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1993 ACTA UNTVERSITATIS CAROUNAE-MATHEMATICA ET PHYSICA VOL 34. NO. 2 

Stable Smooth and Extreme Points, and Reflexivity 

L. VESELt 

Milano*) 

Received 14 April 1993 

The property "for any equivalent norm each extreme point of the unit ball is an extreme point of 
the second dual unit ball" characterizes reflexive Banach spaces. If we consider smooth points instead 
of extreme points, the corresponding property characterizes Grothendieck spaces. Some other charac
terizations of reflexivity in terms of renormings are given for WCG Banach spaces. 

Introduct ion 

Let ̂ P be a geometric property of the unit sphere in Banach spaces. We shall say 
that a point x e Sx is a stable point with ty if x has P̂ and its canonical image 
JC e Sx.. also has p̂. (So we shall speak about "stable smooth points", "stable 
extreme points", etc..) 

Of course, any property is stable in reflexive spaces. A natural question is: for 
which properties P̂ the condition. 

(*) for any equivalent norm each point that has S$ is a stable point with 
P̂ characterizes reflexivity? It is known that this is not the case if P̂ — "to be 

a Fr6chet smooth point" or P̂ •- "to be a LUR point", since in every Banach space 
each Frechet smooth point/LUR point is Fr6chet smooth/LUR in the second dual 
(see Appendix). 

In the present paper we prove that (*) characterizes reflexivity if Ĵ = "to be 
an extreme point of the unit ball", but (*) does not characterize reflexive spaces 
if P̂ — "to be a smooth point" (it characterizes Grothendieck spaces, i.e. such 
spaces that each weak*-n\ill sequence in the dual is weak-null). The following 
theorem is the main result of this paper. 

*) Universita di Milano, Dipartimento di Matematica „E Enriques", Via C. Saldini 50, 20133 
Milano, Italy 
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Theorem 0.1. 
For a Banach space X the following assertions are equivalent, 

(i) X is reflexive, 
(ii) Each extreme point of the unit sphere of any equivalent norm on X, is 

a stable extreme point. 
(Hi) Bx* is sequentially weak* compact and each smooth point of the unit 

sphere of any equivalent norm on Xy is a stable smooth point, 
(iv) X is WCG (= weakly compactly generated) and each point of the unit 

sphere of any equivalent rotund norm on X is a stable extreme point, 
(v) X is WCG and each point of the unit sphere of any equivalent smooth 

norm on Xy is a stable smooth point, 
(vi) X is WCG and each point of the unit sphere of any equivalent dual rotund 

norm on X*, is a stable extreme point, 
(vii) X is WCG and each equivalent rotund norm on X has a smooth dual. 
Moreover, the following condition (iii) holds if and only ifX is a Grothendieck 

space. 
(ill) Each smooth point of the unit sphere of any equivalent norm on X, is 

a stable smooth point. 
We were inspired by a paper by B. V. Godun [3] whose proofs implicitely 

contain the equivalence of (i), (iii), (v), (vi) for separable Banach spaces. 
In the first section, we generalize Godun's method to obtain Theorem 1.2 and 

Theorem 1.3 that give sufficient conditions to construct equivalent rotund norms 
with a non-stable extreme point. These conditions are satisfied for nonreflexive 
WCG spaces (Proposition 1.4) and hence (i), (iv), (v), (vi), (vii) are equivalent. 
The author does not know whether the conditions of Theorem 1.2 and Theorem 
1.3 are satisfied in more general spaces (Problem 1.5); on the Winter School in 
Abstract Analysis in Podebrady 1993 he announced such a result but later he 
found that his proof was not correct. 

The main result of the second section is Theorem 2.2 which implies the equiva
lence of (i) and (ii). We use the results of the first section and an extension lemma 
for norms. An open problem on rotund extensions of rotund norms from a subspa-
ce to the whole space (Problem 2.3), arises. 

The third section contains the proof that (iii') characterizes Grothendieck spaces 
(Theorem 3.3). This implies the equivalence of (i) and (iii) since any Grothendieck 
space with a sequentially weak* compact dual ball is reflexive by the Eberlein-
-Smulian theorem. 

We add short proofs of the stability of Frechet smooth points and LUR points 
in Appendix. 

