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The Wiener Transformation on the Limits 
of Symmetric Spaces 
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By analogy with the known constructions of the spaces Mp, Jip and Vp
% f'p which are generated by 

the space IT, for symmetric function spaces E on a segment and F on the real line we construct the 
corresponding "limit" spaces M£, JiE and spaces Vt, f\ of bounded F-variation. We prove that VFy VF 

are complete and investigate the action of the Wiener transformation between the spaces ME and VF. In 
particular, we give conditions under which this operator is bounded, injective and non-strictly singular. 

For a complex valued Borel measurable function x(t) on U such that 

lim - ^ I \x(tf dt 
T-oc 2T J_T

 w 

exists, N. Wiener [19] defined the integrated Fourier transformation y = Wx of x as 

1 /f"1 f^ e""f 1 f1 e"/sf — 1 

W y{8) " ?™2-n{L+\jX{t)—tdt + 2-nl^^Jrdt 

We call W the Wiener transformation. N. Wiener has proved that the mean square 
modulus of the above function x{t) equals quadratic variation of its transformation 
y{s), i.e. 

(2) lim ±= f |x(t)|2 dt = lim ^ f * |><s + s) - y{s - ef ds. 
r - x 2 i J_T c-+oze J _ a 

But the sets of functions for which the limits in (2) exist do not form linear spaces. 
Therefore the following linear spaces have been introduced 

J/" - jx: ||.4„, = Hm (± J \x{t)r dt) ' < ooj-, 

M" = jx: ||x||M„ = sup ( ^ J |x(ř)P dí)' 
\i/p 

< oo>, 

*) Institute of Applied Problems of Mechanics and Mathematics, Ukrainian Academy of Sciences, 
Nauková 3B, 290601 L'viv, Ukraine 
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^ = {_v: ll_v|l,* = fHm ( ^ J * M + e) - >>(/ - £)|"dt) " < cx>}, 

*" = \y: llj'IU = sup ( 1 J " |>>(/ + s) - y(t - 8)|" d t j " < a> 

where x(t), >>(t) are measurable functions, 1 < p < oo; and the Wiener transforma
tion acts between these spaces naturally. Marcinkiewicz [13] and independently 
Bohr and F0lner [1] showed that the space J/p is complete. Banach properties of 
the spaces J4P and Mp have been studied in detail (see, [4], [9], [10]). The structure 
of the spaces ifp and Vp has turned out to be more complicated and now we do 
not know much about it except for the case p = 2. Completeness of the space irp 

has been proved with the help of the theory of helixes in [10]. We do not know 
whether the proof of completeness of the space Vl\ p =f= 2 was published anywhere, 
but as it will be seen below its idea is like the proof for the space Vp. In [10, 3] 
it has been shown that the Wiener transformation is an isomorphism between J{2 

and Y"1 and between M2 and V2 and also is a bounded operator from Jlp into ^<7, 
1 < p < 2, \/p + \/p = 1. The predual space to V2 is described in [3]. Injectivity 
of the Wiener transformation from Mp into Vq follows from results of the papers 
[10, 2], but its injectivity from Jlp into irq is unknown [11]. 

By analogy with the known construction of the spaces Mp and J/p, which are 
generated by the space L?\_— 1,1], in the paper [6] for every symmetric function 
space £ on a segment, we construct the corresponding "limit" spaces ME and 
JtE on the real line and investigate some of their Banach properties. These 
investigations has been continued in [8]. We recall some definitions from [6]. 

Let (Q, X, \x) be a measure space with a positive measure \i. A Banach space 
E of (classes of) measurable functions on Q will be called symmetric if: 

1. y e E and |x(co)| < |y(co)| for almost all co e Q imply xeE and ||.x|| < | | j/ | | ; 
2. yeE and dw(f) = dlyl(t) for all t > 0 imply xeE and ||x|| = ||y||, where 

dw(t) = ft{a): \x(a>)\ > t) is the distribution function of \x(co)\. 
The norm ||-|| of a symmetric space E is said to be absolutely continuous if for 

