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1995 ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 36, NO . 2 

Some Properties of n-Dimensional Generalized Cubes 

W. KULPA 

Katowice*) 

Received 15. March 1995 

The fixed point property, the Bolzano property and some version of the domain invariance and the 
Jordan theorems are investigated for a subclass of the class of the limits of inverse sequences of 
n-dimensional cubes. It is proved a lemma of the Sperner type for combinatorial cubes. 

1. A combinatorial Lemma 

Let (Z, +) be the group of integers, and Zn — the Cartesian product of n-copies 
of the set Z"; 

Zn := {z: {1,..., n} -> Z | z is a map} 

The set Zn will be equipped with a structure of a group, a partial order and 
a metric: 

z = u + v iff z(i) = u(i) + v(i) for each i = 1, ..., n 
u < v iff u(i) < v(i) for each i = 1, ..., n 

where uy v9 z e Zn. 
Using the Cartesian notation let 0 := (0, ..., 0) be the neutral element of the 

group Z", e,: = (0,..., 0,1,0,..., 0), et{i) = 1, the i-th unit vector, and e : = (1,..., 1). 
Denote by P(n) the set of permutation of the set (1, ..., n); 

aeP(n) iff a: {1,..., n} -• {1,..., n) is a 1-1 map 

Definition. An ordered set S = [z0,..., z„] cz Zn is said to be a (n-dimensional) 
simplex iff 

z0 < zx < ... < zn = zQ + e. 

Let us note that the diameter of any simplex is equal 1. It is easy to observe that 

*) Instytut Matematyki, Uniwersytet Šlaski, 40 007 Katowice, Poland 
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An ordered set [z0, ..., z„] is a simplex iff there exists a permutation oc e P(n) 
such that 

Zx = Z0+ ea(1), Z2 = _! + ea(2), . . . , Zn = Z n _ ! + £«(„) 

or 

A/i ordered set [z0, ..., z„] cz Zn is a simplex iff the two following conditions 
hold: 
(a) for each i < n there is an r < n such that z/+1 — z, = e,., 
(b) for each i+j, i + l<n,j+l< n\ z/+1 — z, + z/+1 — z, 

Two simplexes 5, T c Z" are said to be adjacent if they have n common points; 
IS n T| = n. 

Observation. Let S = [z0,..., z.J cz Zn be a simplex. Then for each point z, e S 
l/zere exwls exactly one simplex T = S\(\ such that 

Sf] T = {ZQ, ..., z,-_„ z / + b ..., z„}. 

Proof. We shall define i-neighbour S[i] of the simplex S 
1. If 0 < i < n, then S[i] := [z0, ..., z,_b x„ z / + b ..., z„], 

where x,- = z,-_! + (z,_ + 1 - z,). 
2. If i = 0, then S[0] := [zb ..., z,„ x0], where x0 = z„ + (zj — z0), 
3. If i = n, then S[ri] := [x,„ z0, ..., z ^ J , where xn = z0 - (z,I+1 - z„) 

We leave to the reader to prove that the simplexes S[i] are well defined and that 
they are the only possible i-neighbours of the simplex S. • 
Any subset [z0, ..., z,_b z / + b ..., z„] cz S, i = 0, ..., n, is said to be ((n — ^-di
mensional) i-face of the simplex S. Let k > 1 be a natural number. A subset 
C cz Zn of the form 

C= {0 , . . . , fc}» 

is said to be a combinatorial (n-dimensional) cube. Define the i-th opposite faces 
of C; 

Cf := {zeC: z(i) = 0}, C,+ :={zeC: z{i) = 1} 

and the boundary 

3C:= U(eruC,+ :i = 1,..., n) 
From the above lemma we get the following 

Observation. Any face of a simplex contained in the cube C is a face of exactly 
one or two simplexes from C, depending on whether or not it lies on the boundary 
dC. 

