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1993 ACTA UNTVERSrTATIS CAROUNAE-MATHEMATICA ET PHYSICA VOL. 34. NO. 2 

Cyclic Approximation of Ergodic Step Cocycles 
Over Irrational Rotations 

A. IWANIK 

Wroclaw*) 

Received 14 April 1993 

Let x — x + a be an irrational rotation of the circle group. We construct a step cocycle 
<p(x) — yl|o,#(*) such that associated Anzai skew product Tv admits a cyclic approximation with speed 
controlled by a, and is a weakly mixing extension. In particular, given any value d( 7) ^ 3/2 for the 
Katok-Stepin exponent of cyclic approximation, we find Tv as above such that d(T9) is off by at most 
1/2. Moreover, for almost every rotation, Tv is rigid and rank-1. 

1 Introduct ion 

Let T be an automorphism of a Lebesgue probability space (X, ju). The in­
variant d(T) introduced by Katok and Stepin [5] informs us of the speed of cyclic 
approximation which T admits. In [3] (see also [2]) it was observed that for 
irrational rotations all values 2 S d(T) ^ °o occur. Therefore, by result in [3] and 
[4], for every 2 ^ d ^ «> there exist an irrational number a and a measurable 
function cp: T -* T such that the associated Anzai skew product T9 is a weakly 
mixing extension of the a-rotation and satisfies d( Tv) = d. In fact, for a fixed a 
the set of such qt& is residual for the topology of convergence in measure. On the 
other hand, it has not been clear how to produce the function cp in a more 
constructive way and within a limited class of functions such as, e.g., the step 
functions. In the present note we are able to find, for every 2 ^ d £ °o. an 
irrational number a and a step function cp such that d — 1 £ d(T) £ d (Coroll­
ary 1). A result of Gabriel, Lemanczyk, and Liardet [1] alows cp to be a weakly 
mixing cocycle. Moreover, for almost every a we obtain a step function cp such that 
the extension T^ is weakly mixing, rigid, and rank-1 (Corollary 2). 

*) Institute of Mathematics, Technical University of Wroclaw, Poland 

•) Supported by KBN grant PB 666/2/91 
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2 D e f i n i t i o n s and nota t ion 

Denote by e the decomposition of X into singletons and let 0 < f(n) — 0. 
According to [5], the automorphism T admits cyclic approximation by periodic 
transformations (cyclic a.p.t.) with speedf(n) if there exist a sequence of partitions 

£.-{0,..., C ^ } - e 
and automorphisms Tn such that Tn cyclically permutes £„ and 

hHi\(TCJATnCj)<f(hn). 
y-o 

As in [5], we let 

d(T) = sup {r > 0: 7 admits cyclic a.p.t. with speed llnr\. 

In the sequel we consider transformation of the 2-torus T2. It will be convenient 
to identify the circle group T with the interval [0,1), with addition modulo 1. For 
every a e T and a measurable function q>: T -* T (a cocycle), we define the 
(Anzai) skew product 

T<P(X> y) - (* + a>y + <P(X)) 

over the a-rotation. The cocycle q> is said to be weakly mixing, in which case 7̂  
is referred to as a weakly mixing extension, if 7̂  is ergodic and its only eigenvalues 
are the numbers exp (2nina), n e Z. 

We say that a admits a diophantine approximation with speedf(n) if there exists 
a sequence of integers qn -* «> such that for some integers pn we have 

|a -p„/qnl < / (?„) • 

It is well known that a always admits/(AI) = 1/zz2 (see e.g. [6]). We denote by ||x| 
the norm in T, i.e. the distance from x to the nearest integer. The above condition 
now reads ||q„a|| < qnf(qn). 

3 Construct ion of s tep cocyc le s 

We are going to define a family of step cocycles depending on three parameters 
a, ft, y£ T. More precisely, for every irrational rotation a we define a step cocycle 
cp(x) = yl [0ffi(x) which satisfies, up to a certain error, a preassigned speed of cyclic 
approximation. 

Lemma 1. Let C > 1, 0 < c < C — 1, and 1 £ jn £ n. Then for every suf­
ficiently large n there exists a prime number Qn such that 

c log n < Qn ^ C log n 
and Qn does not divide jn. 
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Proof. Choose 1 < C < C — c. By Prime Number Theorem the number of 
primes in the interval (clog n, Clog n], equal to jt(Clog n) — jc(clog n), exce­
eds 

C log n/log log n 

for all sufficiently large n. It follows that their product II exceeds 

(clog/l)Clog,,/loglog,,. 
This implies 

log II > (log log n + log c) C log n/log log n > C log n 

for all sufficiently large n, provided C < C. We may choose d > C > 1, 
whence log II > log n ^ log/,.. Consequently, jn < II so at least one prime Qn 

in (clog.rt, Clog n] does not divide /„. 