every function xeE and every decreasing sequence of measurable sets Q„ with 
empty intersection ||xyfoj| -> 0 as n -* oo, where yJln is the characteristic function 
of a subset Q„ cz Q. Note that a symmetric space with an absolutely continuous 
norm is rearrangement invariant in the sense of [12]. For a number T > 0 denote 
by \j/T the linear map of the segment [— T, T] onto [— 1, l ] and i//T(— T) = — 1, 
\I/T(T) = 1. Let £ be a symmetric space on [— 1, 1] with the normalized Lebesgue 
measure A: A([— 1,1]) = 1. Then all functions x(\j/T(t)), where x runs through £, 
form a symmetric space ET on [— T> T] with the norm ||-x(^r(*))l.r :== II*HE- Every 
function on the segment [— T, T] we identify with a function on the real line, 
defining it outside of [— T, T] by zero. Denote by ME the set of (also classes of) 
complex measurable functions x(t) on the real line for which \\X\\ME = 
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sup || x || T- < oo, and by JfE the set of (classes of also) elements of ME such that 
T.>i 
||x||^ = Urn 11*11 r < °°. In the same way, for a symmetric space F, we introduce 

T-ac 

the spaces VF and ^ of bounded F-variation and investigate the action of the Wiener 
transformation between the spaces ME and VF. In particular, we establish conditions 
under which this operator is bounded, injective and non-strictly singular. 

§1. The space VF and its completeness 

Let F be a complex symmetric space on the real line with absolutely continuous 
norm ||-||, and (p(s) = ||x[ofe]ll be its fundamental function, we may take (p(i) = 1. 
Let xe(y) = y(t + s), s e U be a translation operator and fe(y) := xey — y. Denote 
by VF the space of (classes of) measurable functions y(t) such that ||y||v> = 
sup q>~l(z) \\fi:y\\ < °°- Obviously, it is a normed space. It is easy to see that 

0<«<1 

(3) \\y\\vF < sup q>-\ty ||(T« - T_.)J>|| < 2\\y\\yF 
0<i:<\ 

for every y e VF. Thus for F = LP(U) the space VF is the same as Vp up to an 
equivalent norm. Our proof of completeness of VF is similar to the Nelson's proof 
for the space of functions of finite upper p-variation [16] and to the proof for i^p 

in [10] and is based on the theory of helixes [14, 15]. 

Definition 1. A continuous function fa on U to a Banach space X is a helix if 
there exists a strongly continuous group of isometries (Us: seU) on the closed 
linear span Hf = [/,—/,: a, b e U] c l onto itself such that Us(fh — fa) = 
fb+s —fi+s for any s, a, b. The set (Us: s e U) is called the shift group of the helix fa 

The following theorem is basic for us. 

Theorem (Masani [14]). Let fa be a helix in X with shift group (Us). Then af = 
\Q e _ s(/o — / ) ds (Bochner integral) exists and is in Hf. Moreover, for any a and b 

(4) fh ~ fa = (Uh - Ua - J UM ds) Of. 

Lemma 1. Let y eVF. Then the map fs
} = fsy is a helix in F with shift group 

(xs :seU). 

Proof, (see [10; Lemma 3.2]). Since y e VF, fy = fsy e F for every fixed s and 
by the absolute continuity of the norm cp(e) -* 0 as e -> 0, then ||fey|| ->0 as 
s -> +0. It follows that ||//+, - / / | | = ||(t,+£ - T,)y\\ = \\fey\\ -> 0 as £ -> + 0 
for any s. Hence the function fa: U -> F is continuous. By definition of fy, we 
can show that xs(fh

y — fy) = fh
y+s — fj+s for any 5, a, b. Then (T,) is a strongly 

continuous group of isometries of the helix fy. 
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Corollary 1. The averaging operator Ay = j^° e sTsy ds acts from the space VF 

into F, moreover Ay e [(TU — Th) y : a, b e R] cz F. 

Lemma 2. ||,4y|| < a\\y\\vF for any element y e VF, where oc = e(e — l)"1 < 2. 

Proof, (see [16; Lemma 4.5 (a)]. 

\\Ay\\ = I f V ^ ds < (by [5, p. 65]) 
HJo 

< re-'||f,_v|| ds = _ f" e-s||fsy|| ds < 
J o n=0vn 

(using that for se[n9n+l] we have ||f,y|| = | | ( (T , - T„) + ( T „ - Tn_{) + ... + 
(-i-l))y\\£{n+l) sup ||f,y||) 

0<<:<1 

- - Í Ě Г + e-^n + lîdsìlЫI^-Sall 
\п = 0 Jn / 

Lemma 3. For any y e VF the element Ay e VF and \\Ay — y\\Vt < \\Ay\\. 

