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Our aim is to give a direct topological proof of the fact that phase space of a minimal dynamical 
system with co-bounded group is coabsolute to a Cantor cube. 

A dynamical system is a triple (G, X, n) where G is a topological group, X is 
a topological space and n is a continuous action on X, that is, n: G x X -» X is 
a continuous map such that: 

(1) 7i(l, x) = x for each x e X (as usual 1 is the neutral element of G) 
(2) n(gh, x) = n(g, n(h, x)) for each g, heG and each xeX. 

If (G, X, n) is a dynamical system then the space X is called a phase space of the 
system (G, X, n). We use following notations n9 and nx for homeomorphisms 
n : X -> X and continuous maps nx:G -+ X defined in the following way 
n9(x) := n(g, x) =: nx(g). Our considerations will be confined only to dynamical 
systems with compact Hausdorff phase space. 

Let (G, X n) and (G, Y, Q) be dynamical systems and let cp : X -> Y be a continuous 
map. If cp on9 = Q9 o (p for any geG then cp is called a homomorphism of the 
system (G, X, n) into the system (G, Y, Q). If in addition cp is a homeomorphism 
(surjection) of spaces then cp is called an isomorphism (epimorphism) of dynamical 
systems. 

A dynamical system (G, X, n) is called minimal if there is no proper closed 
non-empty set F ^ X such that Tĉ F) £ F for each geG. The system (G, X, n) 
is minimal iff the orbit 7cx(G) is dense in X for each xe X and iff for each non-empty 

open set U £ X there are g{, ..., gne G such that TT^C/) U ... u n9"(U) = X. 
A topological group is co-bounded if for any open neighbourhood 7of the identity 

element there is a countable set F £ G such that G = FV. 
Topological spaces are called coabsolute if their Boolean algebras of regular 

open subsets are isomorphic. 

*) Instytut Matematyki, Uniwersytet Šlaski, 40 007 Katowice, Poland 
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It was proved by Balcar and Blaszczyk [1] that if (G, X, n) is a minimal dynamical 
system and G is a discrete, countable group then X is coabsolute to a Cantor cube 
D\ where co ^ T = 2°. Bandlow in [2] has shown the following generalization of 
the above result: 

Theorem 1 (Bandlow). If (G, X, n) is a minimal dynamical system and G is 
co-bounded then X is coabsolute to a Cantor cube Dx for some cardinal z. 

Bandlow proved this theorem using so-called elementary substructures. We will 
give a direct topological proof of this fact. Our proof is based on the considerations 
contained in a paper of Uspenskii [8]. But before we analyze the proof, I would 
like to add some additional facts crucial to my point. 

A map / : X -* Y is skeletal if int f(U) =t= 0 for any non-empty open set U g X. 

Lemma. If cp is an epimorphism of a minimal dynamical system (G, X, n) onto 
a system (G, Y, Q) then cp is a skeletal map. 

Proof. Let U be a non-empty open subset of X. Let us choose a non-empty 
open set Vso that cl V ^ U. Since (G, X, n) is minimal, then there exist gl9 ..., 

gn from G such that ngi(V) u ... u ng"(V) = X. Thus 

Y = cp(X) = cp(ngi(V) u ... u 7r«"(V)) = Qgi(cp(V)) u ... u Qg"(cp)V)). 

Hence 0 4= int cl cp(V) g int cp(U). • 

A map / : X -> Y has a countable weight if f can be factorized in the following 
way: 

YxM 

X 
f 

where j is an embedding, p is a projection on the first factor and M is a compact 
metric space. 

A space X is called Dugundji if for any closed subset F of the Cantor cube Dx 

and for any continuous map f: F -> X there exists continuous map f: Dx -+ X such 
that f {F = f. Clearly all Dugundji spaces are dyadic. We shall use the following 
theorems of Shapiro (see [5] and [6]). 

Theorem 2 (Shapiro). A compact space X is coabsulate to a Dugundji space 
iffX = lim \Xa, pfcoc < ft < K} where {Xa, p

p
a; a < jS < x) is spectrum of compact 

Hausdorff spaces of length x such that: 

a) |X0| = 1 
b) Xx = lim {Xa, pi; a < fi < X}for each limit ordinal I < K 
c) all projections pi are skeletal 
d) pa

+1 has countable weight for each a < K. 
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A space is homogenous with respect to weight (n-weight) if the weight (resp. 
n-weight) of any non-empty open subset equals the weight (7c-weight) of the whole 
space. 

Theorem 3 (Shapiro). A dyadic space homogenous with respect to weight is 
coabsolute to the Cantor cube Dr for some cardinal T. 