The Combinatorial Lemma. Let {Fj~, Ff : i = 1, ..., n) be a family of subsets 
of the combinatorial cube C = {0,..., k}'1 such that 
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(1) C = F- u F+, C" c Fr, C + cz F,+ for each i = 1, ..., n. 

Then there exists a simplex S cz C with the following property 

(2) Fr n S =t= 0 4= S n F+ for eac/z i = 1, ..., n 

Moreover, the number of such simplexes is odd. 

Proof. Since C," cz Ff we infer that C = F," u (F,+ \ C r } . Thus without loss 
of generality we may assume that 

(3) C," n F,+ = 0 for each i = 1, ..., n . 

Define 

(4) cp(x) : = max{j: x e F+ for each i = 0, ..., j}9 where F+ : = C. 

The map <p : C -> {1, . . . , n) has the following properties: 

(5) if x e C,~, then cp(x) < i9 and if x e C + , f/zen cp(x) =j= i — 1. 

From (5) it follows that for each simplex S cz C; 

(6) cp(S n Cfj = {0,..., n — 1} implies that z = n and e = —. 

Let us note that from (4) and (1) we get 

(7) if cp(x) = i — 1 and cp(y) = z, then x e F~ and y e F+ . 

Let us call n-dimensional simplex S to be proper if cp(S) = {0,..., n). From (7) 
it follows that the lemma will be proved if we show that the number Q of proper 
simplexes will be odd. 

Our proof will be by induction on the dimensionality n of C. The lemma is 
obvious for n = 0, because C = (0},<p(0) = 0, Q = 1. 

Let us call an (n — l)-dimensional face s to be proper if cp(s) = {0,..., n — 1}. 
According to (6) any proper face s cz dC lies in C~ and by our induction 
hypothesis the number a of such faces is odd. Let a(5) means the number of proper 
aces of a simplex S cz C. 

Now, if S is a proper simplex, clearly a(5) = 1; while if S is not a proper 
simplex, we have <x(S) = 2 or a(S) = 0 according as cp(S) = {0, . . . , « — 1} or 
p ( S ) * { 0 , . . . , n - 1 } . 
Hence 

(8) Q = Xa( s) . m o d 2 

On the other hand, a proper face appears exactly once or twice in £ a(S) according 
as it is in the boundary of C or not. 
Accordingly 

(9) Xa(s) = «. m o d 2 
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Whence 

(10) a = Q, mod 2. 

But a is odd. Thus Q is odd, too. • 

2. Classical results 

Let Rn be the Euclidean space 

Rn:= {x: {1,..., n) -+ R | x is a map} 

and let In be the n-dimensional cube 

P := {xeRn: 0 < x(i) < 1, i= 1, ..., n} 

For each i < n let us denote 

7," := {xe P: x(i) = 0}, I,+ := {xe Rn: x(i) = 1} 

the i-th opposite faces. 

The Topological Lemma. Let {HF, H,+ : i = 1, ..., n) be a family of closed 
subsets of the cube P such that; P = H,~ u H+, J,~ cz ffr, J.+ cz H+ for eac/z 
i = 1, ..., n. 

Then the intersection f\{Hr n fI+ : i = 1, ..., n) is non-empty set. 

Proof. In order to prove the lemma it suffices to show that 

(){HrnH?: 1 = 1 n } * 0 

Suppose to the contrary that it does not hold. Then, [J{Ur u l/,+ : i = 1,..., n} = I'\ 
where [/•:= In\H8

h Since the cube In is compact hence there is a real number 
5 > 0 such that any subset of P of the diameter less than 5 is contained in some 
set [/•. For this number 8 there is a natural number k > 1 such that the map 
(p:C = {0,..., k}" -> 7", where (p(x) := J, has the following property: 
(a) for each simplex S a C there exists a set U] such that cp(S) cz U•. 
(b) (p(Q") c: 7~ and <p(C+) cz 7,+ for each i = 1, ..., n. 
Now let us put; F," := cp~l(Hr\ Ft := (p~\Hf) for i = 1, ..., n 
From the property (a) it follows that for each simplex S cz C there exist an i < n 
such that 

(1) SnFr = 0 or S n F,+ = 0. 