Proof, (see [16; Lemma 4.5 (b)]). Putting x = Ay by (4) we have fey = f£x — 
JQ[/,(X) ds, that is f^y — x) = yQx(t + s) ds. Since the function <p(e) is quasiconvex 
[5, p. 70], for any ^ e (0,1) ^-^e) ||f^ - x)|| = <p-l{e) \\fQx(t + s) ds\\ < 
(p_1(e) e||x|| < ||x||. It remains to take supremum over ^ e (0,1). 

Combining Lemmas 2 and 3, we have 

Corollary 2. For any y e VF 

\\Ay\\VF < \\Ay\\ + \\y\\VF < 3\\y\\VF and \\y\\VF < \\Ay\\ + \\Ay\\VF. 

Lemma 4. (a particular case of Theorem 3.4 in [16]). Let y(t) be a complex 
valued measurable function such that for each £ £ (0, l) y(t + £) = y(t), t e U N„ 
where Ne is a Lebesgue-negligible set. Then y(t) = c a.e. for some constant c. 

Lemma 5. (see [16; Lemma 3.5]). Let y be the equivalence class of functions 
y in VF. Then y = {z: ~c e C; z(t) = y(t) + c a.e.}. 

Proof. It is sufficient to show that 0 = {z:3c:z(t) = c a.e.}. Obviously if 
z(t) = c a.e., then z e 0. Let zeO. Hence ||z||Ky, = sup (p~lfa) ||f£Z|| = 0. Thus 

0<«<1 

||f£z|| = 0 for each £ e (0, 1) and z(t + ^) = z(t) a.e. It follows from Lemma 4 that 
there exists number c that z(t) = c a.e. 

The following theorem is crucial for the proof of completeness of the space VF. 

Theorem 1. a) The averaging operator A is linear, continuous and injective 
from VF into itself and from VF into F; 

b) AVF= VFnF. 
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Proof. It follows from Corollary 1 and Lemma 3 that 

(5) AVF<~VFnF. 

By Lemma 5, Az = 0 for every z e 0. Hence A is a one-to-one operator. By 
Corollary 2 it is bounded from VF into P ,̂ and by Lemma 2 from T̂  into F. Let 
us show its injectivity. Let Az = 0. Since Az e F, using Lemma 5 we have 
(Az)(t) = 0 a.e. Thus \\Az\\ = 0. By Lemma 3 ||z||K, = \\z - AZ\\VF < \\Az\\ = 0 
and a) is proved. 

b) Let xeVFnF. In view of (5) we have only to show that there exists an 
element y e VF such that Ay = x. Since x e F, x is a locally Lebesgue integrable 
function [12, p. 118]. Let x(u) = \u

Qx(t) dt, u e U. Then for any u and e > 0 

(6) x(u + e) - x(u) = \ x(t) dt = I x(u + t) dt. 
Ju Jo 

By [5, p. 65] \\fQx{u + t) dt\\ < fQ \\x(u + t)\\ dt < e\\x\\. Hence 

||x||K| = sup q>-\e) ||f,x|| < sup ecp-\e) \\x\\ < (by [5, p. 70]) < ||x|| . 
0 < J : < 1 0 < K < 1 

Thus x e VF and y = x — x e VF. Now we will show that Ay = x. Observe that 
Lemma 4.4 from [16] is true for x, i.e. 

(7) (Ax) (u) = x(u) — I e"\x(u + s) ds a.e. 
Jo 

Then by (6) and Dirichlet's formula 

(8) (Ax) (u) = - \ e-s 11 x(u + t) dt\ ds = 

= - 1 \\ e"s ds > x(u + t) dt = - I Q-fx(u + t) dt a.e. 

Therefore, by (7) and (8), Ay = Ax — Ax = x. 

Theorem 2. The space VF is complete. 

Proof. Let [yn)f be a Cauchy sequence in VF and xn = Ayn. By Lemma 2, 
II*n - xj = \\A(yn - ym)\\ < 2\\yn - yJVi, for any n and m, so that (xn) is 
a Cauchy sequence in the space F. Since F is complete, (xn) converges in the norm 
11*11 to some element x e F. 

