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Let X be a normal topological space and Y be a metric space. We give several sufficient condi-
tions under which the functions of the first Baire class from X into Y are characterized by their
F,-measurability and strong o-discreteness. For example, this happens if Y is arcwise connected
and locally arcwise connected, or if ¥ contains a dense subspace Y; such that all open balls
in Y, are arcwise connected. Other sufiicient conditions are stated in terms of extendability
of continuous functions from zero-subsets of X into Y to the whole X.

Introduction

Let (X, Y) be the set of all continuous functions from a topological space X
into a topological space Y. We use the following notation: #,(X,Y) = {f: X - Y;
f is a pointwise limit of a sequence from ¢(X,Y)} and #,(X,Y)={f:X > Y;
f~Y(G) is an &, set for any open G < Y}. The elements of #,(X,Y) are called func-
tions of the first Baire class, and those of # (X, Y) are called functions of the
first Borel class or & ,-measurable functions.

It is easy to prove that #,(X, Y) « #,(X, Y) for any topological space X and
any metric space Y (cf. Proposition 1.10), but the two classes do not coincide in
general: the characteristic function of any nonempty proper closed subset of [0, 1]
belongs to #,([0, 1], {0, 1})\ 2([0, 1], {0,1 }) (note that 2,([0, 1], {0, 1}) con-
tains constant functions only).

The research of relations between Baire-one functions and & ;-measurable func-
tions begins with Baire’s paper [1] from 1899, which contains results of his PhD.
thesis.

The equality #,(X,Y) = #,X,Y) holds in any of the following situations:
(I) X is an interval of reals R, Y = R (Baire [1]); (II) X is metric, Y = R (Lebesgue
[10]); (III) X is metric, ¥ = [0, 1]* (neN) or Y = [0, 1]N ([7, p. 391]); (IV) X is
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metric, Y is a separable convex subset of a Banach space (Rolewicz [13]); (V) X is
a complete metric space, Y is a Banach space (Stegall [14]); (VI) X is a normal
topological space, Y = R (Laczkovich [9] without proof, for a proof see [11, Exer-
cise 3.A.1]; the result was proved independently in [5]).

All these results, except (V), deal with Y separable. In fact, the functions from
#,(X, Y) are of countable character in some sense: they are limits of sequences
of continuous functions. R. Hansell [4, § 3] introduced the notion of a o-discrete
function and observed that the functions from QZI(X, Y) are always o-discrete.

A family of subsets of a topological space is called discrete if each point of the
space has a neighborhood that meets at most one of the sets of the family. A family
of sets is said to be g-discrete if the family is the union of countably many discrete
families. A family of sets in X is a base for f: X — Y if f~!(G) is a union of sets
from the family whenever G is an open subset of Y. A function is said to be g-discrete
if it has a o-discrete base. We shall denote by Z(X, Y) the set of all o-discrete func-
tions from X to Y.

Hansell [4] proved that Borel measurable functions defined on a complete metric
space and functions with separable ranges are o-discrete. Hence F,(X,Y) =
= F,(X, Y) n 2(X, Y) holds in all the situations (I)—(VI) above.

The equality %,(X, Y) = (X, Y) n 2(X, Y) holds in any of the following situa-

tions:
(VII) X and Y are metric spaces, every continuous function from a closed subset
of X into Y can be extended continuously to X, and for each y € Y and each neigh-
borhood U of y there is a neighborhood V of y such that each continuous function
from a closed F = X into V admits an extension from (X, U) (Rogers [12]);
(VIII) X is a paracompact space in which open sets are &,, Y is a Banach space
(Jayne, Orihuela, Pallarés and Vera [6]); (IX) X is collectionwise normal (i.e., for
each discrete family {F,; & € U} of closed sets there is a discrete family {G,; « € A}
of open sets with F, = G, for any « € ¥), Yis a closed convex subset of a Banach
space (Hansell [5]); (X) X is metric, Y is a metric space which is arcwise connected
and locally arcwise connected (Fosgerau [3]).

A complete metric space Y is locally arcwise connected (and arcwise connected) if
and only if Y is locally connected (and connected) by [8, p. 254] (and [3, proof of
Thm.2]). M. Fosgerau [3] also proved that this property of Y is not only sufficient
but also necessary for the equality %,([0,1], Y) = #,([0, 1], Y). Namely, he
proved the following theorem.

