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The fixed point property, the Bolzano property and some version of the domain invariance and the
Jordan theorems are investigated for a subclass of the class of the limits of inverse sequences of
n-dimensional cubes. It is proved a lemma of the Sperner type for combinatorial cubes.

1. A combinatorial Lemma

Let (Z, +) be the group of integers, and Z" — the Cartesian product of n-copies
of the set Z";

Z":={z:{l,..,n}>Z | zisamap}

The set Z" will be equipped with a structure of a group, a partial order and
a metric:

z=u+v iff z(ij)=ul)+ (i) foreachi=1,..,n
u<v iff uli)<o(i) foreachi=1,..,n

where u,v,ze "

Using the Cartesian notation let 0:= (0, e 0) be the neutral element of the
group Z", e;:= (0,...,0,1,0,..., 0), (i) = 1, the i-th unit vector, and e : = (1,..., 1).
Denote by P(n) the set of permutation of the set (1, ..., n);

aeP(n) iff a:{l,..,n}-{1,.., n} isal-1 map

Definition. An ordered set S = |z, ..., z,| = Z"is said to be a (n-dimensional)
simplex iff

Zo<zl<... <Z,,=Zo+e.
Let us note that the diameter of any simplex is equal 1. It is easy to observe that
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An ordered set [z, ..., z,] is a simplex iff there exists a permutation « € P(n)
such that

Zy = 2zp + €a(1)s Z =2z + Ca2) +v» Zy = Zy + €x(n)
or

An ordered set [zo, weor 2,] © Z" is a simplex iff the two following conditions
hold:
(a) for each i < n there is an r < n such that z;,, — z; = e,,
(b) foreach i +j, i+ 1<nj+1<mzi—z %2z, —2z

Two simplexes S, T < Z" are said to be adjacent if they have n common points;
ISAT|=n

Observation. Let S = [zo, <es Z,] © Z" be a simplex. Then for each point z; € S
there exists exactly one simplex T = S [l] such that

S ﬂ T == {Z(), ceny Z,'_l, Zi+l’ veey Z” .

Proof. We shall define i-neighbour S[i] of the simplex S
1. If 0 < i < n, then S[i]:= [Zo, --s Zi_1s Xis Zig1s ver Zn]s

where x; = z;_, + (zi_ 4, — z)).
2. If i = 0, then S[0]:= [z, ..., z,, X0, Where X = z, + (2, — z),
3. If i = n, then S[n]:= [x,, zo, ..., 2,_1], Where x, = z5 — (2,4, — 2,

We leave to the reader to prove that the simplexes S[i] are well defined and that
they are the only possible i-neighbours of the simplex S. []
Any subset [Zg, ..., Zi_1, Zigpy ooy Z4] < S, 1 =0, ..., n, is said to be ((n — 1)-di-
mensional) i-face of the simplex S. Let k > 1 be a natural number. A subset
C < Z" of the form

C={0,.., k}"

is said to be a combinatorial (n-dimensional) cube. Define the i-th opposite faces
of C;

Cri={zeC:z(i)=0}, Ci:={zeC:z(i)=1}
and the boundary
C:=){GuCr:i=1,..,n}
From the above lemma we get the following

Observation. Any fuce of a simplex contained in the cube C is a face of exactly

one or two simplexes from C, depending on whether or not it lies on the boundary
oC.

The Combinatorial Lemma. Let {F, F}* :i = 1, ..., n} be a family of subsets
of the combinatorial cube C = {0, ..., k}" such that
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¢)) C=F uUFf, C- cF7, CY¥cF foreachi=1,..., n
Then there exists a simplex S = C with the following property

) FrnS+0+SnF} foreachi=1,..,n
Moreover, the number of such simplexes is odd.

Proof. Since C; < F; we infer that C = F; u (F} \Ci‘}. Thus without loss
of generality we may assume that

3) Ci nFf =0 foreachi=1,..,n.

Define

@)  ¢(x):=max{j:xe F} foreach i=0,..,j}, where F§ :=C.
The map ¢ : C — {1,..., n} has the following properties:

(5) ifxeCi,then ¢(x)<i, and if xeC}, then ¢(x)+i—1.

