Acta Universitatis Carolinae. Mathematica et Physica

Anzelm Iwanik
 Cyclic approximation of ergodic step cocycles over irrational rotations

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 34 (1993), No. 2, 59--65

Persistent URL: http://dml.cz/dmlcz/701994

Terms of use:

© Univerzita Karlova v Praze, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Cyclic Approximation of Ergodic Step Cocycles Over Irrational Rotations

A. IWANIK
Wrocław*)

Received 14 April 1993

Let $x \rightarrow x+\alpha$ be an irrational rotation of the circle group. We construct a step cocycle $\varphi(x)=\gamma 1_{[0, \beta)}(x)$ such that associated Anzai skew product T_{φ} admits a cyclic approximation with speed controlled by α, and is a weakly mixing extension. In particular, given any value $d(T) \geqq 3 / 2$ for the Katok-Stepin exponent of cyclic approximation, we find T_{φ} as above such that $d\left(T_{\varphi}\right)$ is off by at most $1 / 2$. Moreover, for almost every rotation, T_{φ} is rigid and rank-1.

1 Introduction

Let T be an automorphism of a Lebesgue probability space (X, μ). The invariant $d(T)$ introduced by Katok and Stepin [5] informs us of the speed of cyclic approximation which T admits. In [3] (see also [2]) it was observed that for irrational rotations all values $2 \leqq d(T) \leqq \infty$ occur. Therefore, by result in [3] and [4], for every $2 \leqq d \leqq \infty$ there exist an irrational number α and a measurable function $\varphi: \mathbf{T} \rightarrow \mathbf{T}$ such that the associated Anzai skew product T_{φ} is a weakly mixing extension of the α-rotation and satisfies $d\left(T_{\varphi}\right)=d$. In fact, for a fixed α the set of such φ 's is residual for the topology of convergence in measure. On the other hand, it has not been clear how to produce the function φ in a more constructive way and within a limited class of functions such as, e.g., the step functions. In the present note we are able to find, for every $2 \leqq d \leqq \infty$, an irrational number α and a step function φ such that $d-1 \leqq d(T) \leqq d$ (Corollary 1). A result of Gabriel, Lemańczyk, and Liardet [1] alows φ to be a weakly mixing cocycle. Moreover, for almost every α we obtain a step function φ such that the extension T_{φ} is weakly mixing, rigid, and rank-1 (Corollary 2).

[^0][^1]Denote by ε the decomposition of X into singletons and let $0<f(n) \rightarrow 0$. According to [5], the automorphism T admits cyclic approximation by periodic transformations (cyclic a.p.t.) with speed $f(n)$ if there exist a sequence of partitions

$$
\xi_{n}=\left\{C_{0}, \ldots, C_{h_{n}-1}\right\} \rightarrow \varepsilon
$$

and automorphisms T_{n} such that T_{n} cyclically permutes ξ_{n} and

$$
\sum_{j=0}^{h_{n}-1} \mu\left(T C_{j} \Delta T_{n} C_{j}\right)<f\left(h_{n}\right)
$$

As in [5], we let

$$
d(T)=\sup \left\{r>0: T \text { admits cyclic a.p.t. with speed } 1 / n^{r}\right\} .
$$

In the sequel we consider transformation of the 2 -torus T^{2}. It will be convenient to identify the circle group \mathbf{T} with the interval $[0,1)$, with addition modulo 1 . For every $\alpha \in \mathbf{T}$ and a measurable function $\varphi: \mathbf{T} \rightarrow \mathbf{T}$ (a cocycle), we define the (Anzai) skew product

$$
T_{\varphi}(x, y)=(x+\alpha, y+\varphi(x))
$$

over the α-rotation. The cocycle φ is said to be weakly mixing, in which case T_{φ} is referred to as a weakly mixing extension, if T_{φ} is ergodic and its only eigenvalues are the numbers $\exp (2 \pi i n \alpha), n \in \mathbf{Z}$.