Theorem F. Let Y be a complete metric space and let X, be a metric space con-
taining a homeomorphic copy of [0, 1]. Then the following assertions are equivalent:

{(a) Yis connected and locally connected;

(5) 2,(10, 1], ¥) = #,([0, 11, ¥)

(C) ‘%l(XO’ Y) = -g'”(Xo, Y) N Z(.Xo, Y) N

(d) Z,(X,Y) = F,(X, Y) n 2(X, Y) for all metric spaces X.
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The aim of the present paper is to extend the above mentioned results (VII) and
(X) (and hence all the result (I)—(X)) to the case when X is a normal topological
space. Two problems arise. The proof requires to consider differences of closed sets,
and such differences are not necessarily &, in non-metric spaces. The second pro-
blem concerns o-discrete functions. In a metric space X each o-discrete cover of X
by &, sets has a refinement which covers X and is the union of countably many
uniformly discrete families of &%, sets. (A family of sets is uniformly discrete if
there is a positive number less than the distance of any two distinct sets of the
family.) This cannot be done in non-metric spaces (and this is the reason why (IX)
requires X to be collectionwise normal, and (VIII) paracompact (and hence collec-
tionwise normal, too [2, p. 214])).

The idea how to avoid the first obstacle is contained in [11]: instead of differences
of closed sets it is possible to consider differences of zero-sets (i.e., sets of the form
¢~1(0) where ¢ is a continuous real function). Such differences are &, even coun-
table unions of zero-sets. The key is provided by Proposition 1.8.

As for the second problem, we observed that the functions of %,(X, Y) are not
only o-discrete but ,,strongly o-discrete”. This notion (see Definition 1.2) coincides
with o-discreteness in collectionwise normal (and hence also in paracompact and
in metric) spaces.

The proofs have much in common: they require to extend continuous functions.
Not all, but only some of them. From this reason we define a (rather technical)
property (&) for couples of spaces (X, Y). We prove that (&) is sufficient for
B(X,Y) = FJAX,Y)nZ¥X, Y) where Z*(X,Y) denotes the class of strongly
o-discrete functions, and we show that if X is normal and Y'is like in (VII) or in (X)
then (X, Y) has the property (¢). We state other sufficient conditions for () in
terms of properties of a dense subspace of Y. These conditions are new and they
cover some cases which were not covered by the results (I)—(X).

The main results of the present paper are contained in Theorem 3.2 and Theorem
3.7.

The author wishes to express his thnks to L. Zaji¢ek and P. Holicky, both for
useful discussions, and the first one also for information about the result (VI),
especially Proposition 1.8.

1. Definitions and basic facts

1.1 Definition. A family .# of subsets of a topological space X is called strongly
discrete if there is a discrete (indexed) family {G,; M € #} of open sets such that
M < Gy for any M e #. A family # is said to be strongly o-discrete if .# can
be decomposed into countably many strongly discrete subfamilies. .# is called
strongly discretely o-decomposable (shortly: sdad) if each M € ./ can be written

145



in the form M = U H,,, and for each fixed ne N the family {H,,; M e #} is
strongly discrete, "1

1.2 Definition. A function f: X — Y is said to be strongly o-discrete if it has
a strongly o-discrete base. The class of all strongly o-discrete functions from X
into Y will be denoted by Z*(X, Y).

1.3 Remark. (i) Each strongly discrete family is discrete, hence X*(X,Y) <
c E(X , Y).
(i) In view of Definition 1.1, a space is collectionwise normal iff every discrete family
of its subsets is strongly discrete. Therefore Z*(X, Y) = X(X, Y) if X is collection-
wise normal (in particular, if X is paracompact or metric).
(iii) Every strongly o-discrete family is sdod.
(iv) Each metric space has a o-discrete base of open sets (cf. [7, p. 235]).

1.4 Definition. A subset A of a topological space X is a zero-set if A = ¢~(0)
for some ¢ € (X, R). A is a cozero-set if its complement is a zero-set. We denote
by &, Coz, &,, Coz; respectively the families of all zero-sets, cozero-sets, countable
unions of zero-sets, and countable intersections of cozero-sets.

1.5 Remark. (1) Zero-sets are closed. In metric spaces every closed set is a zero-set
(consider ¢ equal to the distance from the set).
(i) The class Z is closed under finite unions and finite intersections.
(iii) If F is a closed set in a metric space Y and ¢ € 4(X, Y), then ¢~ '(F)e Z.
(iv) Coz = Z,.