From (5) it follows that for each simplex S < C;

(6) o(SnC)={0,.., n— 1} implies thati =nand ¢ = —.
Let us note that from (4) and (1) we get
@) if o(x) =i — 1and ¢(y) = i, then xe F;” and ye F{*.

Let us call n-dimensional simplex S to be proper if ¢(S) = {0, ..., n}. From (7)
it follows that the lemma will be proved if we show that the number ¢ of proper
simplexes will be odd.

Our proof will be by induction on the dimensionality n of C. The lemma is
obvious for n = 0, because C = {0},¢(0) = 0, ¢ = 1.

Let us call an (n — 1)-dimensional face s to be proper if (p(s) ={0,..., n — 1}.
According to (6) any proper face s = dC lies in C,; and by our induction
hypothesis the number « of such faces is odd. Let «(S) means the number of proper
aces of a simplex S = C.

Now, if S is a proper simplex, clearly ofS) = 1; while if S is not a proper
simplex, we have «(S) = 2 or «(S) = 0 according as ¢(S) = {0, ..., n — 1} or
o(S) # {0,..., n — 1}.

Hence

®) e =) «S), mod 2

On the other hand, a proper face appears exactly once or twice in )  ofS) according
as it is in the boundary of C or not.
Accordingly

® Y «S) = o, mod 2
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Whence
(10) o =g, mod 2.
But « is odd. Thus g is odd, too. [J

2. Classical results

Let R" be the Euclidean space
R":= {x:{1,.., n} > R | x is a map}
and let I" be the n-dimensional cube
I"'={xeR": 0<x()<1, i=1,..n}
For each i < n let us denote
I7 = {xelI": x(i) =0}, I/:={xeR": x(i) =1}

the i-th opposite faces.

The Topological Lemma. Let {H,-‘, Ht:i=1, .., n} be a family of closed
subsets of the cube I" such that; I" = H- v H, I; < H;, I}t < H; for each

i=1,.., n
Then the intersection ﬂ{H,»‘ NH:i=1,.., n} is non-empty set.

Proof. In order to prove the lemma it suffices to show that
({H nH}: i=1.,n}+90

Suppose to the contrary that it does not hold. Then, | J{U- v U}:i=1,...,n}=1"
where Uj:= I"\Hj;. Since the cube I" is compact hence there is a real number
d > 0 such that any subset of I" of the diameter less than ¢ is contained in some
set U{. For this number ¢ there is a natural number k > 1 such that the map
¢:C={0,..., k}' > I", where ¢(x) := 7, has the following property:

(a) for each simplex S < C there exists a set U} such that go(S) c U

(b) ¢(C7) = I and ¢(C*) = I foreachi=1, ..., n.

Now let us put; F; := ¢ '(H;), F}:=¢ '(H') fori=1,..,n

From the property (a) it follows that for each simplex S < C there existani < n
such that

(1) SNFT =0 or SNF=090.

On the other hand, foreachi=1,...,n; C=F~ uFf, C7 < F;, Cf < F}
From the Combinatorial Lemma we infer that there is a simplex S = C such that

(2) FFnS+0+SnF+ foreachi=1, ..., n.
Comparing (2) with (1) we get a contradiction. []

As corollaries we obtain
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The Poincaré — Miranda Theorem. Let f:I"— R", f = (fi, ..., f,), be
a continuous map such that for each i < n, f(I7) < (-, 0] and f{(I}*) = [0, + ).
Then there exists a point c € I" such that f(c) = 0.

Proof. Foreachi=1,...,nletusput; H; := f7'(~0,0], H:= f7'[0, ).
The sets H’s satisfy the assumptions of the Topological Lemma and therefore the
intersection

C:=(H nH}: i=1.,n}+0
is not empty set. It is clear that f(c) = 0 foreach ce C. O

The Coincidence Theorem. If maps g,h: 1" — I" are continuous and for each
i=1,.., mhI7) < I and W(I}) < I}, then they have a concidence property
i.e., there exists a point c such that g(c) = h(c).

Proof. Let us put f(c):= g(x) — h(x). The map f satisfies the assumptions of
the Poincaré-Miranda Theorem and therefore there is a point c eI such that
f(c) = 0. But this means that g(c) = h(c). [

If h is the identity map the we get

The Bohl-Brouwer Fixed Point Theorem. Any continuous map g : I" — I" has
a fixed point.