We say that α admits a diophantine approximation with speed $f(n)$ if there exists a sequence of integers $q_{n} \rightarrow \infty$ such that for some integers p_{n} we have

$$
\left|\alpha-p_{n} / q_{n}\right|<f\left(q_{n}\right) .
$$

It is well known that α always admits $f(n)=1 / n^{2}$ (see e.g. [6]). We denote by $\|x\|$ the norm in \mathbf{T}, i.e. the distance from x to the nearest integer. The above condition now reads $\left\|q_{n} \alpha\right\|<q_{n} f\left(q_{n}\right)$.

3 Construction of step cocycles

We are going to define a family of step cocycles depending on three parameters $\alpha, \beta, \gamma \in \mathbf{T}$. More precisely, for every irrational rotation α we define a step cocycle $\varphi(x)=\gamma 1_{[0, \beta}(x)$ which satisfies, up to a certain error, a preassigned speed of cyclic approximation.
Lemma 1. Let $C>1,0<c<C-1$, and $1 \leqq j_{n} \leqq n$. Then for every sufficiently large n there exists a prime number Q_{n} such that

$$
c \log n<Q_{n} \leqq C \log n
$$

and Q_{n} does not divide j_{n}.

Proof. Choose $1<C<C-c$. By Prime Number Theorem the number of primes in the interval $(c \log n, C \log n$], equal to $\pi(C \log n)-\pi(c \log n)$, exceeds

$$
C \log n / \log \log n
$$

for all sufficiently large \boldsymbol{n}. It follows that their product Π exceeds

$$
(c \log n)^{C \log n / \log \log n}
$$

This implies

$$
\log \Pi>(\log \log n+\log c) C \log n / \log \log n>C^{*} \log n
$$

for all sufficiently large n, provided $C^{\prime \prime}<C$. We may choose $c^{\prime}>C^{\prime}>1$, whence $\log \Pi>\log n \geqq \log j_{n}$. Consequently, $j_{n}<\Pi$ so at least one prime Q_{n} in $(c \log . n, C \log n]$ does not divide j_{n}.

Theorem 1. Let $f(x)>0, g(x)>0$ decrease to 0 as $x \rightarrow \infty$ and let $C>1$. Let α be an irrational number such that $\left\|q_{n} \alpha\right\|<g\left(q_{n}\right)$ for some sequence $q_{n} \rightarrow \infty$.. Then there exists a residual set $\mathrm{B}(\alpha) \subset \mathbf{T}$ and, for each $\beta \in \mathrm{B}(\alpha)$, a residual set $\Gamma(\alpha, \beta)$ such that for every $\gamma \in \Gamma(\alpha, \beta)$ the Anzai skew product T_{φ} defined by the cocycle

$$
\varphi(x)=\gamma 1_{[0, \beta)}(x)
$$

admits cyclic a.p.t. with speed

$$
2 g(n / C \log n)+f(n)
$$

Proof. We can find two positive monotone functions $f_{1}(x), f_{2}(x)$ such that $f_{1}(x)<1 / x$ and

$$
2 f_{1}(x / C \log x)+2 f_{2}(x / C \log x) \leqq f(x)
$$

Denote by V_{q} the union of the open intervals

$$
\left(j / q-f_{1}(q), j / q\right)
$$

where $j=1,2, \ldots, q$. The set $\bigcup_{n-N}^{\infty} V_{q_{n}}$ is open and dense, so the intersection

$$
\mathrm{B}(\alpha)=\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} V_{q_{n}}
$$

is residual. Now fix $\beta \in \mathrm{B}(\alpha)$. There exists a subsequence $q_{n_{k}}$ such that $\beta \in V_{q_{n k}}$, whence

$$
j_{n_{k}} / q_{n_{k}}-f_{1}\left(q_{n_{k}}\right)<\beta<j_{n_{k}} / q_{n_{k}}
$$

where $1 \leqq j_{n_{k}} \leqq q_{n_{k}}, k=1,2, \ldots$

Let $c>0$ be as in Lemma 1. Cosequently, there exist prime numbers $Q_{n_{k}}$ such that