1.6 Lemma. Union of a strongly discrete family of zero-sets in a normal space X
is again a zero-set.

Prool. Let .# be our family. By Definition 1.1 there is a discrete family
{G\; M e #} of open sets such that M = Gy, for any M e 4. For M e #, let
oum € 6(X, R) be such that M = ¢,;'(0). By the normality of X, for every M € ./
there is Yy € €(X, [0, 1]) such that y,,(M) = {0} and Y, (X \ G,,) = {1}. Define
Su(x) = min {J@p(x)| + ¥p(x), 1} and put

£(x) = fu(x) for xeGy,Me,
1 for x¢U{Gy;MeM}.
Then f € (X, R) and f~1(0) = u.#. O

1.7 Lemma. Let X be a normal space, A «c B< X, Ae %, and Be ¥;. Then
there exists H € Coz; such that A « H < B.

(o]
Proof. First, let us prove the lemma for B open. We can write A = J A4, with 4,

n=1

closed for all n. The sets X \ B and A, are disjoint and closed, therefore there exists
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¢, €4(X, [0, 1]) with ¢,(X~B) = {0} and ¢,(4,) = {1}. Put ¢ = iz-up" and

H = X\ ¢7'(0). Then H is a cozero set and 4 = H = B. The assertion for a general
95 set B follows easily from the particular case proved above. Od

1.8 Proposition. Let X be a normal space, Y be metric, and f e &, c,(X R Y). Then
f Y (G)e Z, for any open G c Y.

Prool. Let F = Y be closed, d(y) = dist (», F) for any y e Y. Then the function
g =dofisin Z,(X,R) and we have

£7(F) = 970) = .67 (=1 L) = ) g™ [ 1. )

The sets A, = g~ '((—1/n, 1/n)) are #,, the sets B, = g~([—1/n, 1/n]) are ¥,,
and A, < B, for all n. By Lemma 1.7 there exist sets H, € Coz; such that 4, = H, =
< B,. Consequently, f~!(F) = U H, € Coz, for any closed set F. Passing to com-
plements completes the proof. O

1.9 Lemma. Let % be a o-discrete family of open sets in a space ¥, and f € Z*(X, Y).
Then the family {f~!(U); U e %} is sdod.

Proof. Let Z = J %4,, be a base for f such that each 4,, is strongly discrete.
m=1

Write % = U %, where each %, is discrete. For U € %, m, n e N put

n=1
H _fu{Be#,;B<=f"'(U)} for Ue%,,
Umin =10 for U¢,.
Ovbviously, f~'(U)= U Hy,,. Moreover, for fixed m, n, the family
m,neN
{Hy mn U € %} is strongly discrete since 4, is strongly discrete and {f ~'(U); U € %,}
is disjoint. O

1.10 Proposition. Let X be a topological space and let Y be a metric space. Then
&,(X,Y) € F,(X,Y)nZ*X, Y).
Proof. Let f(x) = lim f,,(x) for all xeX, f,e%4(X,Y) for all m. Let U< Y

be open. There exists closed sets U, (k € N) such that U = G U, and U, < int (U, ,)
for all k. Then k=1
ARV VA CAR
k,meN jZm
The sets Fy,, = N f;'(Uy) are closed. Consequently f € #,(X, Y).

w j=m

Let % = \J %, be an open base for the topology of Y with %, discrete for all n

n=1
(cf. Remark 1.3(iv)). For fixed n, k,meN the family B,;m = {Fin; U€,} is
strongly discrete since FY,, < f,'(U) and {f,'(U); U e %,} is a discrete family of
open sets. It is easy to see that & = ) B, misabaseforf. ThusfeZ¥(X,Y). O

n,k,m
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2. Strongly discretely
g-decomposable families of 2, sets

2.1 Lemma. Let  be a sdod family of %, subsets of a normal space X. Then
the sets H,; , from Definition 1.1 can be chosen so that they are zero-sets.

