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Introduction 

In the first section of the paper we develop a systematic theory of positive 
definite sequences in complex Banach lattices. It turns out that the classical theory 
(Caratheodory, Herglotz, Toeplitz) has a natural extension to the setting of general 
Banach lattices. In the second section of the paper we discuss how to generate 
positive definite sequences of operators in «£?,(£), the space of all regular operators 
on the Banach lattice E. In particular, it is shown that for any operator Te 3?r(E) 
with r(\T\) = 1, the sequence {Dn}neZ of diagonal operators, defined by Dn = 3)(T") 
for n > 0 and Dn = 3)(T~n) for n < 0, is an operator valued positive definite 
sequence. Here Q) denotes the diagonal projection from the space Z£r(E) onto the 
center Z(E) of E. As a consequence of the general results of section 1 we then 
obtain the so-called Ando inequality: if Te^r(E) then \TR(l T) < \XR(X, T)\ for 
all \A\ > r(\T\). We thus recover some of the results of [5], where the Ando 
inequality was proved directly, and the positive definiteness of {Dn}neZ

 w a s 

obtained as a consequence of this inequality. The present approach, however, puts 
these results in a general perspective and gives more information about which 
positive definite sequences can arise in such a way. Moreover, the present 
framework allows us to generate positive definite sequences in ££r(E) by projecting 
the powers of a regular operator into the principal band generated by an order 
continuous Riesz homomorphism (or the principal band generated by an interval 
preserving operator). In case E = £p(l) with 1 < p < oo we can associate with 
each T e J£r(E) a matrix (£,-,) and then Q)(T) will have a diagonal matrix, with tu on 
the diagonal. Now the results of section 2 imply that if r(|Tf) = 1, then the diagonal 
elements of the matrix of T" define positive definite scalar sequences. In section 3 
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of the paper we show that the same is true for contractions T on £p(l\ where T is 
no longer assumed to be regular. 

1. Positive definite sequences in a Banach lattice 

In this section we extend the classical theory of positive sequences to complex 
Banach lattices. We will assume that the reader is familiar with the basic 
terminology and theory of Banach lattices, as can be found e.g. in the books [1], 
[7], [8] and [9]. All Banach lattices E in this paper will be assumed to be complex 
Banach lattices, i.e., E = Re E © / Re E, where Re £ is a real Banach lattice. For 
an element z = x + iy e E with x, y e Re E we define z as x — iy. 

Definition 1.1. Let E be a complex Banach lattice. The sequence (xn)neZ in E is 
called positive definite if for all finite sequences Xn of complex scalars we have 
_C/Xm/./AniX/_m > 0. 

We shall first derive some elementary properties of positive definite sequences. 

Lemma 1.2. Let E be a complex Banach lattice and let (xn)neZ be a positive 
definite sequence in E. Then the following hold. 

(1) xo > 0 
(2) x_n = xn for all n > 1 
(3) \xn\ < x0 for all neZ. 

Proof. Part (1) is obvious. For (2) take X0 = 1 and Xk = 0 for all k + n. Then 
E/Eni>l/ImX/_m = (1 + |2n|

2)x0 + Xnx_n + Xnxn > 0 for all XneC. Hence 
Im(2nx_n + Xnxn) = 0 for all XneC Taking Xn = 1 we see that Imx_,. = 
— Imx n and taking Xn = / we get that Re x_n = Re xn, i.e. x_n = x,,. To prove 
(3) let X0 and Xk be as in the proof of part (2). Then by (2) we have (1 + |2n|

2)x0 + 
+ 2Re(2nxn) > 0 for all Xn e C. Now take Xn = -ei0 to get Re (ei0xn) < x0 for all 
6 e [0, 2TT]. Hence |x,,| = sup^Re(e'YJxn) < x0 for all n < 1. • 

The following proposition establishes the important relation between positive 
definite sequences and positivity of vector valued trigonometric series. 

Proposition 1.3. Let E be a complex Banach lattice and (xn)neZ in E be 
a sequence. Then the following are equivalent. 

(1) The sequence (xn),,eZ is positive definite. 
(2) The series -E^^'V^x,, converges in norm and is > Ofor all 9 e [0, 2TC] and 

all 0 < r < 1. 

The second author would like to express his gratitude to the Department of Pure Mathematics at the 
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N.W.O. for their financial support. 
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Proof. The proof is similar to the scalar case, or can be deduced from the scalar 
case by observing that the sequence (x„)„eZ is positive definite in E if and only if 
the sequnce of scalars (0(x„))„eZ is positive definite for all 0 < (/> e £*. • 

The following theorem can now be considered as the vector valued version of 
the Herglotz theorem. We denote with C(T) the space of complex valued 
continuous 27i-periodic functions on [0,27c]. 

Theorem 1.4. Let E be a complex Banach lattice and (xn)neI in E be a sequence. 
Then the following are equivalent. 

