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1. A subset T c [0, 1]M + 1, 
n 

T:= {t={t0,..., tn): X t /= 1, ti = 0} 
i = 0 

is said to be the standard n-dimensional simplex. Let D = [d0, ..., dn~\ be 
n-dimensional simplex spanned by the vertices d0, ..., dneR!\ 

D:={xeRn:x= f > 4 £ t , = U , = 0} 
i =0 /=o 

where tt: D -» D means that the i-th barycentric coordinate function. 
Denote by D, := [d0, ..., dh ..., dn\ the i-th (n — l)-dimensional face 

Dt:= {xeD:t(x) = 0} 

For each point x e Rn+l, x = (x0, ..., xw), let us put 

\x\= z w 
i = 0 

The purpose of our paper is to discuss some consequences of the following lemma 
which is equivalent to the Brouwer fixed point theorem. 

Lemma 1. Let f: D -> [0, co)n + \ f = (f0,..., fn), be a continuous map such that 

(1) f{D) = {0} for each i = 0, ..., n. 

Then for each point teT, there is a point xeD such that 

(2) f{x) = \f{x)\-t. 

*) Instytut Matematyki, Uniwersytet Sláski, 40 007 Katowice, Poland 
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Proof. If there is a point xeD such that f(x) = (0,..., 0) then the lemma holds. 
Thus, without loss of generality, we may assume that 

(3) f(x) 4= (0, ..., 0) for each xeD 

Define a continuous map g : D -> D, 

w *»=-,?.$,•« 
According to the assumption (1) the map g has the following property 

(5) g(D) cz Di for each i = 0, ..., n 

To prove the lemma it suffices to show the map is "onto". The proof of this fact 
is easy when we use arguments from the degree theory (see Deimling [2]). Indeed, 
define a map h: D x [0, 1] -> D, 

(6) h(x, t) := (1 - t) - x + t • g(x) 

From (5) it follows that for each x e £>, and t e [0, 1] 

(7) h(x,t)eDi. 

From (6) and (7) we infer that for any a e Int D, 

deg (g, D, a) = deg (Id, D, a) = 1 

and this implies that a e g(D), for each a e Int D. But this is equivalent to g(D) = D. 
2. For any point xeRn and a set A cz Rn let d(x, A) means the distance between 

the point x and the set A, 

d(x, A) := inf {||x — a\\ : a e A} 

From the lemma we get the following 

Corollary. (Equilibrium Theorem). Let be given sets A0,..., An cz Rn such that 
D( cz Aifor each i = 0, ..., n. Then there exists a point xeD such that 

d(x, A0) = ... = d(x, An) 

Proof. Let us define f: D -» [0, oo) 

f{x):= d(x, A), i = 0, ..., n 

Each of the mapsf satisfies the assumption (1) and according to the Lemma 1 for 

the point t = ( - , . . . , ) there is a point xeD such that f(x) = \f(x)\ • t, 

but this implies that 

d(x, A0) = ... = d(x, An). 
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3. Let p(A) means the n-dimensional Lebesgue measure of the set A a Rn. For 
any point x e D let us denote 

D(x) := [d0j •••, di_u x, di+l, ..., d„] 

the convex hull of the set {do, ... d,_i, x, dI + 1, ..., dn}. 
Corollary. (Sandwich Theorem). Let A cz D be a measurable set. Then for any 

point teT there exists a point xeD such that for each i = 0, ..., n 

(8) ti[AnDl(x)] = ti'p(A) 

Proof. Define a continuous map / : D -> [0, oo)n + 1, / = (f0, ..., /), 

fix) := p[A n D(x)~\ i = 0, ..., n 

It is clear that for each xeD 

(9) IA>)| = 44) 

According to the lemma 1 for each point teT there is a point xeD such that 
f(x) = \f(x)\ • t. But from (9) we get that for each i = 0, ..., n, f(x) = p(A) • tt. 

For a given set 4 c K " and a point x e Rn let 

A — x := [a — x : a e A] 

means a translation of the set A. 

Assume that P := [p0, ..., pn~\ is an n-dimensional simplex such that OelntP . 
Let for each i = 0,..., M, be the cone consisting of the union of all the rays joining 
0 to the points of (n — l)-dimensional face P, := [p0, ..., ph ..., pn~\. 