$$
c \log q_{n_{k}}<Q_{n_{k}}<C \log q_{n_{k}}
$$

and $j_{n_{k}}$ is not a multiple of $Q_{n_{k}}$ (for k sufficiently large). Note that the sequence $Q_{n_{k}}$ depends on α and β. We denote by W_{Q} the union of the open intervals

$$
\left(P / Q-f_{2}(\exp (Q / c)), P / Q+f_{2}(\exp (Q / c))\right)
$$

where $P=1,2, \ldots, Q-1$. Observe as above that the set

$$
\Gamma(\alpha, \beta)=\bigcap_{N=1}^{\infty} \bigcup_{k=N}^{\infty} W_{Q_{n k}}
$$

is residual. Now for every $\gamma \in \Gamma(\alpha, \beta)$ there exists a subsequence $n_{k_{l}}$ such that

$$
\left|\gamma-P_{n_{k l}} / Q_{n_{k l}}\right|<f_{2}\left(\exp \left(Q_{n_{k}} / c\right)\right.
$$

where $1 \leqq P_{n_{k l}}<Q_{n_{k},}$, and $Q_{n_{k} \mid} j_{n_{k \mid}}, P_{n_{k l}}$ are relatively prime for $l=1,2, \ldots$
We are now in a position to construct a cyclic approximation of the skew product T_{φ}, where $\varphi=\gamma 1_{[0, \beta)}$. To simplify the notation we abbreviate the subscripts $n_{k_{1}}$ and write n. Let $\alpha_{n}=p_{n} / q_{n}$, where $\left|q_{n} \alpha-p_{n}\right|<g\left(q_{n}\right)$. Since $g(x)$ is monotone, we may assume without loss of generality that p_{n}, q_{n} are relatively prime. This implies that

$$
\left\{0, \alpha_{n}, \ldots,\left(q_{n}-1\right) \alpha_{n}\right\}=\left\{0,1 / q_{n}, \ldots,\left(q_{n}-1\right) / q_{n}\right\}
$$

To define the approximating partition $\xi_{n}=\left\{C_{0}, \ldots, C_{h_{n}-1}\right\}$ and the cyclic automorphism T_{n} we first let

$$
C_{0}=\left[0,1 / q_{n}\right) \times\left[0,1 / Q_{n}\right)
$$

and define T_{n} on C_{0} by the formula

$$
T_{n}(x, y)=\left(x+\alpha_{n}, y+\varphi(0)\right)
$$

Next let $C_{1}=T_{n} C_{0}$ and, on C_{1}, define

$$
T_{n}(x, y)=\left(x+\alpha_{n}, y+\varphi\left(\alpha_{n}\right)\right)
$$

We let $C_{2}=T_{n} C_{1}$ and continue is the same manner up to $C_{q_{n}-2}$, on which T_{n} is defined by

$$
T_{n}(x, y)=\left(x+\alpha_{n}, y+\varphi\left(\left(q_{n}-2\right) \alpha_{n}\right)\right)
$$

and $C_{q_{n}-1}=T_{n} C_{q_{n}-2}$. To define T_{n} on $C_{q_{n}-1}$ we use the same α_{n}-translation along the x-axis but slightly alter the vertical shift. Note that

$$
C_{q_{n}-1}=\left[\left(q_{n}-1\right) \alpha_{n},\left(q_{n}-1\right) \alpha_{n}+1 / q_{n}\right) \times\left[z, z+1 / Q_{n}\right),
$$

where $z=\varphi(0)+\varphi\left(\alpha_{n}\right)+\ldots+\varphi\left(\left(q_{n}-1\right) \alpha_{n}\right)$. If the value $\varphi\left(\left(\omega_{\nu}-1\right) \alpha_{n}\right)$ were used to define the vertical shift of $C_{q_{n}-1}$ we would obtain the rectangle

$$
\left[0,1 / q_{n}\right) \times\left[y_{1}, y_{1}+1 / Q_{n}\right),
$$

where

$$
\begin{aligned}
y_{1} & =z+\varphi\left(\left(q_{n}-1\right) \alpha_{n}\right)=\varphi(0)+\varphi\left(\alpha_{n}\right)+\ldots+\varphi\left(\left(q_{n}-1\right) \alpha_{n}\right) \\
& =\varphi(0)+\varphi\left(1 / q_{n}\right)+\ldots+\varphi\left(\left(q_{n}-1\right) / q_{n}\right)=j_{n} \gamma
\end{aligned}
$$