Proof. By Definition 1.1, there exist sets Hy, and open sets Gy, such that
Hy,n < Gy, for any Me #, ne N, M = U Hy,,, for any M € .#, and the family

n=1
{Gyr .3 M € M} is discrete for any n € N. Since X is normal it is easy to find zero-sets
Zyn With Hy , © Zye, = Gy, for M e M, ne N. Each M € # is in Z,, therefore
o0

it can be written in the form M = ) F,, with F), ;, € & for all k. So we have
k=1

M =UHy,, = UU(Hyn 0 Farp) @ UU(Zygn 0 Frgp) © UFpee = M,
n nk nk k
hence M = UU(Zy,, N Fyry). The sets in the last union are zero-sets and for fixed
n k

n, k the family {Zy,, N Fpr; M € M} is strongly discrete since Zp, N Fpry <
< Gy O

2.2 Proposition (Reduction lemmai. Let {M,; e A} be a sdod family of Z,
sets in a normal space X. Then there exists a disjoint sdod family {F,; « € U} of Z,
sets such that

(d) F,= M, forall aeA, and

(b) ag Fa - }eJQIMa.

o0
Prool. By Lemma 2.1, for any « € & we can write M, = U M, , where M, , are
n=1
zero-sets, and for each fixed n the family {M, ,; « € A} is strongly discrete. Define
by induction
F,1,=M,, forall ae?,

n
Fooy1 =M. NU UM,, forall aeU.
k=1 ae

By Lemma 1.6 and Remark 1.5(ii) the last union is a zero-set. Hence, by Remark
1.5(iv), F,, € Z, for any a e A, neN. It is clear that {F,,; a€ %A, ne N} is a dis-
joint cover of UM,, and F,, = M,, for all «, n. Consequently the sets F, =

© a .
= U F,,, (x € A) have the required properties. O
n=1
2.3 Lemma. Let X be a normal space, and for any se N, let #° = &, be a dis-
joint sdod family that covers X. Then there exist families «75(s, n € N) satisfying

the following properties:
(a) <5 is a strongly discrete family of zero-sets;
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(b) for each F e & there exists (necessarily umque) Me M with F c M;

(©) U (vet) = X;

(d) U‘d: < U'dn+1’
() for each H e o;** there exists (necessarily unique) F € o/, with H < F.

Proof. 1. Fix se N. By Lemma 2.1, each M € #° can be written in the form

-]
M =\ Z,,, where Z,, , € Z for each n, so that {Z,, ,; M € #*} is strongly discrete
n=1

for any fixed n. Denote Z, = U{Zy,; M € #*}.
Let meN, m = 2, je N. By Lemma 1.6 and Remark 1.5(ii) there exists ¢, €

€ (X, [0, + o)) such that ¢, '(0) =ml] 1Z,-. Put
i=1
Hm,j = U (ZM,n N (0;1([1/-” +¢XJ))) ’
Me#

and observe that H,, ; is the union of a strongly disctete family of zero-sets. More-

over m-1
H,,<Z,~NUZ. (1)

i=1
Put B = Z,, B; = Z, v U H, , for n = 2. Then B; is a disjoint union of finitely
k=2

many sets, each of which is the union of a strongly discrete family of zero-sets.
The normality of X implies that B; is the union of a strongly discrete family 4% of
zero-sets, where

B = {Zyg s M e M5} O U {Zar 0 05 {([Un, +c0)); M e A7) .
k=2

For n = 2 we have

n n
BicB,=Z2,VUH,,=Z,VUH,, < B;,,. ()
k=2 k=2
Moreover o n
X\zZ,=U UH,,. (3)
n=2k=2 -1

(In fact, if xeX\Z1 then there exists k = 2 such that xe Z,\ U Z; = U (ZM,, N
i=1

N ¢; (0, +0))) = U H, ;.So x € H, ;for some j. Take n 2 max {k, j} and observe

that H, ; « H, ,. We have found k = 2 and n 2 k such that x € H, ,.)
Using (3) we get

U B,=2Z,v U UH,,=X. €))
n= =2k=2
2. Define 5 ={F,n..nF;F,e®, 15i< s}, A5 =uds. Hence A:=
= (\Bi. By (2), 45 = A5, for all s,neN. Moreover | A5 = X for all seN.
i=1 n=1
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(In fact, if x e X then for 1 < i < s there is n;e N with x e Bi,. For n = max.
8

{n; 1 <i<s} we have x e} B = 45.) Obviously A3*' < A4 for all s,neN.
i=1

Each set A4S is the union of the strongly discrete family 7% of zero-sets. For fixed
n we can inductively define strongly discrete families &/ = 2 (se N) such that
each element of &#5*” is contained in some element of =/%. It suffices to take

A=, L =T, Ty Ty e oS, Tye st} .