We will show that ||JC„ — X\\VF -* 0 as n -» oo, that is, for each 5 > 0 there 
exists a number IV such that \\xn — X\\VF < 5 as n > IV. Take the number IV such 
that \\yn - yJVF < 5/3 for n,m> IV. Then, by Corollary 2, \\xn - XJVF < 5, 
hence Vee(0, 1) we have (p~l(e) \\fj[xn — xm)|| < <5. Fixing n and passing to the 
limit as m -> oo, we obtain (p~l(e) \\fl.(xn — x)|| < 8 for every ee(0,1) i.e. 
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||.x„ — x\\Vr < 5. In particular, we have shown that x„ — x and hence x belong to 
the space VF. 

Then, by Theorem 1 b), x = Ay for some ye VF. Finally, ||>>n — y\\Vp < (by 
Corollary 2) < \\A(yn - y)\\ + \\A(yn - y)\\Vr < \\xn - x\\ + 3\\xn - JC||K^ -+ 0 
as n -> oo. The theorem is proved. 

Denote by i^F the space of (classes of) measurable functions y(t) on IR for which 

\\y\\.ri, = fim <p~l(s) \\f,y\\ < GO. 

£ - > + 0 

Put VF° = {yeVF: cp~\s) \\f,y\\ -> 0 as ^ -+ + 0 } . 

Proposition 1. 7/ze set K̂ ° is a closed linear subspace of VF. Hence Yp = VF/VF. 

Proof. The linearity of the set VF is obvious. Let us verify that it is closed. Let 
a sequence yn e VF converge to an element y e VF as n - • oo. Then 

Imi cp-\s) \\fi:y\\ < Imi cp-\s) \\fK(yn - y)\\ + Imi (p~l(s) \\f(:yn\\ < 
e->+0 f:->+0 e-*+0 

< sup (p~l(s)\\fe(yn - y)\\ - ^ 0 as n -+ oo . 
0 < £ < 1 

Then >; e VF°. 

Using Theorem 2 and Proposition 1 we have 

Corollary 3. The space i^F is complete. 

Proposition 2. The space VF is not separable. 

Proof. Let us consider a continuum power set of characteristic functions of 
half-intervals {x[a,oc) '.aeU}. We will show that for every two real numbers a, b, 
\\X(b,oo) — X(a,x)\\vF > 1. It suffices to consider the case a < b. Then 

\\Xlh,*)-X(a,x>)\\vF= SUp (p \s) \\X(a,h)(t + s) - XM)(*)||E > 
0<<:<1 

> SUp (p-\s) \\X(a->:,a)(t) ~ X(b-c, b)(t)\\F = 
t:<h — a 
0<t:<l 

since the norm of function is equal to the norm of its rearrangement and functions 
with equal modulus have equal norms, hence 

= sup (p'\s) \\X(O,2(-)\\F = sup cp-\s)(p(2s) > 1 
i-.<h — a e.<h-a 
0 < J : < 1 0 < ^ : < 1 

and the result follows. 
Let F be a symmetric space on the real line with absolutely continuous norm. 

Since A is a linear continuous and injective operator from VF into the separable 
space F (by Theorem 1), we have the following corollary. 
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Corollary 4. The dual V* is weakly* separable. Hence, VF does not contain non-
separable reflexive (and even non-separable weakly compactly generated) subspaces. 

Denote by Fhc the class of measurable functions y(t) on IR such that for each 
compact subset K of U, y%K e F. 

Corollary 5. VF c Fhc <= L)0C(U). 

Proof. Let y eVF, x = Ay and x(u) = j 0 x(t) dt. By arguments of part b) of the 
proof of Theorem 1, x — x e VF and A(x — x) = x. Then by Theorem 1 a) and 
Lemma 5 we have y(t) = x(t) — x(t) + c a.e. for some number c. By Theorem 1 b) 
x e f c Fhc. Since the function x(t) is continuous, x(t) e Fhc. Hence y(t) = 
x(t) — x(t) - f e e Fhc. The second inclusion is well known [12, p. 118]. 

§2. Boundedness of the Wiener transformation 

First let us recall some definitions and facts of the interpolation theory of linear 
operators in symmetric spaces [5]. Let E(U) be a symmetric function space on the 
real line with the norm ||-|| {. The dilation operator DTx(t) = x(t/T), T> 0, acts in 
this space and for T > 1 its norm is at most T [5, p. 131]. The lower and upper 
Boyd indices of the space £([R) are defined by 

p = lim (log F)/log | |D r | | , , q = lim (log T)/log \\DT\\{, respectively. 
T-x T-+0 