Let us state some preliminaries. All Banach spaces in the present paper are real, 
by Bx and Sx we denote the closed unit ball and the unit sphere of the Banach 
space X. The duality mapping / : X -+ 2X* is defined by J(x) = {x* \ (x, x*) — 
= || jr|| || x* || and ||x|| — ||**||}. It is well known that the norm ||. || is Gateaux 
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differentiable at a point x e X\{0] if and only if J(x) is a singleton (cf. [1]). If 
this is true we call x a smooth point of X. We shall also say that X or ||. || is smooth 
at x. The Banach spce X is called smooth if it is smooth at each point of its unit 
sphere, the space X is rotund if its unit sphere Sx does not contain any nontrivial 
line segment, or equivalently, if each point of Sx is an extreme point of Bx. We 
denote dual norms by the same symbol as the norms. By x, A, x* we denote the 
canonical image of xz X in the second dual X**, of a set A C X in X**, of 
x* e X* in X***, respectively. The closed and open line segment with endpoints 
x, y are denoted by (x, y) and [x, y]; thus (x, y) = {Ax + (1 — X)y | 0 < A < 1} 
and [x, y] = {Ax + (1 - X)y \ 0 S A ^ 1}. The symbol B(x, r) denotes the 
closed ball of radius r, centered at x. By the weak* continuity we mean the 
weak*-to- weak * continuity. 

1. Godun's method 

In [3] B. V. Godun proved that each nonreflexive separable Banach space can 
be renormed equivalenly to have rotund dual but not all points of the dual unit 
sphere are stable extreme points. A generalization of the methods from [3] is 
presented in this section. It is based on the following proposition. 

Proposition 1.1. Let T be a bounded linear operator from a Banach space 
(X, || • ||) into a Banach space (Y,\-1). Suppose XQ e X, TXo * o, 
\\x0\\ < | T J - 1 . Then 

jt(*):=max{||4,|7*|} 

is an equivalent norm on X that has the following properties. 
(a) x0 is an extreme point of B^Xn) if and only if T is one-to-one and^ is an 

extreme point of BmX)tl^. 
(b) If both (X, || • ||) and(T(X), \ • |) are rotund and T is one-to-one, then (X, JC) 

is rotund 
(c) If both (X, || • ||) and( Y, \ • |) are dual and T is weak* continuous, then (X, n) 

is dual. 
(d) The second dual norm ofn is given byn(x**) = max{||jt**|[, \T**x**\}. 

Proof. It is easy to see that ||JC|| ^ n(x) ^ >w||*|| for all x e X, where 
m - m a x { l f | 71}. 
(a) First note that the assumptons imply nfo) = | TXo\ •• 1. 
Suppose T is one-to-one and ^ is extreme in BmX)V^ .If y e X is such that 
jt(*0 ± y) — n(x0), take Q > 0 so small that \T(XQ ± Qy)\ > \\x0 ± Qy\\ (this 
is possible by continuity). Then \TXQ ± QTy\ = \Tx 0\ by the definition of jt. The 
extremality assumption implies Ty = 0; consequently y = 0 since T is 
one-to-one. 
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Now, suppose that T is not one-to-one or ^ is not an extreme point of Bmx)[.{). 
In both situations there exists y # 0 sucn that \TXQ ± Ty\ — \Tx 0|. Similarly 
as above, JI(XQ ± gy) •- Jt(*0) for some p > 0. This implies that XQ is not an 
extreme point of B(Xjt). 
(b) Observe that B^XtJl) is the intersection of two rotund conves sets B(Xli) and 
T (BinX)A.{)). 
(c) Bx^.B) and Bm.^ are weak* closed, hence also B(Xn) = B{XtVl) n 
n r""1(.B(y).|)) is, if 7 is weak* continuous. 
(d) Consider F = {(x, Tx)\xe X} as a subspace of £ - (X, || • ||) 0 « ( y, | • |). 
Then (X, jt) is isometric to F, and 

F**^(F1)1 ={(x**,T**x**)\x**e X**} a E** ^ (X**,\\-\\) 0 c o(y**, | - | ) . 

This implies the formula for the second dual norm of (X, jt). 
As a consequence we obtain two theorems on the existence of equivalent rotund 

or smooth norms with a non-stable extreme or smooth point. 