(the last equality follows from the definition of $\varphi(x)$). Instead, we define

$$
C_{q_{n}}=\left[0,1 / q_{n}\right) \times\left[y_{2}, y_{2}+1 / Q_{n}\right),
$$

where $y_{2}=j_{n} P_{n} / Q_{n}(\bmod 1)$. The transformation T_{n} is defined on $C_{q_{n}-1}$ accordingly in order to ensure $T_{n} C_{q_{n}-1}=C_{q_{n}}$. Observe that

$$
\left|y_{1}-y_{2}\right|=j_{n}\left|\gamma-P_{n} / Q_{n}\right|<Q_{n} f_{2}\left(\exp \left(Q_{n} / c\right)\right) .
$$

The construction continues in the same manner $\left(\bmod q_{n}\right)$ until we reach $C_{Q_{n q_{n}-1}}$. The definition of T_{n} is completed on $C_{Q_{n} q_{n}-1}$ so that $T^{h_{n}}$ becomes the identity transformation, where $h_{n}=Q_{n} q_{n}$. Since $j_{n} P_{n}, Q_{n}$ are relatively prime, it is clear that the sets C_{j} are pairwise disjoint and T_{n} permutes cyclically the partition

$$
\xi_{n}=\left\{C_{0}, \ldots, C_{h_{n}-1}\right\} .
$$

Since the diameters of the rectangles C_{j} tend to zero, we have $\xi_{n} \rightarrow \varepsilon$. It remains to estimate the approximation error

$$
E=\sum_{j=0}^{h_{n}-1} \mu\left(T_{\varphi} C_{j} \Delta T_{n} C_{j}\right) .
$$

Note that E decomposes into three parts:

1. The error E_{a} caused by the approximation of α by α_{n} consists of $2 q_{n}$ vertical stripes of width $\left|\alpha-\alpha_{n}\right|<g\left(q_{n}\right) / q_{n}$ each. Therefore

$$
E_{a}<2 g\left(q_{n}\right)=2 g\left(h_{n} / Q_{n}\right) \leqq 2 g\left(h_{n} / C \log h_{n}\right) .
$$

2. The error E_{β} caused by the jump of the function φ at β occurs as a vertical split of those rectangles C_{j} which cross the vertical line $x=\beta$. The right part of each split rectangle produces the error so we have

$$
E_{\beta} \leqq 2\left|\beta-j_{n} / q_{n}\right|<2 f_{1}\left(q_{n}\right) \leqq 2 f_{1}\left(h_{n} / C \log h_{n}\right) .
$$

3. The error E_{γ} caused by the approximation of y_{1} by y_{2} occurs for each rectangle in the first column $\left[0,1 / q_{n}^{\prime}\right) \times[0,1)$ so

$$
\begin{aligned}
E_{\gamma} & \leqq 2\left|y_{1}-y_{2}\right| Q_{n} / q_{n}<2 f_{2}\left(\exp \left(Q_{n} / c\right)\right) Q_{n}^{2} / q_{n} \\
& \leqq 2 f_{2}\left(\exp \left(Q_{n} / c\right)\right) \leqq 2 f_{2}\left(q_{n}\right) \leqq 2 f_{2}\left(h_{n} / C \log h_{n}\right)
\end{aligned}
$$

for n large enough.

By the choice of f_{1} and f_{2} we obtain $E_{\beta}+E_{\gamma}<f\left(h_{n}\right)$. Consequently, $E<2 g\left(h_{n} / C \log h_{n}\right)+f\left(h_{n}\right)$, which ends the proof of the theorem.