On the other hand, for each i = 1, ..., n; C = F,' u F+, Q" cz F,", C+ cz F(
+ 

From the Combinatorial Lemma we infer that there is a simplex 5 cz C such that 

(2) FrnS + 0 + Sn K+ for each i = 1, ..., n. 

Comparing (2) with (1) we get a contradiction. • 
As corollaries we obtain 
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The Poincare - Miranda Theorem. Let f:Fl-_R", f = (f, ..., f„), be 
a continuous map such that for each i < n9 f(I,r) cz (- oo, 0] and f(l?) c= [0, + oo). 
Then there exists a point c e In such that f(c) = 0. 

Proof. For each i = 1,..., n let us put; H' : = f~ \- oo, 0], H? : = ffl[0, oo). 
The sets H's satisfy the assumptions of the Topological Lemma and therefore the 
intersection 

C:= f){HrnHf: i= 1, ..., n) * 0 

is not empty set. It is clear that f(c) = 0 for each ceC. ~~ 

The Coincidence Theorem. If maps g,h : In -> In are continuous and for each 
i = 1, ..., n\ h(lj~) cz I~ and h(I+) cz If, then they have a concidence property 
i.e., there exists a point c such that g(c) = h(c). 

Proof. Let us put f(c): = g(x) — h(x). The map f satisfies the assumptions of 
the Poincare-Miranda Theorem and therefore there is a point ce In such that 
f(c) = 0. But this means that g(c) = h(c). • 
If h is the identity map the we get 

The Bohl-Brouwer Fixed Point Theorem. Any continuous map g:In -> In has 
a fixed point. 

And applying the Coincidence Theorem to constant maps; g(x) = a, a eln, we 
get 

Corollary. Any continuous map h:In -* In satisfying for each i = 1, ..., n\ 
h(lr) cz / " and h(l?) cz /+ is "onto". 

The Borsuk Non-Retraction Theorem. Let f: X -> Rn be a continuous map 
from a compact set X cz Rn. If f(x) = x for each xe Bd X, then X cz f(X). 

Proof. Let Jn be an n-dimensional cube such that X cz Jn and extend the map 
f to a continuous map h : Jn -> Jn such that h(x) = x for each x e Jn\X. It is clear 
that for any i; h(J~) cz J~ and h(Jf) cz Jf. From the above corollary we infer 
that Jn cz h(Jn\ and in consequence X cz f(X). ~~ 

3. New results 

In this part we shall introduce a class of spaces for which the results of the 
previous paragraph hold. 

Defionition. A space X belongs to the class Kn, X e Kn, provided that X is the 
limit of an inverse sequence of n-dimensional cubes, 

X = Urn inv fa: In -» J"; k>l,k,le IV}, 
where the bonding maps pkj are continuous and satisfy the following condition 
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(B) pk{ri cz I-,for each i = 1, ..., n and £ = —, + . 
Denote by pk: X -> I", k e IV, the projection maps. And finally, let us say that 
X e K provided that X e Kn for some ne N 

Observation. IfX e Kn and Y e Km then X x Y e Kn+m. 
Indeed, let X = lim inv {pk>h : F -> /"} and Y = lim inv {ft/: Im -> Im}. Then 

X x Y = lim inv {rw : /"+w - ' 7 " + m } , where rkJ(x,y) := (pkJ(x),'qK(y)). Assuming 
that maps p's and q's satisfy the condition (B) one can verify that 

r*,/(*i> •••> i> •••> x>» y*> •••> y«) = (5i> •••' *7> •••> 5>» *i> •••' ^ ) 
and 

rk,l\XU •••> -Xn- yl> •••> *7> •••> y;i) = (51> •••> 5>p f b •••> ^> •••> tn) > 

where r/ e {0,1}, but this means that the maps r^, satisfy the condition (B). 
The class Kx contains spaces of so complicated structure as pseudoarc being the 

field of investigation of many authors. In 1951 Hamilton [4] has shown that the 
pseudoarc has the fixed point property. From the results which are presented in this 
paper it follows that the Cartesian product of arbitrary many pseudoarcs has the 
fixed point property. 