Theorem 1.2. Let Xbea Banach space that admits a rotund norm. Suppose that 
there exist a Banach space Y and a one-to-one bounded linear operator 
T: X -* y such that T(X) admits an equivalent rotund norm and T** is not 
one-to-one. Then there exists an equivalent norm % on X such that 

(i) (X, Jt) is rotund, 
(ii) BiXfJl) contains a non-stable extreme point, 

(Hi) (X*, Jt) is not smooth. 

Proof. Let || • || and | • | be rotund norms on X and T(X), respectively. It is 
a well-known fact that | • | can be extended to an equivalent norm on Y (for 
example, it is possible to extend the norm to T(X) by continuity and then proceed 
as in Lemma 2.1). Take any nonzero XQ e X. It is possible to assume that 
||;t01| < |7jt0| = 1 (consider suitable multiples of the norms). Define jt as in 
Proposition 1.1. Then jt is rotund by (b). By (d) and (a), XQ is not an extreme point 
in BXn). Let u**, v** e B(X*%n) be such that J^ e (u**, v**). Consider any 
x* 6 J(x0) where J is the duality mapping of (X, Jt). Then XQ e J(x*) implies 
[«**, v**] c J(x*); consequently (X*, jt) is not smooth at x*. 

Theorem 1.3. Let X be a Banach space that admits an equivalent norm whose 
dual is rotund Suppose that there exist a Banach space Y with Y* rotund and 
a one-to-one weak* continuous linear operator T: X* -* Y* such that T** is 
not one-to-one. Then there exists an equivalent norm Jt on X such that 

(i) (X, Jt) is smooth, 
(ii) (X*, Jt) is rotund, 

(Hi) B(XtJl) contains a non-stable smooth point, 
(iv) B(X.tn) contains a non-stable extreme point. 
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Proof. Let || • || and | • | be equivalent norms on X and Y (respectively) such that 
the duals are rotund. Taking suitable multiples of the norms, it is possible to 
suppose that A - - {x* e X* \ \\x*\\ < \Tx*\] ¥> 0. The formula 

n(x*)'>~mzz{\\x*\\,\Tx*\) 

defines an equivalent dual rotund norm on X* by Proposition 1.1. Hence its 
predual norm on X is smooth (cf. [1]). By the Bishop-Phelps theorem (cf. [6]), 
there exists JKJ G A n S(X.>JT) which attains its p-norm at some XQ e S(XtJl). By 
Proposition 1.1 (d), (a), the point i j is not an extreme point of B(X...n). As in the 
proof of Theorem 1.2, Bx..tJl) is not smooth at the point XQ e /(**,). 

Proposition 1.4. Any nonreflexive WCG Banach space X satisfies the assumpti
ons of the theorems 1.2 and 1.3. 

Proof. 1. By the Eberlein-Smulian theorem, X contains a nonreflexive separable 
subspace. By a property of WCG spaces (cf. [1], p. 149, Theorem 3; or [5], 
Theorem 2.1) the subspace is contained in another separable subspace Z which is 
complemented in X. Clearly, Z is nonreflexive. Choose an arbitrary _̂ * e z** \£. 
It is easy to see that there exists a sequence {z*.} c Z* which is total on Z and 
such that (fn, z*,*) — 0 and ||z*.|| — 2~n for all n (use the w*-density of ker(Zo*) 
in Z* and the existence of a dense countable subset of Z). Let Q c X be a closed 
linear subspace with X — Z © Q. Consider Q equipped with an equivalent 
rotund norm; such a norm exists since Q is a subspace of a WCG space (cf. [1]). 
Put y = 4 0 2 Q and define T: X - Y by T(z, q) - ({(z, z X - i , q). Then 
y is rotund and .T is a one-to-one bounded linear operator. The second adjoint 

T**:X** = Z** 0 Q** - y** • 4 © Q** 

is given by T**(z**, q**) — ({(z*., z**)}*.!, q**). It is not one-to-one since 
T**(z?,0) = (0,0). 

2. If Z is WCG, there exist a reflexive Banach space Y and a bounded linear 
operator 5: Y - AT such that S(Y) - _Y. Then the operator 7 — 5*: AT* -
-* y* is one-to-one and weak* continuous. Moreover, its second adjoint 
T**: X*** - y*** - y* is zero on jf1. Indeed, for any **** e jf1 and 
, e y we have 

(T**x***, y) = (x***, T*y) - <̂ ***, 5* V) - (x***, <Ty) - 0 . 