4 Corollaries

Our next aim is to improve the construction of φ in order to obtain a weakly mixing extension. To this end we apply a result of Gabriel, Lemańczyk, and Liardet ([1], Cor. 1.6), which gives a criterion for a step cocycle to be weakly mixing. We say, as in [1], that β is α-separated if

$$
\limsup _{n \rightarrow \infty} \min _{0 \leq k \leq q_{n}^{\prime}} q_{n}^{\prime}\|\beta-k \alpha\|>0,
$$

where q_{n}^{\prime} is the sequence of denominators of α. The result of [1] asserts that if $\beta \notin \mathbf{Z} \alpha, \pm \beta$ are α-separated, and $\gamma \neq 0$, then T_{φ} is a weakly mixing extension of the α-rotation. It is also observed in [1] that if α has bounded partial quotients then β is α-separated whenever $\beta \notin \mathbf{Z} \alpha$. In the general case we have the following simple lemma whose proof is left to the reader.

Lemma 2. Let α be an irrational number. Then the set $\mathrm{B}^{\prime}(\alpha)$ of all numbers β such that $\pm \beta$ are α-separated is residual.

Now by taking $\beta \in \mathrm{B}(\alpha) \cap \mathrm{B}^{\prime}(\alpha) \backslash \mathrm{Z} \alpha$ in Theorem 1, we obtain immediately.
Theorem 2. Let f, g, C, α be as in Theorem 1. Then there exist numbers β, γ such that the cocycle $\varphi=\gamma 1_{[0, \beta)}$ is weakly mixing and admits cyclic a.p.t. with speed $2 g(n / C \log n)+f(n)$.

It was shown in [2] (see also [3]) that the speed of cyclic approximation of an authomorphism is never better than the speed of (simultaneous) diophantine approximation of its eigenvalues. Now let $2 \leqq d \leqq \infty$. Using continued fractions, it is easy to construct a number α admitting diophantine approximation with speed $1 / n^{r}$ for all $r<d$, but not for $r>d$. The following corollary is now a consequence of Theorem 2.

Corollary 1. For every $2 \leqq d \leqq \infty$ there exist a rotation $\alpha \in \mathbf{T}$ and a step cocycle φ as above such that T_{φ} is a weakly mixing extension and $d-1 \leqq d\left(T_{f}\right) \leqq d$.

It is known (see [6]) that almost every α (with respect to Lebesgue measure) admits diophantine approximation with speed

$$
o\left(1 / n^{2} \log n \log \log n\right)
$$

Corollary 2. For a.e. α in \mathbf{T} there exists a step cocycle φ as above such that T_{φ} is a weakly mixing extension and admits a cyclic a.p.t. with speed $o(1 / n \log \log n)$. In particular, T_{φ} is rigid and rank-1.

Proof. Choose $f(x)=g(x)=o(1 / x \log x \log \log x)$ in Theorem 2 to obtain the first part of the assertion. To get the second part, we recall that an authomorphism which admits cyclic approximation with speed $o(1 / n)$ is necessarily rigid (see [5]) and rank-1 (see e.g. [4]).

References

[1] Gabriel P., Lemanczyk M., Liardet P., Ensemble d'invariants pour les produits croisés de Anzai, Mémoire (nouvelle série) no. 47, Supp. Bull. Soc. Math. France 119 (3) (1991), 1-102.
[2] IWANIK A., Cyclic approximations of irrational rotations, preprint.
[3] IWANIK A., Approximation by periodic transformations and diophantine approximation of the spectrum, preprint.
[4] Iwanik A., Serafin J., Most monothetic extensions are rank-1, Colloquium Math. (to appear).
[5] Katok A. B., Stepin A. M., Approximations in ergodic theory, Uspekhi Mat. Nauk 22 (5) (1967), 81-86.
[6] Khinchin A. Ya., Continued Fractions, Univ. of Chicago Press, 1964.

[^0]: *) Institute of Mathematics, Technical University of Wroctaw, Poland

[^1]: *) Supported by KBN grant PB 666/2/91