For a complex measurable function y(s) we denote by y*(s) its non-increasing 
rearrangement: y*(s) = inf {t > 0 : db,(t) < s}, 0 < s < oo [5, p. 83] and y**(s) = 
s~l )0y*(u) du, 0 < 5 < oo [5, p. 169]. Let £(0, oo) be a subspace of E(U) which 
consists of functions supported on (0, oo). Let v, p be real numbers. By £VW/(iR) 
denote the space of all functions >'(s)eL1(lR) + Lx([R) such that ||j;||£v t: = 

| |sV*V)Hi<«)-
Let us consider the ordinary Fourier transform 

1 Г30 

(ŠFx) (s) = —= x(t) e"' s ř dř 

and its interpolation in symmetric spaces. Since it is bounded as an operator from 
L!(IR) into LX(U) and from L2(IR) onto L2(IR) [18, 7.5, 7.9], for the symmetric space 
£(IR) with the Boyd indices 1 < p < (] < 2 we may apply the known Krein and 
Semyonov generalization on the Marcinkiewicz interpolation theorem [5, Theorem 
6.12, p. 196]. By formula (6.44) of the book [5, p. 195] (more precisely, by its 
equivalent formula (6.5) [5, p. 174]) we may find the symmetric space .EVt/l(IR) such 
that the Fourier transform is a bounded mapping from £(IR) into this space. Namely, 
putting p0 = q0 = 2, p, = 1, qx = oo we found p = (1/p, - l/p0)/(l/q{ - l/qQ) = 
- 1 ; v = (l/Plq0 - l/p0«i)/(l/«i - 1/qo) = - 1 (see [5, p. 195]). 
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Let us illustrate this in the case E(U) = U(R)9 1 < p < 2. Then the space EV4l(R) 
is denoted by U>P(R) and its norm is |M|L,w,(/?) = (q~2(q - 1) f* [x**(s)]p spq-lds)1 ', 
where \\p + l/q = 1 [5, p. 197]. The Fourier transform being bounded on B(R) 
into I7*(R). Remark, that the space U*(U) is included into LM(U) = D(R) [5, p. 
197]. Thus it is making the Hausdorff-Young classical theorem more precise. 

The following two lemmas will be needed for our next theorem. 

Lemma 6. The fundamental function cp(s) of the space F = E_U_{(R) satisfies 
the following condition cp(s) > s(pE(R)(s~l). 

Proof. Indeed, 

<p(s) = llx[o,,]IIE = l l r ^ E ^ r 1 ) ! ! ! = l l r 1 ^ / , , ^ ) + sz[o,i/,](')lli s. s(pE{R)(s-
x). 

Lemma 7. Let the space (E(R), || • || 2) has the lower Boyd index p > 1 and let 
E be its subspace consisting of functions supported on the segment [—1,1]. Let 
0 < 8 < 1 and h(t) be an arbitrary measurable function such that 
\h(t)\ < min(e,|t|_1) for any t. Then h(t)x(t) e E(R) for any function x e ME and 
||AXJX:||! < Kx £||-D1/I,||1||.X||A#IJ, where the constant K{ depends on p only. 

Proof. By the definition of the dilation operator 

(9) 

ll*X[-r,r]lli = \\x{TtlT)Xv_TJiTtlt)h < ||i>rlliNTOZ[-i.i](Olli = I I -MIIMIT-

Let Xo De the characteristic function of the segment [— 1/g, 1/a] and n{ be the 
first integer for which 2"1 > 1/g, let X\ be the characteristic function of the set 
{t: l/s < \t\ < 2"1}, and let #„, n < n{ be the characteristic function of 
{t: 2"_1 < \t\ < 2"}. From the definition of the Boyd index it follows that for every 
1 < p' < p there exists a constant K such that \\DT\\{ < KTX,P' for every T > 1 
(see [12, p. 133]). Then 

\\hx\\x < \\hxxo\\x + Z HfcxzJi < e||xzolli + __ 2-n\\xxn\U < 
n>n\ n>n\ 

< sll^oll. + _ 2-"||xX[2-..,2"]H. - (W (9)) 
M > / » 1 

2 " < <e||I>1/,:l|1||.x||1/t+ l 2 - | | D 2 . | | , | | x | 
n_n\ 

< U\\Dl/eh + _ 2-H.O^.II.) ||x||Mc < ([5, p.132]) 
^ n>n\ ' 

< (e||D,/.ll, + _ 2-"||í>2"JI. lUVHi) II-
^ n>H\ ' 

<(z+ X2-K(2"e)
,l",)||i),/£||,||x||JWj; 

\uK -

n>-fi\ 
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( 2'-1/"' \ 
- ( £ + Ke

2(x-w) _ J H-VHi WIM* -- K ' CIID./.IUIIJCIU-, 

where K{ = 1 + K 2l~w (2{-i~w>> - l)"1. The lemma is proved. 
Now we will consider the Wiener transformation. 