Theorem 1. Letf(x) > 0, g(x) > 0 decrease toOasx - °o and let C > 1. Let 
a be an irrational number such that \\qna\\ < g(qn) for some sequence qn -+ «>.. 
Then there exists a residual set B(a) c T and, for each /J e B(a), a residual set 
T(a, p) such that for every y e T(a, p) the Anzai skew product T^ defined by the 
cocycle 

<&*) - y-W*) 
admits cyclic a.p.t. with speed 

2g(nl C log n)+f(n). 

Proof. We can find two positive monotone functions f(x), f2(x) such that 
/-(*) < 1/x and 

2fx(x/C log x) + 2f2(x/C\og x) £ f(x) . 

Denote by Vq the union of the open intervals 

(Vq- fi(q)J/q)> 
co 

where / «* 1,2,..., q. The set \J Vqn is open and dense, so the intersection 

B ( « ) - n On. 
N-l n-N 

is residual. Now fix /? e B(a). There exists a subsequence c7„t such that /3 e j / ^ , 
whence 

/ • A * - /i(?«») < /? < /»/?»*. 

where 1 ^ /„, ^ .7^, * - 1,2, ... 

61 



Let c > 0 be as in Lemma 1. Cosequently, there exist prime numbers Qnk such 
that 

dogqnk < Qttk < C\ogqnk 

and jnk is not a multiple of Qnk (for k sufficiently large). Note that the sequence 
Qnk depends on a and /?. We denote by WQ the union of the open intervals 

(P/Q - /2(exp (Q/c)), P/Q + /2(exp (Q/c))), 

where P — 1,2,..., Q — 1. Observe as above that the set 

r(a,/8)- n U ^ 
< V - 1 * - N 

is residual. Now for every y € T(a, p) there exists a subsequence nkl such that 

\Y-Pnk/Qnkl\<f2(<*P(Qnk/c), 

where 1 & Pnkl < Q„kl, and Qnkl, jnkl, Pnkl are relatively prime for / - 1,2,.. . 
We are now in a position to construct a cyclic approximation of the skew product 

Tv, where q> « yljo,̂ * To simplify the notation we abbreviate the subscripts nkl and 
write n. Let an •• pn/qn9 where \qna — pn\ < g(qn). Since g(x) is monotone, we 
may assume without loss of generality that pn, qn are relatively prime. This implies 
that 

{0, an,..., (qn - 1) an) - {0, \/qn,..., (gn - l ) / ^ } . 

To define the approximating partition £„ «- {C0,..., C^-!} and the cyclic auto­
morphism Tn we first let 

Co- [P , I / O X [ 0 , 1 / 0 0 

and define Tn on C0 by the formula 

Tn(x, y)-(x+ an, y + p(0)). 

Next let Q — ̂ Co and, on Q, define 

Tn(x, y) - (x + a„, y + ^an)) . 

We let C2 -» TnCj and continue is the same manner up to C9II_2, on which Tn is 
defined by 

Tn(x, y) - (x + a,, y + #(*„ - 2) a„)), 

and C^_! — TnCqit-2- To define 7̂  on C^-! we use the same a„-translation along 
the jc-axis but slightly alter the vertical shift. Note that 

C<m-i - [(qn - 1) an, (qn - 1) an + \/qn) X [z, z + 1/Q„) , 
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where z — <p(0) + <p(an) + ... + <p((qn — 1) an). If the value <p((<ov — 1) an) 
were used to define the vertical shift of Cqn-X we would obtain the rectangle 

[0,l/qn)X[yx,yx + l/Qn), 
where 

yx - z + <p((qn - 1) an) - <p(0) + <p(an) + ... + <p((qn - 1) an) 

- <p(0) + <p(l/qn) + ... + <p((qn - l)/qn) - y > 

(the last equality follows from the definition of <p(x)). Instead, we define 

Cqn~[0,l/qn)X[y2,y2 + l/Qn), 

where y2 «* jnPJQn (mod 1). The transformation Tn is defined on Cqn_x accor­
dingly in order to ensure TnCqn-x — C9II. Observe that 

I* - ttl - Jn\Y ~ PJQn\ < Qnfl(^V (QJc)) . 
The construction continues in the same manner (mod qn) until we reach CQnqn_x. 
The definition of Tn is completed on CQn<Jn-x so that T*1" becomes the identity 
transformation, where hn — Qnqn. Since jnPn, Qn are relatively prime, it is clear 
that the sets Cj are pairwise disjoint and Tn permutes cyclically the partition 

bn ~ {Co, .••> Chn-X\ . 