And applying the Coincidence Theorem to constant maps; g(x) =a, ael", we
get

Corollary. Any continuous map h:I" — I" satisfying for each i =1, ..., n;
WI7) <17 and h(I}) < It is “onto”.

The Borsuk Non-Retraction Theorem. Let f: X — R" be a continuous map
from a compact set X < R". If f(x) = x for each x € Bd X, then X < f(X).

Proof. Let J” be an n-dimensional cube such that X < J" and extend the map
f to a continuous map h: J* — J" such that h(x) = x for each x € J"\ X. It is clear
that for any i; h(J;) = J; and h(J¥) = J;*. From the above corollary we infer
that J" < h(J"), and in consequence X < f(X). O

3. New results

In this part we shall introduce a class of spaces for which the results of the
previous paragraph hold.

Defionition. A space X belongs to the class K,, X € K,, provided that X is the
limit of an inverse sequence of n-dimensional cubes,

X = liminv {pk,,: I'->I4vk>1k, IGN},
where the bonding maps p,, are continuous and satisfy the following condition
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(B) pfli = I}, foreachi=1,..,nand e = —, +.
Denote by p.: X — I", ke N, the projection maps. And finally, let us say that
X € K provided that X € K, for some ne N

Observation. If X e K, and Ye K,, then X x Ye K, ,,,.

Indeed, let X = liminv {p,,:I" > I"} and Y = liminv {q,: I" — I"}. Then
X x Y =liminv {n,: I"*" - ["*"}, where ry(x,y) := (pr(x), qiAy)). Assuming
that maps p’s and q’s satisfy the condition (B) one can verify that

rk,l(xla cees My eees Xy Y1y eeey yn) = (sly cees My eees Spy tl) (13} tn)
and
rk,l(xl’ vees Xy V1o eees My oey yn) = (Sls cers Spy tl’ coes My eees tn),

where 7 € {0, 1}, but this means that the maps r,; satisfy the condition (B).

The class K contains spaces of so complicated structure as pseudoarc being the
field of investigation of many authors. In 1951 Hamilton [4] has shown that the
pseudoarc has the fixed point property. From the results which are presented in this
paper it follows that the Cartesian product of arbitrary many pseudoarcs has the
fixed point property.

For a given space X € K, let us fix an inverse system {p,‘.,, I - I"} having the
property (B). Define foreachi =1, ...,n
A= liminv {p |I7 : I7 - I} and B;:= liminv {p I} : I} - I}"},
where I, and I;* mean, as usual, the i-th opposite faces of the cube I".

The Bolzano Theorem. Let f:X — R", f = (fi, ..., f,) where X € K,, be
a continuous map such that for each i = 1, ..., n
(1) f(4) c(—,0] and f(B) < [0, o).

Then there exist a point c € X such that f (x) = 0.
Proof. Define foreachi =1, ...,n,and me N
Hi:= polfi7'(=0,0]), Hij:= pu(fi7'[0, 0)).
From the assumption (1) and the definition of the sets A4;, B; it follows that;
I"'=H,, H}, A, cH;, B cH},.
According to the Topological Lemma the set
Cn:=({HpnH}Y:i=1, .. n}

is non-empty. Moreover, the sets C,, are compact and C,,,, < C,, for each me N.
Hence the intersection

C:=[\{C,:meN}

is a non-empty set. It is clear that f(c) = O for each ¢ e C. Thus the Bolzano
theorem is proved. []
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The Coincidence Theorem. Let h: X — X, where X € K,, be a continuous
map such that for each i = 1, ..., n

(2) h(A,-) c A, and h(B,) c B;
Then for any continuous map g : X — X there exists a point a € X such that

g(a) = h(a).

Proof. Now, let a map h: X — X satisfies the assumptions of the Coincidence
Theorem and let g : X — X be an arbitrary continuous map. For each m € N let us
put

Sl%):=(pn 0 9)(x) — (Pn O B)(x), xe€X
According to the Bolzano Theorem the set
A,:={xeX: f,(x) = 0}

is non-empty. Moreover, it is a compact set and A4,,,., = A,, for each m € N. Thus
the intersection

A:=({4,:me N}

is non-empty set. It is clear that g(a) = h(a) for each ae 4. [
Now, let h: X — X be the identity map. Then from the Coincidence Theorem we
get

The Fixed-point Theorem. If X € K, then each continuous map g : X — X has
a fixed point.