Theorem 3. Let the space (E(U), || • || \) have the Boyd indices 1 < p < q < 2, 
and let E c_ E(U) be its subspace consisting of functions supported on the segment 
[— 1, 1], and F — E_\ ,_i(IR). If there exists a constant b < oo such that for every 
T> 1 

(19) <Pl{k)(T)\\DT\\\<b, 

then the Wiener transformation Wdefined by (1) is a bounded linear operator from 
ME into VF. 

Proof. From Lemma 7 it follows at once that for x e ME the function 
t-\t)x{s:\s\>vj(t)E E(U), hence by the Krein and Semyonov generalization of the 
Marcinkiewicz interpolation theorem [5, Theorem 6.12, p. 196] its Fourier 
transformation and therefore the first integral in (1) belongs to F. Next, the 
function g~l_*r~* °f the variable t is bounded on [—1, 1] for every fixed s, and the 
restriction of x e ME to [ —1, 1] belongs to £, hence it belongs to !}[—1,1], too 
[12, p.l 18]. Therefore the second integral in (1) has the ordinary Lebesgue sense. 

Note that for any e > 0 and y = Wx 

, ^ x 1 f00 ^e'et-s-let . , , I f 0 0 , v 2 s i n ( e * ) . , , 
y(s + e)- y(s - e) = — x(t) e~,stdt = — xlt) e~,stdt. 

V } V } 2n)_^ w it 2K)_^ W t 
Thus y(s + e) - y(s - e) = SF(x(t)he(t))9 where h,(t) = J\ sin (et)/t. By 
Lemma7, \\xhE\\i < i^i>yle||-C>i/Ji||x||My,, and by the Krein-Semyonov interpola
tion theorem [5, p.196] we have ||J^(xhJF < C\\xh£\\E < K{ Cy/je\\Dl/B\\i \\X\\ME9 

where the constant C depends only on the space £(1R). Putting C = Kx C yj\ we 
have 

(p-l(2e)\\y(s + e)- y(s - e)\\F < C(p-l(e)\\Dl/s\\{\\x\\ME < (by Lemma 6) 

< C(pE(k)(s-l)\\DyMx\\M^ 

Taking the supremum over 0 < e < 1, the result follows. 

Remark. Equalities (4.20) and (4.21) [5, p.134] imply that for example 
a Lorentz L0 and Marcinkiewicz M^ spaces with a semimultiplicative fundamental 
function 0 [5, p.74] and obviously IS(R) satisfy condition (10) of Theorem 3. Note 
that in this case for the space £ = II, L^ or M(j) the space F is continuously 
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embedded in the space £* and the Wiener transformation is a bounded linear 
operator from ME into VE*. 

Denote by IE the (closed [6]) subspace of functions x e ME for which 
lim ||x||r = 0. 

T-ЮO 

Lemma 8. Under the conditions of Theorem 3, the Wiener transformation maps 
the subspace IE into the subspace VF. 

Proof. It is necessary to show that if x e IE then Wx e VF. Suppose that the 
function x(t) has a bounded support on [— T, T], Then x e E(U) and for a suffi
ciently small e on [ - T , T] we have |x(t)^/^| < e|x(t)|. Let h,(t) be the function 
from Theorem 3. Then for a sufficiently small e, \\xhe\\i < e\\x\\x <(by 
(9)) < e||.Or||\\\x\\T < 2 ||*||A/*.- Hence, there exists a constant a = Tb independent 
on x and e such that for y = Wx we have 

cp~l(2e) \\y(s + e) - y(s - e)\\F < Tcp-l(e)e\\x\\ME < (by Lemma 6) < 

< Tq>$fe-l)\\x\\ME < (by (10)) < Tb(\\Dl/H\U)-l\\x\\ME < (by the definition of 
the Boyd index) < a2l//,||x||M/. -> 0 as e -> 0, because p < oo. 