Corollary. (Kuratowski-Steinhaus Theorem). Let A cz Rn be a bounded Lebes
gue measurable set. Then for each point teT there exist a point x e Rn such that 
for each i = 0, ..., n 

/ i [ ( . 4 - x ) n M , ] = 11(A)-tt 

Proof. Since the set A is bounded there exist a number s > 0 such that for the 
simplex D := \d0, ..., dn~], where d, = s • p. for each i = 0, ..., n, the following 
conditions hold 

(10) Acz D 

and for each i = 0, ..., n and for each point x e D{ 

(11) (A -x)nMi = Q 

Define a continuous map / : D -* [0, oo)n + 1, / = (f0, ..., /) , 

(12) f(x) := p[(A — x) n M,] for each 1 = 0, ..., n 
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From (10) and (11) it follows that for each xeD 
(13) |f(x)| = ti{A) 

and for each i = 0, ..., n 

(14) ftp) = {0}. 

Then for a given point t e T w e obtain a point xeD such that 

f(x) = n(A)' t 

And this means that for each i = 0, ..., n 

fi[(A- x)nM^ = ii(A)-ti. 

4. In this part we shall consider some result related to the Urbanik paper [4]. 

Lemma 2. Let g : [0, 1] x [0, 1] -> [0, oo) be a continuous function with the 
following properties 

(15) g(u,u) = 0 

(16) g(u, v) and g(v, w) = 0 implies g(u, w) = 0 

(17) g(0, 1) > 0 . 

Then for each natural number n > 0 there exist a real number d > 0 and a sequence 

(18) 0 = u0 < ... < un < un + l = 1 

such that for each i = 0, ..., n 

(19) g(uh ui+l) = d. 

Proof. Let us define a continuous functions ux;: D -> [0, 1] for i = 0,..., n -F 1. 

(20) u0(x) = 0, u{x) = t0(x) + ... + ti_l(x) 

and functions f: D -* [0, oo) for f = 0, ..., n 

(21) f(x) = g[u(x), ui+l(x)]. 

Observe that if x e Dt then t{x) = 0 and in consequence u(x) = ui+l(x) and now, 
from (15) we infer that f(x) = 0. 
From the Lemma 1 it follows that there is a point xeD such that 

(22) /o(x) = ... = / „ ( * ) . 

Let us put for each i = 0, ..., n 

(23) g ut = u{x) and (i = f(x). 

From (22) and (23) we infer that for each i = 0, ..., n 

(24) d = g(uh ui + l). 
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We show that d > 0. Suppose that d = 0. Then according to (16) we get 

(25) g(uo, u{) = ... = g(un, un+1) = 0 . 

And this implies that g(0, 1) = 0, a contradiction to (17). 

Corollary. (Urbanik) Let f: [0, 1] -» X be a continuous map into a metric 
space (X, d) such that /(0) =# /( l) . 
Then for each natural number n > 0 there exist a real number d > 0 and a sequence 

0 = u0 < Ui < ... < un < un + i = 1 

such that for each i = 0, ..., n 

d = d[f(u),f(ui+i]\. 

Proof. Indeed, the function 

(26) g(u,v):=d[f(u),f(vj] 

satisfies the conditions (15) —(17) of the Lemma 2. 

Corollary. Let f: S -> [0, oo) be a continuous function defined on a triangle 
S := AABC such that 

(27) f(x) = 0 iff x e side AB . 

Then for each natural number n > 1 there exists a sequence of points belonging 
to the side AB, 

A = P0<Pl<... <Pn<Pn+i = B 

such that 

f(Q0) = - = f(Qn) 

where the points QQ, ..., Qn e S are vertices of the triangles A-P.Q.-P/+b i = 0, ..., 
n which are similar to the triangle S. 

Proof. Consider a coordinate system such that the side AB is contained in the 
diagonal and A = (0,0) and the product [0,1] x [0,1] is equal to the parallelogram 
ABCD. Now, extend the function / to a continuous function g defining 

g(u, v) = f(u, v) if u _̂  v, and g(u, v) = f(v, u) if v ^ u. 

According to the Lemma 2 there exist a real number d > 0 and a sequence 
0 = u0 < ui < ... < un< un + l = 1 such that d = g(uh ui+l) for each 
/ = 0, ..., n. Now , the Corollary becomes obvious when put Qi:= (uh ui+l) for 
i = 0, ..., n. 
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