For a given space X e Kn let us fix an inverse system {pkJ: I" -* I"} having the 
property (B). Define for each i = 1, ..., n; 
Aj'.= lim inv {flj/r : K -> Ar} and £, := lim inv {pkJ\I

+ : If -> I+}y 

where I," and I+ mean, as usual, the i-th opposite faces of the cube I". 

The Bolzano Theorem. Let f: X -> R'\ f= (fh ..., fn), where X e Km be 
a continuous map such that for each i = 1, ..., n 

(1) ft{A) cz (-oo, 0] and f{B) c [0, oo). 
Then there exist a point ceX such that f(x) = 0. 

Proof. Define for each i = 1, ..., n, and me N 

# ,> := pJifr\-oo,ti]), H,+ := pM(/;-1[0,oo)). 

From the assumption (1) and the definition of the sets Ah Bf it follows that; 

I» = H-muH+
m A^H^ B^H^. 

According to the Topological Lemma the set 

C,„ := 0 {Hrm n H+
m : i = 1, ..., n} 

is non-empty. Moreover, the sets Cm are compact and CWI+1 cz Cm for each m e N. 
Hence the intersection 

C:=[){Cm:meN} 

is a non-empty set. It is clear that f(c) = O for each ceC. Thus the Bolzano 
theorem is proved. • 
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The Coincidence Theorem. Let h: X -• X, where X e Kw be a continuous 
map such that for each i = 1, ..., n 

(2) h(A) cz At and h(B) cz B( 

Then for any continuous map g : X -• X there exists a point a e X such that 

g(a) = h(a). 

Proof. Now, let a map h : X -> X satisfies the assumptions of the Coincidence 
Theorem and let g : X -> X be an arbitrary continuous map. For each m e N let us 
put 

/«(*) • = (P« O g) (x) - (pm O h) (x), x e X 

According to the Bolzano Theorem the set 

Am:={xeX:fm(x) = 0} 

is non-empty. Moreover, it is a compact set and Am+i cz Am for each me N. Thus 
the intersection 

A:= f){4n:meN} 

is non-empty set. It is clear that g(a) = h(a) for each ae A. • 
Now, let h: X -> X be the identity map. Then from the Coincidence Theorem we 
get 

The Fixed-point Theorem. IfXeK, then each continuous map g : X -• X has 
a fixed point. 

R. H. Bing [1, p. 103] gives an example of compact set X in R? which is an 
intersection of a sequence of 3-cells but for which there is a fixed point free 
homeomorphism of X onto itself. Thus the assumption (B) is essential. 

4. The Bolzano property 

A family {(4,-3,): i = 1, ..., n} of pairs of non-empty disjoint closed subsets of 
a topological space X is said to be an n-dimensional boundary system whenever 
for each continuous map / : X -> Rn

9 f = (fh ..., /„), satisfying for each i < n the 
Bolzano condition; 

f(4)c=(-a>,0], j;(B,)c[0,oo) 

there exists a point ceX such that f(c) = 0. If a space X has an n-dimensional 
boundary system then we say that X has an n-dimensional Bolzano property, 
X e Bn. The following relation holds 

IneKnczBn. 
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One can prove that a subset X cz Rn has the n-dimensional Bolzano property if 
and only if it has non-empty interior. 

Let us assume that for any space X e Bn we have established an n-dimensional 
boundary system and let us define; dX := (J {-4,r u Bl,: i = 1, ..., n). 

As in section 3 we get 

The Coincidence Theorem. If X e Bn and h: X -> Rn is a continuous map 
such that h(A) cz I~ and h(B) cz If, for each i = I, .... n, then In cz h(X) and 
for each continuous map g: X -> F there exists a point ceC such that g(c) = h(c). 