Let now xe IE be an arbitrary function. Then for any 5 > 0 there exists 
a number T > 1 such that ||x — XX[-T,T]\\ < <5- Put y = Wx and 
yT = W(XX[-T,T])- Hence we have, 

Urn (p-\2e)\\(zK - T_e)y\\F < sup q>-l(2e)\\(Ts - T_,)(y - yT)\\F + 
£->+0 0<*:<1 

4- lim <p-l(2e)\\{x£ - T_,:) >^T||F < 
i:-»+0 

<2\\W{X-XXI_T,T])\\VF<2\\W\\5. 

Since <5 is arbitrary, y e VF. The lemma is proved. 

Theorem 4. Under the conditions of Theorem 3, the Wiener transformation 
W is a bounded linear operator from JlE into ^F. 

In the case of the spaces JP and f"q Theorem 4 has been proved in [10] and 
that proof uses the Tauberian type theorem which is certain version of the equality 
(2). Our proof will be based on Theorem 3 that states some general results of the 
interpolation theory of linear operators in symmetric spaces. 

Proof of Theorem 4. The correctness of the mapping W follows from Lemma 8. 
Let x e ME and xe x, xe M_, a > 1 and \\x\\Mj. < a\\x\\r//E. As it has been proved 
in Theorem 3, there exists the independent on e constant Cx such that for y = Wx 
we have (p~\2e)\\y(s + e) - y(s - e)\\F < Cx \\X\\ME < aC{\\x\\. Since a > 1 is 
arbitrary, passing to the limit as e -> 0, we obtain the required assertion. 

As has been stated above, if £(IR) = LP(U), then F = I3-P(U)9 where 
l/p + l/q = 1. The following corollary makes the known results about bounded-
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ness of the Wiener transformation from the spaces Jip, Mp into the spaces Vq, V1 

respectively [10, 3] more precise. 

Corollary 6. For 1 < p < 2 the Wiener transformation is a bounded linear 
operator from Mp into V^R) and from J/p into ^ L ^ R ) -

Corollary 7. For 1 < p < 2 the Wiener transformation is a bounded linear 
operator from Mp into Vq and from Jt,p into f'y, 1/p + 1/q = 1. 

§ 3. Injectivity , non-isomorphism and non-strict 
singularity of the Wiener transformation 

Theorem 5. Under the conditions of Theorem 3> the Wiener transformation is 
an injective operator from ME into VF, where ME and VF are the spaces as in the 
previous paragraph. 

Proof. Let us consider the space Sx of infinitely differentiable on the real line 
functions which are decreasing at infinity together with all its derivatives more 
rapidly than an arbitrary power of l/|t|. Let S'^ be its dual space. As it is known 
[18, 7.15] the Fourier transform maps S'^ onto S'^ one-to-one and continuously. 
Since the space E(U) has the Boyd indices 1 < p, q < 2, for every 1 < r < p any 
every T < 1, ET is continuously and injectively imbedded into E\_— T, T ] and the 
imbedding constants are uniformly bounded. Hence ME a M\ It is known that M' 
is continuously and injectively imbedded into Lr(l/(1 + t2)) [10] and 
Lr(l/(1 + t2)) a S'x [18, p.7.12]. Therefore functions from the space ME may be 
considered as distributions, i.e. elements of S'x. Since WxeS'^ and (Wx)' is the 
Fourier transform of x [3], the identity ||PWc||v> = 0 (i.e. Wx = c a.e. (by Lemma 
5)) implies (Wx)' = £Fx = 0 and by injectivity of 3F we have x = 0. The theorem 
is proved. 

Theorem 6. Let the space E(U) satisfy the assumptions of Theorem 3 and let 
the Wiener transformation continuously map ME into VE*. If the upper Boyd index 
q of the space E is less than 2, then the Wiener transformation W: IE -> VE* is not 
an isomorphism. 

Proof. At first show that the Fourier transform is not an isomorphism from 
E into £*. The assumption on the Boyd index implies that the space E has the 
lower r-estimate for some r < 2 [12, p.132]. By Proposition 2.b.2. of [12], 
2 < pE* < qE* < oo and hence the space £* has the upper s-estimate for some 
5 > 2 and the lower p'-estimate for some p' < oo [12, p. 132]. Next, combining 
the Theorem l.f.7 and Proposition l.f.3 of [12], we get that the space £* is of type 
2. It remains to apply Corollary 6 from [7]. Thus the Fourier transform is a strictly 
singular operator from E into E*. Hence there exists a sequence of numbers 5n -• 0 
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and a sequence xneE6t%9 \\xn\\ = 1, supp xn c (-<5„, 5n) such that ||-^(xn)||£. -> 0 
as n -> oo. Since (sin et)/(et) tends to 1 as t -> 0 uniformly for ee(0, 1), 
|| xn — xw(sin 8t)/(et)||£ tends to zero as n -> oo uniformly for ^. Therefore, unifor
mly by 8 ||-^(xn(sin et)/(et)\\E* -> 0 as n -> oo. Thus, 