R. H. Bing [1, p. 103] gives an example of compact set X in R* which is an
intersection of a sequence of 3-cells but for which there is a fixed point free
homeomorphism of X onto itself. Thus the assumption (B) is essential.

4. The Bolzano property

A family {(4,B):i =1, ..., n} of pairs of non-empty disjoint closed subsets of
a topological space X is said to be an n-dimensional boundary system whenever
for each continuous map f: X — R", f = (f,, ..., f,), satisfying for each i < n the
Bolzano condition;

fi(4) € (=,0], fi(B) < [0, )

there exists a point ¢ € X such that f(c) = 0. If a space X has an n-dimensional
boundary system then we say that X has an n-dimensional Bolzano property,
X € B,. The following relation holds

I"eK, c B,.
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One can prove that a subset X < R" has the n-dimensional Bolzano property if
and only if it has non-empty interior.

Let us assume that for any space X € B, we have established an n-dimensional
boundary system and let us define; 0X := | J{4 U B;:i = 1, ..., n}.

As in section 3 we get

The Coincidence Theorem. If X € B, and h: X — R" is a continuous map
such that h(A) < I and h(B) < I, for each i = 1, ..., n, then I" < h(X) and
for each continuous map g: X — I" there exists a point ¢ € C such that g(c) = h(c).

In view of the Coincidence Theorem let us observe that an existence of a normal
space X € B, implies the Brouwer fixed point theorem.

Indeed, let (Al, Bl), ey (A,,, B,,) be a boundary system of a normal space X, and
let hi: X —[0,1],i =1, ..., n, be continuous functions such that h(4;) = {0}
and h{B)) = {1}. Then for the map h:= (h,, ..., h,): X — I" we have; h(4) < I;
and h(B) < I for each i =1, ..., n. Now, let g:I"— I" be an arbitrary
continuous map. According to the Coincidence Theorem there exists a point a € X
such that h(a) = (g9 © h)(a). Thus the point ¢ = h(a) is a fixed point of the map g.

The dimension theory says nothing how to construct an n-dimensional boundary
system for a space X € B,, We show that the Combinatorial Lemma gives
a possibility to find such a system. Let X, ..., X, be compact connected Haus-
dorff spaces. For each i < n choose two distinct points a,b;€ X, In the
Cartesian product X := X, x ... x X, define A;:= {xeX:x;=a} and
B;:= {xe X :x; = b;}. We shall show that the pairs (4;, B)), ..., (4, B;) form an
n-dimensional boundary system.

Indeed, let f = (f, ..., f,) = R" be a continuous map such that f;(4;) = (~0,0]
and f(B) < [0, o0). Let us put H; := f;~/(—00,0] and H;* := f~'[0, o0). Then
it is clear that f(c) = 0 if and only if ce({H  n H;":i < n}. Suppose to
contrary that the intersection (\{H7 n H;* :i < n} is empty. Then the family
Q:= {Uf:i =1, .., n &= +,—}is an open covering of the space X, where
Ui:= X\H;. Let a covering P = P, X ... X B, be an open refinement of the
covering Q, where each P, is an open covering of the space X;. Now, foreachi < n
let us choose a chain Uy, ..., Uy, of elements from the covering F such that
a,€ U, bie Uy, and U;;_, n U,; & 0 for each j < k;. And then choose points c;,
..y Cig, from X such that a; = ¢;,, b; = ¢y, and ¢;;_y, ¢;; € U;; for each j < k;. Let
k = max {k:i < n} and define;

N C,‘J’ lf ]S k,'

ol) = {c.;k,. it >k
The map ¢:= (¢, ..., ¢,):{0, ..., k' > X has the following property; if
F7:= ¢ H7), F':= ¢ '(H) then C = F; U F} and C; < F, C < F}
for each i = 1, ..., n. From the Combinatorial Lemma it follows that there is
a simplex S = X such that S N F¢ & ) for each i < n and ¢ = —, +. On the
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other hand, ¢(S) = U: for some i < n and ¢ € {—, + }. This contradiction conclu-
des our remark.
Let us state without proof the following

Theorem on Two Maps. Let be given two continuous maps h: X — R" and
g:h(X) > R", where X € B, and h(X) is a compact subspace of R", such that
g(h(A)) = I7, and g(h(B)) < I;* for each i =1, ..., n. Then R"\h(0I") is not
a connected set and for each point a€ Int I", g~'(a) N Int h(X) + 0.