Thus T is not one-to-one if AT is not reflexive. To complete the proof it is sufficient 
to observe that X and Y admit equivalent norms whose duals are rotund (cf. [1]). 

It follows from Proposition 1.4 that the conditions (i), (iv), (v), (vi) from 
Theorem 0.1 are equivalent. Indeed, if X is a nonreflexive WCG Banach space, 
Theorem 1.2 (Theorem 1.3, respectively) implies that X does not satisfy any of the 
conditions (iv) and (vii) ((v) and (vi), resp.) from Theorem 0.1 It is obvious that 
if X is reflexive, all conditions from Theorem 0.1 are satisfied. 
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Problem 1.5. 
(a) Does any nonreflexive rotund Banach space X satisfy the assumptions of 

Theorem 1.2? 
(p) Does any nonreflexive Banach space X with X* rotund satisfy the assumpti

ons of Theorem 1.3? 
An affirmative answer to (a) or (p) would imply that the condition "X is 
WCG" in Theorem 0.1 (iv), (vii) or Theorem 0.1 (v), (vi) (respectively) can 
be replaced by a condition on the existence of an equivalent rotund norm on 
X or dual rotund norm on X* (respectively). 

2. Stable extreme points 

The aim of this section is to prove that the condition that for any equivalent 
renorming all extreme points of the unit ball are stable extreme points, is equiva
lent to the reflexiyity of the space in question. Main tools are results of the .first 
section and the following extension lemma. The construction of the required 
equivalent norm in the proof of Lemma 2.1 is geometrically obvious. 

Lemma 2.1. Let Z be a closed linear subspace of a Banach space (X, \\ • ||). Let 
| • | be an equivalent rotund norm on Z. Then \ • | can be extended to an equivalent 
norm on X such that each point of S^ZtV^ is an extreme point of B^Xty\y 

Proof. Denote B = B^yyy &Z "• B(z,\-\y Without any loss of generality it is 
possible to suppose that IB n Z c Bz. Put 

K= co (B v Bz), K= co(2B u Bz). 

It is elementary to see that K, K are symmetric closed convex bodies with 

K n Z = K n Z = B z. 

Thus K is the unit ball of an equivalent norm on X that extends | • |. 
It remains to show that any point z € S^.^ is an extreme point of K. Suppose 

not, i.e. there exist x, y e K such that z e (x, y). Observe that x, y cannot both 
belong to Z since Bz is rotund. Then necessarily x, y both belong to K \ Z. The 
point z is a boundary point of K, hence there exist u* € S(XA.^ that supports K at 
z. Then u* supports K at z, and hence at x and at y, too. Therefore 

s : = (x, u*) = (y, u*) = (z, u*) = sup (K, u*) = sup (K, u*) 

^ sup(2B, w*) = 2 

By the Hahn-Banach theorem there exists v* e Z1 such that ||v*|| = 1 and 
(x, v*) > 0. By the definition of K there exist nonnegative numbers Xn, fin and 
points zn e Bz, bn* B such that 

K + Mn ™ 1 f°r all n, and Â z,, + //nbn - * . 
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Then v : = (JC, V*) — hm(Xnzn + finbn, v*) — lim ^,.(6,., v*) .2 liminf jun. But 
this, together with 1 — s .§ — 1, implies 

5 - <*, w*> - lim (Xn(zn, u*) + jun(bn, u*)) 

^ lim inf (Ans + jun) — lim inf (s + (1 — s)jun) 

^ lim inf (s — jun) .5 s — lim inf fin 

£ s — v < s, 

a contradiction. 
Theorem 2.2. Let X be a nonreflexive Banach space, XQ e A^O}. Then there 

exists an equivalent norm n on X such that XQ is a non-stable extreme point of 
B(X,n)-

Proof. Choose a nonreflexive separable subspace Z of X such that XQ£ Z. By 
Propositon 1.4 and Theorem 1.2 (and its proof), there exists an equivalent rotund 
norm jt on Z such that XQ is a non-stable extreme point of -9(Z>3X). By Lemma 2.1, 
there exists an extension of Jt to an equivalent norm on X such that XQ is an extreme 
point of B(Xn). Clearly, x0 is not an extreme point of B(X..n) since it is not an 
extreme point of -3(Z..)3t). 