<ř,-'(2£)||W(x„(S + e)) - F^JCJÍ- - £))||£. < / í | | ^ x , , ^ ||£. - 0 

as n -> oo. Hence || PV.xJ| ^ -> 0 as n -

Corollary 8. Let 1 < p < 2,1/p + l/q = 1. Then the Wiener transformation 
W: Mp-+ Vq is not an isomorphism. 

We recall that a bounded linear operator U acting from a Banach space X into 
a Banach space Y is called strictly singular if the restriction U\E of U to every 
infinite dimensional subspace E of X is not an isomorphism. As in § 2 by IE we 
denote the subspace of functions .x e ME for which lim ||.x||r = 0. Let the space 

T-DO 

E(R) have the Boyd indices 1 < p < q < 2, £, F are the spaces constructed by 
E(R) in § 2. 

Theorem 7. Under the conditions of Theorem 3, the Wiener transformation 
W: IE —> Vp is not strictly singular (moreover, non-compact). 

Proof. By Lemma 8, the Wiener transformation maps the space IE into the 
space Vp. Let xn be the characteristic function of the interval (2n~\ 2n). In [6, the 
proof of Corollary 7] it has been shown that the subspaces En = 
= {̂ Z{f:2»-i<|f|<2»}- ^ eIE} cz IE form the c0-decomposition provided q < oo. 
Then to show equivalence of the sequence xn to the standard basis of c0, it is 
sufficient to show that (x„) is bounded and separate from zero. By Lemma 
following Proposition 7 of [6] and by Lemma 1 following Corollary 7 from [6] we 
have 

VS,T S<T (S/T)\\y\\s < \\y\\T < (S/Tf* \\y\\s 

for y eEs. Then 2"1 < ||JCJ|MJS < (l/2)l'«. 
According [17], if an operator U is defined on c0 with the standard basis (x„), 

then either there exists an infinite subset IV cz N such that U\c0(N) is an 
isomorphism or Uxn -> 0 as n -> oo. Therefore, to prove the theorem, it suffices 
to show that Wxn -/> 0. 

As it is well known [5, p.126], ^_1(2£)||);||F > (28)_1 Ĵ <;>'(5)d5 for any 
0 < 8 < 1 and every y e F. Then for each n, 

(both the integrals have finite limits and we can change the order of integration) 
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(the second integral is equal to y_ cos (st)ds = ^VH .•=-*• = 2 sin (st)/t) 

1 _ f2" sin2 (et) 

/2TC J2»-« ' 2 Л = 
27Г 

2" 

(putting u = 2 "£ and 8 = 2 ") 

where a > 0 is independent of n. Hence, recalling the proof of Theorem 3 and (3), 
we have 

f sin u _ т 

I 7-—г- Tdu = a, 
2тc Ji/2 (2"t/)2 

|wx„| |K,> sup qr\2z) B\\^U(t)S^) 
0 < Í : < 1 \ / Z \ t / 

Corollary 9. F/ze Wiener transformation is not strictly singular from IE into Vp9 

from ME into VF, and from F into Vq, 1/p + 1/q = 1, 1 < p < 2. 

Corollary 10. The space Vp contains a (complemented) subspace isomorphic to 
c0. 

Unfortnately, we do not know whether the Wiener transformation is injective 
from JlE into *VF and even from J//v into V*. The following proposition shows 
that its injectivity would imply non-strict singularity. 

Proposition 3. Let E be a symmetric reflexive space on a segment, let Y be 
a Banach space, and let U: ME —> Y be a linear continuous injective operator. 
Then U is an isomorphism on continuum weight subspaces. 

Proof. By [6], ME contains a subspace isomorphic tto \^/c0. It is well known 
(see for example [17]) that \^/c0 contains a subspace isomorphic to c0(Y), 
card T = c. Then, by Remark 1 following Theorem 3.4 [17], there exists a subset 
P c= r such that card T = card F and U\ c0(T') is an isomorphism. 
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