. Let c5 > 0 be such that d(p(s), p(t) < e - diam(^([0,1])) 
whenever \t - s\ = 5, t,se [0,1] . Define Q e #( [0 ,1 + <5], Y) by Q(f) = p(t) 
and g( l + <5*) = q(t) for * e [0,1] . The function 

aU\-lQfo(*)+ **(*)) for x e G , 
l / W f o r XEX\G 

is continuous, since for xedG we have g(x) = Q(<p(x)) = p(<p(x)) = f(x). More­
over, g\F2 =f |F2 since F2 c X\G. Consequently, g e$ (F i ) . It remains to show 
that d(f(x),g(x)) < e for all xeX. 

For xeX\G, d(f(x),g(x)) = 0. For xeG there are two possibilities, 

a) <p(x) + S\l/(x) > 1. In this case 1 — <p(x) g <5 and hence 

d(f(x), g(x)) = d(f(x), yi) + d(yu g(x)) = d(p(<p(x)), p(l)) + 

+ dU(0),q(*M + 5 ^ < [ a - diam(a([0,l]))] + diam(q(\0,1])) = e. 

P) <p(x) + S\//(x) = 1. In this case d(f(x), g(x)) = d(p(<p(x)), p(<p(x) + 8il/(x))) < 
< e - diam (^([0,1])) < e. • 

3.4 Theorem. Let X be normal, and let Y be a metric space containing a dense 
subset yx such that for any yl9 y2 e Yl9 each continuous function from a zero-set 
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(inX) into {yl9 yi\ admits an extension from (€(X9 Y). Suppose that the following 
condition is satisfied. 

(A) There exists D c Y with D r\Y1 dense in Y and such that for any e > 0 and 
any y e Y there exists a neighborhood U of y satisfying: for any yl9 y2 e U n D 
there is an open neighborhood W± of yx such that each continuous function 
from a zero-set (in X) into W1 u {y2} admits an extension fe(6(X9 Y) with 
d iam( / (X ) )<£ . 

Then (X9 Y) satisfies the property ($). 

Proof, Choose y0eY± n D and set f0(x) = y0 for all xeX. For any zero-set 
F czX define 

<p(F) = {fe <€(X9 Y);f\F is a constant from D} . 

Clearly ^(Fx) c <P(F2) whenever Ft => F2. 

Let F1? F2 be two disjoint zero-sets in X and V c y be open. Choose an arbitrary 
y1eVnY1nD and find fe#(X, y) such that f(Ft) = {j^} and f(F2) = {y0}. 
T h e n f e ^ F ^ f t F i ) c Vandf|p2 = /0 | r a , so (ii) from Definition 3.1 is satisfied. 

Let us prove (iii) from Definition 3.1. Let ye Y and e > 0 be given. Take the 
neighborhood U of y from (A). Suppose Fl9 F2 are two disjoint zero-sets in X9 

fe ^(Fx), f(Ft) cz: 17, V cz U is open. Let y± e D n U be such that f(Ft) = {yt}. 
Choose any y2 e D n V. Let Ŵ  be the neighborhood of yx from (A). It is possible 
to suppose KV! c £7. The set G =f~1(W1)\F2 contains Ft. Let <pe%(X9 [0,1]) 
be such that <p(Ft) = {1} and <p(X \ G) = {0}. Set Z = <P~l(i/2). Then the function 
a! e (€(F1 u Z, IV! u {y2}), defined by 

[y2 for xeFl9 

\f(x) for xeZ, 

has an extension g1 e %>(X9 Y) with diam (~i(X)) < s. Define 

a(x\-^i(x) for xe<p-\\lj29\\)9 
9V) \f(x) for xe<p-\\09l\2-\). 

Clearly ge^(X, y), and for any x e ^ " ' ( [ l / 2 ' !]) w e h a v e 4 / W ? gW) = 
= d(/(x), j 2 ) + ^/(j;2, ~A(x)) = diam (U) + diam (g^X)) < 2e (note that f(x) e 
e W1 c U9 and diam (U) = e by (A)). So we have found g e ^(Fx) with g(Ft) cz V9 

9\F2 = f\r2 and d(f(x)9g(x)) < 2e for all xeX. • 

It is easy to see that a metric space Y is locally arcwise connected iff for each 
y e y and e > 0 there is S > 0 such that y9 z can be joined with an arc of dameter 
less than 8 whenever d(y9 z) < 6. This motivates the following definition. 

3.5 Definition. A metric space yis said to be uniformly locally arcwise connected 
if for each £ > 0 there is S > 0 such that if yl9 y2 e Y9 d(yl9 y2) < S then yl9 y2 

can be joined with an arc of diameter less than e. 
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3.6 Definition. Let X be a topological space and Y be a metric space. We shall 
say that 

(a) y satisfies the ^-extension property for X if any continuous function from 
a zero-set (in X) into Yhas an extension from <&(X, Y). 
(b) y satisfies the local &-extension property for X if for each s > 0 and y e Y 
there is a neighborhood II of y such that any continuous function from a zero-set 
(in X) into U admits an extension f e ^ ( Z , Y) with diam (f(X)) < s. 
(c) y satisfies the uniform local ^-extension property for X if for each s > 0 
there is S > 0 such that any continuous function f from a zero-set F a X into y 
with diam(f(F)) < 5 admits an extension fe%>(X, Y) with diam(/(X)) < e. 

The following theorem is a direct consequence of Theorem 3.3 and Theorem 3.4. 

3.7 Theorem. Let X be normal and Y metric. Then &JX, Y) = Fa(X, Y) r\ 
n -T*(X, y) provided at least one of the following conditions is satisfied. 

(i) y i s arcwise connected and locally arcwise connected. 
(i') y satisfies the .^-extension property for X and the local ^-extension property 
forX. 
(ii) y contains a dense subspace Yx such that Yx is arcwise connected and uniformly 
locally arcwise connected (in the metric generated by that of Y). 
(ii') y contains a dense subspace Yt such that Yt satisfies the .^-extension property 
for X and the uniform local .^-extension property for X. 
(iii) y contains a dense subspace Yx such that all open balls in Y± are arcwise con­
nected. 
(iii') y contains a dense subspace Yt such that all open balls in Yx satisfy the ^-ex­
tension property for X. 

3.8 Remark, (a) It is easy to see that all the results (I) —(X) from Introduction 
follow from Theorem 3.7(i), (i'). 
(b) The known results (I) —(X) do not cover, for example, the case of X = [0, l j 
and y such that Y is not arcwise connected, Yt c Y cz Un where Y1 = {y e Un; 
at least one of the coordinates of y is rational}. However, Theorem 3.7(iii) implies 
#i( [0 , 1], y) = F&([0,1], y) (all functions into Y are strongly cr-discrete since Y 
is separable). 
(c) It is not possible to omit the word ,,uniformly" in Theorem 3.7 (ii), (ii'). Consider 
X = [0, 1], Yx = {(t, sin (lit)); t > 0} c U2, Y = Yx u ({0} x [ - 1 , 1]). Then Yx 

is a dense arcwise connected and locally arcwise connected subspace of Y. (Hence 
it satisfies the .^-extension and the local ^-extension property for [0, 1], too.) 
Since Y is separable, I*(X, Y) contains all functions from X into Y. By Theorem !F 
(and Proposition 1.10) &X(X, Y) §i FjX, Y), because y is complete and connected 
but not locally connected. Moreover, by Theorem 3.7(i), ^ ( K , Yt) = &J(X9 Yt). 
(d) Theorem 3.7(i) implies that it is possible to write „normal" instead of „metric" 
in Theorem 3F, (d). 
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