In view of the Coincidence Theorem let us observe that an existence of a normal 
space X e Bn implies the Brouwer fixed point theorem. 

Indeed, let (Ah B{),..., (Am Bn) be a boundary system of a normal space X, and 
let ht:X —> [0, 1], i = 1, ..., n, be continuous functions such that hf(A^ = {0} 
and /i,(B,) = {l}. Then for the map h := (hh ..., hn): X -> F we have; h(A) cz I~ 
and h(B) cz J+ for each i = 1, ..., n. Now, let g: F -> F be an arbitrary 
continuous map. According to the Coincidence Theorem there exists a point aeX 
such that h(a) = (g o h) (a). Thus the point c = h(a) is a fixed point of the map g. 

The dimension theory says nothing how to construct an n-dimensional boundary 
system for a space X e Bn. We show that the Combinatorial Lemma gives 
a possibility to find such a system. Let Xi9 ..., Xn be compact connected Haus-
dorff spaces. For each i < n choose two distinct points ah bt e Xh In the 
Cartesian product X:= X{ x ... x Xn define A,:= {xeX'.Xi = a,} and 
Bi'.= {xeX :Xi = b,j. We shall show that the pairs (-4,,-B,), ..., (AhB^ form an 
n-dimensional boundary system. 

Indeed, let f = (f,..., fn) -> Rn be a continuous map such that f(-4,) cz (- oo,0] 
and f(B) cz [0, oo). Let us put H~ := f_1(-oo,0] and Hf := f_1[0, co). Then 
it is clear that f(c) = 0 if and only if c e f]{H~ n H+ : i < n). Suppose to 
contrary that the intersection f]{H~ n i / + : i < n) is empty. Then the family 
Q := {Ui : i = 1, ..., n, & = + , —} is an open covering of the space X, where 
U\:= X\H]. Let a covering P = Px x ... x Pn be an open refinement of the 
covering Q, where each P{ is an open covering of the space X(. Now, for each i < n 
let us choose a chain Uiyh ..., Ui>k. of elements from the covering Pt such that 
a, e Ui>u h{ e UiM. and UQ_{ n Uitj 4= 0 for each/ < k,. And then choose points ciU 

..., cuk. from Xi such that a, = citU b, = ci>k. and cKi_u cu e Uu for each j < kt. Let 
k = max {k,: i < n) and define; 

M f cu if j < k, 

The map q>:=(<p\9 ..., <pn): {0, ..., k)n -> X has the following property; if 
F- := <p-\Hr\ Ft := (p~l(H+) then C = F~ u F,+ and C~ cz Fr, C,+ cz F,+ 

for each i = 1, ..., n. From the Combinatorial Lemma it follows that there is 
a simplex 5 cz X such that 5 n F) =j= 0 for each i < n and £ = — , + . On the 
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other hand, cp(S) cz U] for some i < n and £ e { —, + }. This contradiction conclu
des our remark. 

Let us state without proof the following 

Theorem on Two Maps. Let be given two continuous maps h: X —• Rn and 
g: h(X) - • Rn, where X e Bn and h(X) is a compact subspace of Rn, such that 
g(h(A)) cz /f, and g(h(B,)) cz J,+ far each i = I, ..., n. Then Rn\h(dln) is not 
a connected set and for each point a e Int F\ g~\a) n Int h(X) 4= 0. 

As corollaries we obtain 

The Domain Invariance Thorem. If f: In -» Rn is a one-to-one continuous 
map the f(Int In) is an open subset of Rn. 

The Non-Squeezing Theorem. Let h: X - • Rn be a continuous map from 
a compact space X e Bn such that h(Ax) n h(B,) = 0 for each i = I, ..., n. Then 
Rn\h(dX) is not a connected set and the set Inth(X) is not empty. 