As a direct consequence of Theorem 2.2 we obtain the equivalence of (i) and 
(ii) in Theorem 0.1. 

Problem 2.3. Let Z be a (separable) subspace of a rotund Banach space X. Let 
| • | be an equivalent rotund norm on Z. Does there exist an equivalent rotund norm 
on X that extends | • |? (If so, it would be possible to replace the words "AT is WCG" 
in Theorem 0.1 (iv), (vii) by "X has an equivalent rotund norm"; with the same 
proof as that of Theorem 2.2.) 

3 . Stable smooth po ints 

The situation of smooth points is different from that of extreme points. We shall 
prove that the condition that for any equivalent renorming all smooth points are 
stable smooth points, is satisfied if and only if the space is a Grothendieck space. 

Definition 3.1. A Banach space X is called a Grothendieck space if the weak* 
and weak convergence of sequences in X* are the same. 

Each reflexive space is obviously a Grothendieck space. For example {„ is 
a Grothendieck space (cf. [2], p. 103, Theorem 15). It is easy to see that a Grothen
dieck space is reflexive if and only if its dual unit ball is sequentially weak* 
compact. (This condition is satisfied e.g. for Banach spaces that admit an equiva
lent smooth norm, [4].) 
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Remark 3.2. It is elementary to see that the direct sum of two Grothendieck 
spaces is again a Grothendieck space. Consequently, a Banach space is a Grothen
dieck space if the weak* and weak convergence coincide for sequences contained 
in a given weak* closed hyperplane in the dual. 

Theorem 3.3. A Banach space X is a Grothendieck space if and only if for each 
equivalent norm n on X each smooth point of(X, ri) is stable. 

Proof, a) Let x e Sx be a smooth point which is not stable. There exist 
x* e J(x) and x*** e J(x) such that x*** ¥> x*. Choose y** e X** and pe R 
such that (y**, x***) < p < (x*, y**). The weak* density of Bx. in Bx*.. implies 
that for any positive integer n there exist z*. e Bx. such that (fn, y**) < p and 
(x, z*} > ~ . Then for any weak* limit point z* of {z*.} we have (x, z*) =* 1, in 
other words z*e J(x) — {x*}. Consequently z*. ^ x*. But {z*,} cannot converge 
weakly to x* since <JC* — z*, >>**) > (x, y**) — p for all n. 
b) Choose arbitrary x e Sx, x* e /(*). Suppose Z is not a Grothendieck space. 
By Remark 3.2, there exists a sequence {y*} e A"* such that (x, >£) = 0 for 
all «, y* -* 0 and {>£} is not weafc-null. Choose numbers 0 < OQ < ax < a2 < 
< ... < 1 so that an - 1. Put M - supjyjJl and x* - *„(** + y*.)(n * *)• 
Then {x*} converges weak* but not weakly to x*, and (x, .**.) -» #„. 
Define 

Then K is the unit ball of an equivalent dual norm n; on X*, and OQBX. C K C 

c (1 + M)BX.. Moreover jt(;t) •- n(x*) = 1 since x* e K, sup<x, K) ^ 1 
and <JC, A:*) = 1. 

Claim: n is smooth at JC. To prove this, it suffices to show the implication 

[z*eK,(x,z*) = 1] =* z* = x*. 

Suppose, on the contrary, that there is z* K\{:t*} with (x, z*) = 1. There exist 
a vector v e 5^and real numbers/?, q such that <v, z*) < p < q < (v, x*). Since 
or* is the weak* limit of {**}, there exists an index n^ such that q < (v, JC*} 
whenever n > n0. For simplicity denote 

c = co K B * . u {-x*} u {-*;}**! u {**},. ̂ j , 

Then we have 

sup <x, O - a m, inf (v, D)) ^ q, 

C- DC2KC 2(1 + M)BX., co(CvD)-K. 
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Hence for any positive integer n there exists ?n*co(Cv D) such that 
(v, z*) < p and (x, z*) > an. It is possible to write fn = Xnc*n + (1 — Xn) d*n 

where 0 £ A„ :£ 1, c*n* C, cfnz D. Let us compute 

an < (x, z*n) £ Xn sup (x, O + (1 - Xn) sup <j, K) -

- A^^ + (1 - An) - Xn(am - 1) + 1. 