It is easy to see that the properties of the sets 4}, imply (a), (c), (d), (e). It remains
to show (b). If F € 4] then F is contained in some Te «;, T is contained in some
B e #;, and finally, B is contained in some M € .#°. The proof is complete. O

By a refinement of a family &« of sets we mean any family # of sets such that
uZ = v and any element of 4 is contained in some element of &/.

2.4 Remark. Let each of #, A4 be a disjoint sdad family of &, sets that covers X.
Then the family {M N N; M € #,N € 4} has the same properties. (Indeed, by
Lemma 2.1 there exist zero-sets Fy; ; and Hy ; and open sets Uy ; and Vy ; such that
Fy;<Uy,; and Hy;c Vy; for Me#, Ne N, i,jeN, M =UFy; N=

1
= UHy;, and for fixed i, j the families {U, ;; M € M}, {Vy,;; N € &'} are discrete.

J
It is easy to see that M N N = U(F),; n Hy ;) and the family {Uy ; " Vy j; M e 4,
N € &} is discrete.) b

2.5 Theorem. Let X be normal, Y be metric, and fe F,(X, Y) n Z*(X, Y).
For each s e N, let %° be an open cover of Y. Then there exist families .#° of sets
in X (seN) and open sets W(x,s) (x€X, seN) with the following properties:
(a) A#* = Z,and 4* is a disjoint sdad cover of X;

(b) W(xy, s) = W(x,, s) whenever x,, x, € M € M*;
(c) W(x,s) is contained in some element of %°;
(d) W(x,s + 1) = W(x,s);

(e) f(x) e W(x, s).

Proof. Let us proceed by induction with respect to s. Let #™' = {W,; a € U,}
be a o-discrete open refinement of #* (cf. Remark 1.3(iv)). By Proposition 1.8 and
Lemma 1.9, {f~'(W,); € U} consists of Z, sets and is sded. By Proposition 2.2
there exists a disjoint sdod family #' = {M, aeU,} = &, such that M, =
c f7Y(W,) for all x € A, and u#' = X. We can define W(x, 1) = W, for xe M,,
a € A,. Clearly f(x) e W(x, 1).

Suppose that we have already defined disjoint index sets U, sdod families .#° =
= {M,;ae %} of Z, sets, and open sets W(x, i) (xeX) for i = 1,2,...,s, such
that each .#° is disjoint and covers X, W(., i) is constant on each member of .#°,
and for every x € X each W(x, i) is contained in an element of %', f(x) e W(x, s) =
c Wx,s—1)c...c W(x,1).

150



Let #**! = {W,; Be B,,,} be a o-discrete open refinement of %**+!_ Then, as
above, {f~'(W,); BeB,, 1} € %, is sdod. Hence by Proposition 2.2 there exists
a disjoint family #**! = {Ng; e B,,,} = Z, such that N, < fY(W,) for all
BeB,,y and uN**! =X. We define V(x,s + 1) = W, for xeN,, feB,.q.
Obviously f(x) € V(x, s + 1) for all x. Define #°*! = (M, A Ny; e U, pe B,,,}.
By Remark 2.4, ./#°*! is a disjoint sdod family of Z,, sets that covers X. For x € M, N
ANy o€, BeB,,, define W(x,s+ 1) = W(x,s)n V(x,s +1). Then
W(.,s + 1) is constant on each M, n Ny, since W(.,s), V(.,s + 1) are constant
respectively on M,, Ny;. The other required properties are evident. The induction
is complete (obviously we can write "' = {M,;aeq,,,} where Uy =
= A, x Byy)). a

3. The property (&)

3.1 Definition. We shall say that a couple (X, Y) of spaces satisfies the property
(¢) if X is normal, Y is metric, and for each zero-set F < X there is a nonempty set
&(F) = %(X, Y) such that the following properties are satisfied:

(i) ®(F,) = ®(F,) whenever Fy o F,;

(ii) there exists f, € ®(X) such that for every pair Fy, F, of disjoint zero-sets in X
and every open V < Y there exists f € &(F,) with f(F,) = Vand fls, = fo|r,;
(iii) for any y € Y and any ¢ > O there exists a neighborhood U of y satisfying: if
F,, F, are two disjoint zero-sets in X, f € ®(F,), f(F,) = U and Vis an open subset
of U, then there exists g € &(F,) with g(Fy) = V, gle, = flr, and d(f(x)), g(x)) < &
for all x € X.