Proof of the Bandlow's Theorem. Let 01 be a family of all equivalence relations 
on X, closed in X x X and invariant with respect to family of maps {rf x n9 : g e G}. 
The family 0t has the following properties: 

(1) X/R is compact Hausorff space for any Re01 
(2) 01 is closed under intersection 
(3) Group G acts continuously on X/R for each Re 01 in the following way: 

*(& H*) = K& *)]* 
Of course, the quotient map qR: X -* X/R is an epimorphism of the system (G, 
Xy n) onto (G, X/R, n) for each Re 01. Thus by Lemma map qR is skeletal for 
each R e St. 

Let 5?m be subfamily of 01 consisting of all relations R such that X/R is metrizable. 
Let 0lm = fa :OC < K} for some cardinal K. We define a new sequence of relations 
{Qa • a < K} where Qa = n {fy: /? < a} and a sequence of compact spaces 
{Xa: a < K} where Xa = X/Qa. Let ga: X -» X/Qa be the quotient map. The 
natural projection q^:Xp -» Xa, a < /?, are skeletal because each ga is skeletal. 
Moreover qa

+l has countable weight. Indeed, if M = X/Ra and 7"([x]«+i):== 

([x]a, [X]KJ then j is embedding and the following diagram commutes 

XnxM 

-^-a+i —T^" -^a 

It is known that if G is co-bounded group and acts on X then for any continuous 
function f:X-*M then set {/ o nff: g e G} is separable subspace of space of 
continuous functions C(X) with topology of uniform convergence, see [8]. Thus, 
if for x, y e X, x # y we find continuous function f e C(X) such that f(x) #= f(y) 
and define Rf = {(x, y j e l x l : / M * ) ) = f{*?{y)) ^r each ^ e G} then JR7- e » 
and -X/i?y is metrizable. Indeed X/Rf can be embedded in the product 
f|{h(AT): h e A}9 where A is dense, countable subset of {/ o ng : g e G}. 

So, we have shown that X is homeomorphic to the lim {Xa, q% a < j8 < K} and 
by Theorem 2 AT is coabsolute to some Dugundji space Y. It follows from minimality 
of our system that space X is homogeneous with respect to 7t-weight. One can 
easily show that spaces have the same 7t-weight whenever they are coabsolute. So, 
y is also homogeneous with respect to 7r-weight. On the other hand, in dyadic 
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spaces weight and 7i-weight coincide. Thus space Y is homogeneous with respect 
to weight. The second theorem of Shapiro implies that X is coabsolute to Cantor 
cube. The proof is complete. • 

A minimal dynamical system (G, X, n) is called universal minimal dynamical 
system for a group G if for each minimal dynamical system (G, 7, Q) there exists 
a homomorphism cp : (G, X, n) -» (G, Y, g). This is known that for every topological 
group G there is a universal minimal dynamical system which is unique up to 
isomorphisms, see e.g. [9, IV.3.17, IV.4.43.3]. Let M(G) denotes the phase space 
of the universal minimal dynamical system for a group G. 

With aid of Bandlow's Theorem, we can prove the following: 

Corollary. The phase space of the universal minimal dynamical system for the 
group of real numbers with usual topology is coabsolute to the Cantor cube D2<a. 

Proof. Let 6IR denotes Bohr compactification of the group of real numbers IR. 
Since any topological group acts on its Bohr compactification in minimal way then 
there is a homomorphism cp: M(IR) -> blR of the universal minimal dynamical 
system into the minimal system with the phase space 6IR. In fact, homomorphism 
cp is epimorphism, then by Lemma cp is skeletal. Thus nw(bU) ^ nw(M(U)). It is 
known that for topological groups 7c-weight and weight are equal (c.f. [3, 3.6(ii)]) 
and weight of Bohr compactification of locally compact Abelian group G equals 
power of group of characters (?, see [4, Chap. VI] for details, In our case, group 
of characters of IR is topologically isomorphic to IR. Hence 

nw(bU) = w(bU) = T. 

On the other hand 7cw(M(lR)) ^ w(M(P)) ^ 2(°, because M(U) is separable. So, 
Theorem 1 implies that M(lR) is coabsolute to the Cantor cube D2<°. • 

Remark. Let us note that if we consider the group Ud of real numbers with 
discrete topology, then 7i-weight of M(Rd) equals 22<\ see [7]. Thus, in this case 
M(Ud) has not to be coabsolute to the cube D2"\ Therefore the structure of M(G) 
strongly depends on the topology of the group. 
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