Consequently 0 ;S A„ < jz^t which implies A„ -* 0. Take m so big that 
q - 2(1 + A/)Am > p. Thenwe have 

(v, z*J - Am<i;, O + (1 - Xm)(v, d*m) * (v, d*m) - Xm\(v, c*m - <C>| 

*q-2(l + M)Xm>p>(v,z*n), 

a contradiction. We have proved the Claim. 
We know that {£} does not converge to x* in the weak topology on X*, hence 
{*£} does not converge to x* in the weak* topology on X***. Thus there exists 
a weak* limit point x* * * of the sequence {j?n}, diferent from x*. Then x* * * belongs 
to the weak* closure of & c X***, i.e. to the third dual unit ball of our new 
equivalent norm. Consequently {x***, x*} c J(x) since (x, ****) = 1. This 
implies that x is not a smooth point in the second dual. 

Theorem 3.3 completes the proof of Theorem 0.1. 

4. Appendix 

We present a simple proof that some properties are always stable. These results 
are not original. The stability of Frechet-smooth points is implicitely contained in 
Smulian's work [8], p. 549, A and B. The stability of LUR points was proved in 
[9] in a different way. 

Definition 4.1. Let .AT be a Banach space, x e Sx, x* e Sx. 
(a) x is called a. LUR point if yn — x whenever \\yn\\ ^ 1 and ll1^!! — 1. 
(b) x is strongly exposed by x* if x* e J(x) and diam {y e Bx \ (y, x*) > 

> 1 — 6} -* 0 as d -* 0+. (If this is true, we say that x is a strongly exposed 
point of Bx and that Bx is strongly exposed by x*.) 

(c) x is a Frichet-smooth point if the norm of X is Frechet differentiate at x. 

Observation 4.2. 
(a) The definition of a LUR point can be written equivalently in the following 

ways: 

Vt>0^b>0[yzBx,\\x+y\\ > 2(1 - <5) => \\x - y\\ Ik a]', 

Ve > 0 36 > 0BX n [X\B(-x, 2 - 2 6)] C B(*, e) , 

Ve > 0 3(5 > OB* c B ( - * , 2 - 26) u B(x, e ) . 
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(p) For any two subsets A, B of a topological space we have A u B = A u .8, 
and .4 n S c "AT^~B if .4 is open. 

Lemma 4.3. Let X be a Banach space, x, z e X, x* e AT*, 6 > 0, £ > 0. Then 
(i) Bx C £(z, d) u £(*, C) impto 5 *.. c 5(f, <5) u £(*, £), 

r«>) diam {y e 5 ^ | (y, **) > 1 - 6} = diam ( ; **eB *.• | (x\ y**) > 1 - <5}. 

Proof. (%) -9*- - W* c B(z, (5) u B(x, e) w* = S(£, d) u 5( i , f) by Ob
servation 4.2(/7). 
r«; Denote 4 - - {y e * | (y, x*) > 1 - <J}, A : = {/" e *** | <**, }>**> > 
> 1 — d}. The inequality diam (A n S^) ^ diam (A* n B^..) is obvious. To 
show the opposite inequality, it is sufficient to note that 

diam (A* n Bx~) = diam (A* n 5^M/*) 

^ diam (.4, n Bx
w*) - diam (.4 n £*) 

by Observation 4.2 (/J). 

Corollary 4.4.The LUR points, the strongly exposed points, and the Frichet-
-smooth points are always stable. 

Proof. The stability of the LUR points and the strongly extreme points follows 
directly from Lemma 4.3 and Observation 4.2 (a). By the well-known Smulian's 
test of Frechet smoothness [7], x is a Frechet smooth point if and only if Bx* is 
strongly exposed by x. Then, by Lemma 4.3 (ii), Bx... is strongly exposed by x. 
Consequently, x is a Frechet-smooth point by Smulian's test. 

The reader will be able to prove in the same simple way that also other properties 
that can be defined by balls or slices (e.g. denting points), are stable in any Banach 
space. 
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