Since the diameters of the rectangles C; tend to zero, we have £n -* e. It remains 
to estimate the approximation error 

E-YKTvCjAT^j). 
y-O 

Note that £ decomposes into three parts: 
1. The error Ea caused by the approximation of a by an consists of 2qn vertical 

stripes of width \a — an\ < g(qn)/qn each. Therefore 

Ea < 2g(qn) - 2g(hJQn) £ 2g(hJC \og hn). 

2. The error Efi caused by the jump of the function <p at j3 occurs as a vertical 
split of those rectangles Cy which cross the vertical line x -• /?. The right part 
of each split rectangle produces the error so we have 

E, £ 2\fi - jjqn\ < 2fx(qn) £ 2fx(hJC \og hn) . 

3. The error EY caused by the approximation of yx by y2 occurs for each 
rectangle in the first column [0, l/q'n) X [0,1) so 

EY £ 2\yx - y2\ QJqn < 2/2(exp (QJc)) Q2Jqn 

£ 2f2(cxp(QJc)) £ 2f2(qn) £ 2f2(hJC log hn) 

for n large enough. 

63 



By the choice of f and f2 we obtain Ep+ EY < f(hn). Consequently, 
E < 2g(hn/C\og hn)+ f(hn), which ends the proof of the theorem. 

4 Corollaries 

Our next aim is to improve the construction of q> in order to obtain a weakly 
mixing extension. To this end we apply a result of Gabriel, Lemanczyk, and Liardet 
([1], Cor. 1.6), which gives a criterion for a step cocycle to be weakly mixing. We 
say, as in [1], that /S is a-separated if 

lim sup min q'n\f} — ka\\ > 0 , 
/i-co 0Zk£q'n 

where q'n is the sequence of denominators of a. The result of [1] asserts that if 
PiZa, ± ft are a-separated, and y ¥> 0, then T9 is a weakly mixing extension of 
the a-rotation. It is also observed in [1] that if a has bounded partial quotients then 
/? is a-separated whenever ft i Za. In the general case we have the following simple 
lemma whose proof is left to the reader. 

Lemma 2. Let a be an irrational number. Then the set B'(a) of all numbers /8 
such that ± /? are a-separated is residual. 

Now by taking /J e B(a) n B'(a) \Za in Theorem 1, we obtain immediately. 

Theorem 2. Letf, g, C, a be as in Theorem 1. Then there exist numbers ft, y 
such that the cocycle cp -• yl[0,B) is weakly mixing and admits cyclic a.p.t. with 
speed 2g(n/Clog ri) + f(ri). 

It was shown in [2] (see also [3]) that the speed of cyclic approximation of an 
authomorphism is never better than the speed of (simultaneous) diophantine 
approximation of its eigenvalues. Now let 2 ^ d ^ °°. Using continued fractions, 
it is easy to construct a number a admitting diophantine approximation with speed 
1/V for all r < d, but not for r > d. The following corollary is now a conse­
quence of Theorem 2. 

Corollary 1. For every 2 £ d ^ °° there exist a rotation a*T and a step 
cocycle cp as above such that T^ is a weakly mixing extension and 
d-1 £ d(Tf) £ d. 

It is known (see [6]) that almost every a (with respect to Lebesgue measure) 
admits diophantine approximation with speed 

o(l/n2 log n log log ri). 

Corollary 2. For a.e. a in T there exists a step cocycle cp as above such that T^ 
is a weakly mixing extension and admits a cyclic a.p.t. with speed o(l/n log log ri). 
In particular, T^ is rigid and rarik-1. 
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Proof. Choose f(x) •- g(x) •• 0(1/* log JClog log x) in Theorem 2 to obtain 
the first part of the assertion. To get the second part, we recall that an authomor-
phism which admits cyclic approximation with speed o(l/n) is necessarily rigid 
(see [5]) and rank-1 (see e.g. [4]). 
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