As corollaries we obtain

The Domain Invariance Thorem. If f:I" — R" is a one-to-one continuous
map the f(Int I') is an open subset of R".

The Non-Squeezing Theorem. Let h: X — R" be a continuous map from
a compact space X € B, such that h(4)) N h(B)) = 0 for each i = 1, ..., n. Then
R"\h(0X ) is not a connected set and the set Int h(X) is not empty.

In [6] it was formulated a theorem equivalent to the Brouwer fixed point
theorem; the indexed open covering theorem. We are going to strengthen this
theorem by proving

Theorem on indexed open families. IfU,, ..., U, are families of open pairwise
disjoint sets of a normal space X € B, and X = U{Ue Ui:i=1, ..., n}, then
there exists an index i < n and a set U € U; such that A;,nU + § + U N B,

More precisely, we shall prove the following

Theorem. Let {(4,B):i =1, ..., n} be a family of non-empty disjoint closed

subsets of a normal space X. Then the following statements are equivalent:
(). If f = (f,, ey ﬁ,) : X — R"is a continuous map such thatf,-(A,-) c (—00,0]

fle=o.
(ii). If pairs (Hi_, H),i = 1,..., n, of closed sets are such that X = H; v H}
and A, « H;, B, = H}, then the intersection (\{H; n H} :i < n}is non-empty.

(iii). If Uy, ..., U, are families of open pairwise disjoint sets such that
X = U{Ue Ui:i=1, ..., n}, then there exists an index i < n and a set U € U,
such that A, U % @ + U N B,.

Proof. (i) = (ii). Suppose that (\{H, n H;* :i < n} = 0. Since X is a normal
space there exist continuous functions g;, h;: X — [0,1] such that

Hf < g7'(0)=:C;, Hf ch™'(0)=:D; and ({GnD;:i<n}=90.
Define for each i < nand x€ X,

fi(x) 1= gi(x) — h(x)

It is clear that f;(4)) = (—0,0] and f(B;) < [0, o). From (i) it follows that there
exists a point c€ X such that f(c) = 0. This means that for each i < n,
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gic) = h{c). But, since X = C; u D, and c € X, we infer that g{c) = 0 = h{c) for
each i = 1, ..., n. This implies that ce (\{C;n D;:i < n}. And this leads to
a contradiction with our supposition.

(ii) = (iii). Suppose that for eachi < n,and Ue U, 4, " U = for B, U = §.
Define :

Gr:=J{UeU:UnA47 +0}, Gr:=J{UeU,:Un A4, =0}
and then let us put
H7:= X\G}, and H;}':= X\G;/

We have; 4; < H; and B, = H;*. Since G7 n Gi* = 0 we get, X = H; U H}.
Now, from (ii) it follows that (\{H~ n H{" :i < n} # 0. But

(MH nHF i < n}={X\(GT uG):i<n}=X\U{GFr uG:i<n}=
X\J}Ue U;:i < n} = 0, a contradiction.

(iti) = (i). Let f = (£}, ..., f;): X = R" be a continuous map such that for each
i<n, f(4)<(—,0] and f{(B)<[0,00) and suppose that O¢ f(X).
Define for each i<nU;:={V, W]}, where V,:= {xeX: f(x) <0} and
W:= {xe X : f(x) > 0} From the supposition 0¢ f(X) it follows that
X={UeU;:i<n}.

But according to (iii) we infer that there exists an index i <n and a set U € U;
and points a,b € U such that a € 4; and b € B, We have fi(a) < 0 and fi(b) > 0.
But it is impossible, because in the case when U = V; we have fi(a), f{b) < 0 and
in the case when U = W; fi(a), fi(b) > 0. O

There is a strict connection between dimension and the Bolzano property. One
can prove that for a space X such that X x [0, 1] is a normal space, dim X < n if
and only if X ¢ B, .
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