In [6] it was formulated a theorem equivalent to the Brouwer fixed point 
theorem; the indexed open covering theorem. We are going to strengthen this 
theorem by proving 

Theorem on indexed open families. If Ul9..., Un are families of open pairwise 
disjoint sets of a normal space X e Bn and X = \J{UeU(:i = 1, ..., n}, thqn 
there exists an index i < n and a set U e Ux such that Ax; n U #= 0 4= U n Bx. 

More precisely, we shall prove the following 

Theorem. Let {(4-,-B,-): i = 1, ..., n} be a family of non-empty disjoint closed 
subsets of a normal space X. Then the following statements are equivalent: 

(i). Iff = (f,..., f , ) : X - • Rn is a continuous map such that f(Ax) cz (— oo, 0] 
and f(B) cz [0, oo) for each i < n, then there exists a point ceX such that 
f(c) = 0. 

(ii). If pairs (Hi , i/,+), i = 1,... , n, of closed sets are such that X = Ht u Hj*~ 
and Ax cz if,", B( a Hf, then the intersection f]{H~ n H,+ : i < n} is non-empty. 

(Hi). If f/b ..., Un are families of open pairwise disjoint sets such that 
X = U(£ Ie U(: i = 1, ..., n}, then there exists an index i < n and a set U e Ux 

such that Ai n U 4= 0 #= U n Bx. 

Proof, (i) => (ii). Suppose that f]{H~ n H,+ : i < n} = 0. Since X is a normal 
space there exist continuous functions gh hxr. X - • [0,1] such that 

Hx- czg-l(0)=:Ch H? cz h"l(0) =: Dx and f]{Q n Dt(: i < n} = 0 . 

Define for each i < n and xe X, 

f(x):= gt(x) - h,(x) 

It is clear that f(Ax) cz (— oo,0] and f(Bx) cz [0, oo). From (i) it follows that there 
exists a point ceX such that f(c) = 0. This means that for each i < n9 
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gt(c) = hj(c). But, since X = C, u D, and c e I , we infer that g,(c) = 0 = h,(c) for 
each i = 1, ..., n. This implies that ce f]{Cj n D,: i < n}. And this leads to 
a contradiction with our supposition. 

(ii) => (Hi). Suppose that for each i < n, and U e Uh A{ n U = 0 or Bt n U = 0. 
Define 

G~:= \j{UeU.{:U nA~ + 0 } , G,+: = [j{Ue Ut: U n At = 0} 

and then let us put 

H~:=X\G+, and H,+ : = X \ G r 

We have; .4,- c iJ.r and £, cz H(+. Since G" n G,+ = 0 we get, X = H~ u H,^. 
Now, from (ii) it follows that f]{H~ n Hf : i < n} 4- 0. But 
f){Hf n H,+ : i < n} = 0 { x \ ( G r u G,+): i < n} = X\ \J{Gf u G,̂  : i < n} = 
X\ (J}l7e [/,: i < n} = 0, a contradiction. 

(iii) => (i). Let f = (f, ..., f ) : X -* i?" be a continuous map such that for each 
i < n, f(-4,) <= (— oo,0] and f(B,) cz [0, oo) and suppose that 0<£f(X). 
Define for each i < nUf:= {Vh P^}, where T^:= { x e ^ : f ( ^ ) < 0} and 
W :̂ = { x e l : f(x) > 0} From the supposition 0 <£ f(X) it follows that 
X = Q{Uec7,:i < n}. 

But according to (iii) we infer that there exists an index i <n and a set 17 e Ut 

and points a.beU such that a e A{ and b e £,. We have f(a) < 0 and f(b) > 0. 
But it is impossible, because in the case when U = V{ we have f(a), f(b) < 0 and 
in the case when U = W(; f(a), f(b) > 0. • 

There is a strict connection between dimension and the Bolzano property. One 
can prove that for a space X such that X x [0,1] is a normal space, dim X < n if 
and only if X <£ Bn+l. 
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