3.2 Theorem. If a couple (X, Y) satisfies the property (&), then #,(X,Y) =
= F(X, Y) A Z*X, Y).

Proof. One inclusion is contained in Proposition 1.10. To prove the other one,
take an arbitrary function fe # X, Y) n Z¥(X, Y). Choose a sequence {¢} <

< (0, + ) so that le, < +o0. For any y €Y there exists aneighborhood U = U;

satisfying the property (iii) from Definition 3.1 with ¢ = ¢. Without any loss of
generality we can suppose that U; is open and diam U 3) < &

Let .#° and W(x,s) (se N, x € X) be the families and the open sets produced
by Lemma 2.5 for the open coverings %° = {U;; y € Y}. They have the following
properties:

(+) #° = Z,is a disjoint sdod cover of X;
(++) W(., s) is constant on each element of .#*;

(+ ++) diam (W(x, s)) < e, and W(x, s) contains f(x);

(++++) if Fy, F, are two disjoint zero-sets, f; € ®(F,), fy(F,) = W(x, s), then
there exists ge ®(F;) such that g(Fi) = W(x,s + 1), glr, = f1]r,»
d(f1(x), g(x)) < &, for all x.
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Let «f; be the families from Lemma 2.3 applied to the families .#*. Since each
&/, is a strongly discrete family of zero-sets, there exist discrete families 25 =
= {Upg; F € o£;} of open sets such that F = Uy whenever F € o5, s, n € N. Because
of the property (e) from Lemma 2.3, we can suppose that any element of 25*! is
contained in an element of 2;. In other words, Uy = Uy whenever H e o/5*!,
F e of;, H c F. Moreover, it is possible to suppose Z; < Coz.

Fix ne N. We shall inductively construct functions h,, € 4(X, Y) (s e N) with
the property:

(8) hyu(F) = W(F,s), and h, , coincides on U with a function g € &(F) whenever

Fe «;.
(In view of (+ +) the meaning of W(F, s) is clear.)

s =1. Let foe &(X) be as in Definition 3.1(ii). For any F e o/} there exists
gr € ®(F) such that gx(F) = W(F, 1) and gg[x\u, = fo[xw,- So it is possible to
define h, , € (X, Y) by the formula

hoo(x) = {gF(x) i.f xeUp Fesd!;
” fo(x) if xeX\uat.

Suppose we have already defined hy ,, by, ..., b, ,. For any He oZ5*! there is
(by Lemma 2.3(¢)) a unique F € o/} with H = F (and also Uy = Hy). Let g be
asin (§). Then gy € #(H) and gs(H) = W(F, s). By (+ + + +) there exists a function
gn € O(H) with gg(H) = W(H, s + 1), gu|x\us = 9rxws and d(gu(x), gp(x)) < &
Define h,,, , € 4(X, Y) by

: s o) = {gH(x) if xeUgp, He A5t
st h(x) if xeX\u2itt.
The induction is done.

The functions h;, satisfy d(h;,,(x), byt 1,.(x)) < & for x € X, and h, ,(x) € W(x, s)
for x € UsZ;. We shall show that the diagonal sequence {h,,} converges pointwise
to f. o

Let x € X and ¢ > 0 be arbitrary. Choose s € N so that )’ ¢, < &. By the properties

i=s
(c), (d) from Lemma 2.3, there exists an index n, > s such that x e usZs for all
n = ny. For n = n, we have

n—1
d(hn,n(x)’f(x)) = d(hs,n(x)’f(x)) + Z d(h,.,,,(x), hi+1,n(x)) =
n—1 ©
< diam (W(x,s)) + Y. &; <& + . & < 2¢.
Consequently, fe %,(X, Y). O
The following two theorems give sufficient conditions for the property (&).

3.3 Theorem. Let X be normal, and let Y be a metric space containing a dense
arcwise connected subset Y;. Suppose that Y satisfies the following condition.
(A) There exists D = Y with D n Y, dense in Y and such that for any ¢ > 0 and
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any yeY there exists a neighborhood U of y satisfying: any two points of
D A U can be joined (in Y) with an arc of diameter less than e.
Then (X, Y) satisfies the property (&).

Prool. Choose y,e€Y; n D and set fo(x) = y, for all xe X. For any zero-set
F c X define

®(F) = {fe%(X,Y); there exist an open set Go> F, ¢e¥(G,JO0,1]),
pe%([0, 1], Y) such that f|G = p. ¢, ¢(F) = {1} and p(1) € D}.

Observe that any function from &(F) is constant on F, f, € #(X), and ¢(F;) =
c &(F,) whenever F, c F,.

Let F,, F, be two disjoint zero-sets in X and V <= Y be open. Choose an arbitrary
y1€VnY, nD and find pe¥([0, 1], Y) with p(0) = y, and p(1) = y,. The
space X is normal, so there exists ¢ € ¢(X, [0, 1]) with ¢(F,) = {1} and ¢(F,) = {0}.
Then the function f = p o ¢ belongs to @(F,) and satisfies f(F,) = {y;} = V and
fle, = P(0) = yo = folr,- Thus the condition (ii) from Definition 3.1 is verified.

Let us prove the condition (iii) of Definition 3.1. Let y € Y and & > 0 be given.
Let U be the neighborhood of y from (A). Suppose that Fy, F, are two disjoint
zero-sets in X, fe ®(F,), f(F,) = U, V is an open subset of U. Take an open set
G o F, and functions ¢ € 4(G, [0, 1]), pe ([0, 1], Y) such that f = p. ¢ on G,
¢(Fy) = {1} and p(1) = y, e D. We can suppose G N F,= 0. Choose arbitrarily ue¥ n
A D and find g € %([0, 1], Y) with g(0) = y,, q(1) = u and diam (q([0, 1])) < .
The normality of X assures the existence of Y e %(X, [0, 1]) with y(F,) = {1}
and Y(X\G) = {0}. Let 6> 0 be such that d(p(s), p(t) < & — diam (q([0, 1]))
whenever |t —s| £, t,s€[0,1]. Define Qe%([0,1 + 8], Y) by Q(t) = p(t)
and Q(1 + 6t) = g(¢) for € [0, 1]. The function

o(x) = {Q((p(x) + 8Y(x)) for xeG,
(%) for xeX\G
is continuous, since for x € 3G we have g(x) = Q(¢(x)) = p(e(x)) = f(x). More-
over, g|F, = f|F, since F, = X\ G. Consequently, g € &(F;). It remains to show
that d(f(x), g(x)) < & for all x € X.
For x € X\ G, d(f(x), g(x)) = 0. For x € G there are two possibilities.

@) ¢(x) + SY(x) > 1. In this case 1 — ¢(x) < & and hence
d(f(x), 9(x)) = d(f(x), y1) + d(y1> 9(x)) = d(p(0(x)), p(1)) +
+ d(q(o), q("’(") + ‘:”(") - 1)) < [& — diam (q([0, 1]))] + diam (q([0, 1])) = e

B) o(x) + d¥(x) £ 1. In this case d(f(x), 9(x)) = d(p(e(x)), p(e(x) + d¥(x))) <
< ¢ — diam (¢([0, 1])) < &. O

3.4 Theorem. Let X be normal, and let Y be a metric space containing a dense
subset Y; such that for any y,, y, € ¥;, each continuous function from a zero-set
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(in X) into {y1, ¥2} admits an extension from (X, Y). Suppose that the following
condition is satisfied.

(A) There exists D = Y with D N Y; dense in Y and such that for any ¢ > 0 and
any y € Y there exists a neighborhood U of y satisfying: for any y,, y,e U n D
there is an open neighborhood W; of y, such that each continuous function
from a zero-set (in X) into Wy U {y,} admits an extension fe 4(X,Y) with
diam (f(X)) < e.

Then (X, Y) satisfies the property (&).

Proof. Choose y,e Y; n D and set fo(x) = y, for all xeX. For any zero-set
F < X define

®(F) = {fe 6(X, Y); f|r is a constant from D} .
Clearly &(F,) = &(F,) whenever F; o F,.

Let Fy, F, be two disjoint zero-sets in X and ¥V <Y be open. Choose an arbitrary
y1€Vn Y, nD and find fe%(X, Y) such that f(F,) = {y,} and f(F,) = {yo}-
Then f e ®(Fy), f(Fy) = V and fl¢, = fo|r,, so (ii) from Definition 3.1 is satisfied.

Let us prove (iii) from Definition 3.1. Let y e Y and ¢ > 0 be given. Take the
neighborhood U of y from (A) Suppose F,, F, are two disjoint zero-sets in X,
fe®(F,), f(F;) = U, V< U is open. Let y; € D n U be such that f(F,) = {y,}.
Choose any y, € D n V. Let W; be the neighborhood of y, from (A). It is possible
to suppose W; = U. TFhe set G = f~'(W,)\ F, contains F,. Let ¢ € 4(X, [0, 1])

be such that ¢(F,) = {1} and ¢(X \ G) = {0}. Set Z = ¢~ !(1/2). Then the function
g1e4(Fy U Z, W, U {y,}), defined by

_J)y2 for xeFy,
91(x) {f(x) for xeZ,

has an extension g, € (X, Y) with diam (g,(X)) < e. Define

_fgi(x) for xeo !([1/2,1]),
9(x) _{f(x) for xez"l([o, 1/2]).

Clearly ge%(X,Y), and for any xe ¢~ !([1/2,1]) we have d(f(x),g(x)) <
< d(f(x), y2) + d(y2, §1(x)) < diam (U) + diam (§,(X)) < 2¢ (note that f(x)e
e W, < U, and diam (U) £ ¢ by (A)). So we have found g € ¢(F,) with g(F,) = V,
9lr, = flr, and d(f(x), g(x)) < 2¢ for all x € X. a

It is easy to see that a metric space Y is locally arcwise connected iff for each
y € Yand ¢ > 0 there is 6 > 0 such that y, z can be joined with an arc of dameter
less than ¢ whenever d(y, z) < . This motivates the following definition.

3.5 Definition. A metric space Y is said to be uniformly locally arcwise connected
if for each & > 0 there is 6 > O such that if y;, ¥y, €Y, d(yy, ¥2) < & then yy, ¥,
can be joined with an arc of diameter less than e.
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3.6 Definition. Let X be a topological space and Y be a metric space. We shall
say that

(a) Y satisfies the Z-extension property for X if any continuous function from
a zero-set (in X) into Y has an extension from ¢(X, Y).

(b) Y satisfies the local Z-extension property for X if for each ¢ > 0 and ye Y
there is a neighborhood U of y such that any continuous function from a zero-set
(in X) into U admits an extension f € ¢(X, Y) with diam (f(X)) < e.

(¢) Y satisfies the uniform local Z-extension property for X if for each ¢ > 0
there is 6 > 0 such that any continuous function f from a zero-set F =« X into Y
with diam (f(F)) < 6 admits an extension fe #(X, Y) with diam (f(X)) < e.

The following theorem is a direct consequence of Theorem 3.3 and Theorem 3.4.

3.7 Theorem. Let X be normal and Y metric. Then %,(X,Y) = #,(X,Y)n
N Z*(X, Y) provided at least one of the following conditions is satisfied.

(i) Yis arcwise connected and locally arcwise connected.

(i') Y satisfies the 2-extension property for X and the local Z-extension property
for X.

(i) Y contains a dense subspace Y; such that Y; is arcwise connected and uniformly
locally arcwise connected (in the metric generated by that of Y).

(ii’) Y contains a dense subspace Y; such that Y, satisfies the Z-extension property
for X and the uniform local & -extension property for X.

(iii) Y contains a dense subspace Y; such that all open balls in Y, are arcwise con-
nected.

(iii") Y contains a dense subspace Y; such that all open balls in Y, satisfy the & -ex-
tension property for X.

3.8 Remark. (a) It is easy to see that all the results (I)—(X) from Introduction
follow from Theorem 3.7(i), (i').
(b) The known results (I)—(X) do not cover, for example, the case of X = [0, 1]
and Y such that Y is not arcwise connected, ¥; = Y = R" where Y; = {y e R";
at least one of the coordinates of y is rational}. However, Theorem 3.7(iii) implies
2,([0, 1], Y) = #,[0, 1], Y) (all functions into Y are strongly o-discrete since Y
is separable).
(c) It is not possible to omit the word ,,uniformly” in Theorem 3.7 (ii), (ii’). Consider
X=[0,1], ¥, ={(tsin(1/));t> 0} =« R?, Y=Y, U ({0} x [—1,1]). Then Y;
is a dense arcwise connected and locally arcwise connected subspace of Y. (Hence
it satisfies the Z-extension and the local Z-extension property for [0, 1], too.)
Since Y is separable, Z*(X, Y) contains all functions from X into Y. By Theorem &
(and Proposition 1.10) #,(X, Y) ¢ #,(X, Y), because Y is complete and connected
but not locally connected. Moreover, by Theorem 3.7(i), #,(X, Y;) = F /X, ).
(d) Theorem 3.7(i) implies that it is possible to write ,,normal” instead of ,,metric”
in Theorem £, (d).
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