(1) The sequence (xn)neZ is positive definite. 
(2) There exists a positive linear operator A : C(T) -> E such that A(em0) = xn 

for all neZ. 

Proof. Assume (1) holds. Then by Proposition 1.3 we have that 5.„eZ rln]em0xn 

converges in norm and is > 0 for all 9 e [0,2TC] and all 0 < r < 1. Therefore we 
can define for 0 < r < 1 the positive linear operator Ar: C(T) -* E by means of 

Aif) = ^\Yi^e-Mx^f{6)d9 
J 0 

= Zr""f»x„. 
/ieZ 

Now Ar(l) = x0 for all 0 < r < 1, so that ||_4r|| = ||JC0|| for all 0 < r < 1. Now 
it is obvious that lim,.T1 Ar(p) exists in norm in E for every trigonometric 
polynomial p. Since Ar is uniformly bounded and the trigonometric polynomials 
are dense in C(T), it follows that A(f) = lim,.T1 A,.(f) exists for all / e C(T). 
Clearly A > 0 and A(em0) = xn for all n. 

Now assume (2) holds. Let (An) be a finite sequence in C. Then 

EEfc.™ = ZXv^-"") = A(\Z V*"|2) > o, 
I m I m V ' k I J 

so (1) holds. • 
The following corollary can be viewed as an analogue of the von Neumann 

inequality for positive definite sequences. 

Corollary 1.5. Let E be a complex Banach lattice and (xn)neZin E be a positive 
definite sequence. Let f(z) = ^ > 0 anz

n be a complex polynomial. Then we have 

i 

£ я л < (sup|/(z)|j||x0|| 
н < 0 | Ч | z | = _ ' 

Proof. Immediate from the above theorem, if we observe that g(0) = f(^°) 
satisfies A(g) = V^o anx„. \J 
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One can extend the above corollary as follows to functions in the disc algebra. 
Let f(z) = Yjn_oanz'1 define a continuous function on \z\ < 1, which is analytic on 
\z\ < 1. Then for 0 < r < 1 the series f(z) = X„>o-V"-^1 converges uniformly on 
|z| = 1, so that Ai^n^.0anr

nzn) = £„>0-V"x„ converges in norm in E. From this 
one can derive easily that the Abel sum (̂ 4) £„>0 anxn = limrTl £„>0 anr

nxn exists 
in E. Similarly as in the corollary one proves now that ||(-4)^„^0a„x„|| < 
<(sup|z|=1|f(z)|)||x0||. 

We now present the Caratheodory-Herglotz-Toeplitz characterization of positive 
definite sequences. We first introduce a notation. For a sequence (xn)n^() in 
a complex Banach lattice E we define the sequence (x„)„€Z by means of x„ = x„ 
for n > 0 and x„ = x_„ for n < 0. 

Theorem 1.6. Let E be a complex Banach lattice and (x„)„>0 be a norm 
bounded sequence. Then (x„)„eZ is positive definite if and only ffReQ]„>0x„z") > 
> \x0for all |z| < 1. 

Proof. Assume first (x„)„eZ is a positive definite sequence. Let A : C(T) -> E be 
the positive linear operator of Theorem 1.4 such that A(ein0) = x„. Then 
Yjn-Oxn-n = -4Q]M>O ein0zn) = A(j_^w). For \Z\ < 1 we have the inequality 

1 1\ _ 1 1 - |z|2 

r^^"2j -2 R e u-zeT-
Hence for all |z| < 1 we have 

For the converse implication, if ReQT„>0x„z") > _x0 for all |z| < 1, then 
Xnez V ' V " = 2 Re{(_;?>0x„r"e'Y;") - f} > 0. From Proposition 1.3 it follows that 
the sequence (x„)„eZ is positive definite. • 

Corollary 1.7. Let E be a complex Banach lattice and (x„)„>0 be a sequence 
such that the sequence (x„)„eZ is positive definite. Then |£„>i x„z"| < \Yjn_oXnz

n\for 
all \z\ < 1. Conversely, if (x„)„>0 is a norm bounded sequence with x0 > 0, 
|x„| e {xo}ddfor n> 1 and such that |£n>i x„z"| < E ^ o - V l for all \z\ < 1, then 
(xz)neZ is positive definite. 

Proof. Let |z| < 1 and let y = Xn>o.x,Iz
n- Then under either hypothesis ye 

e {xo}dd. Now the inequality |>> - f | < |y| is equivalent with Rey > f. This can 
be seen for instance by means of the Kakutani representation of the principal ideal 
generated by \y\ + x0. The corollary therefore follows from the above theorem. • 

Now we shall discuss the convergence of the Cesaro averages NY^=O
 xn- We 

start with an observation, which allows us to transfer the problem of convergence 
in E to the corresponding problem in the center Z(E) of £, in case E is Dedekind 
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complete. Recall first some definitions. A complex Banach latice E is called 
Dedekind complete, if Re £ is a Dedekind complete vector lattice. We denote by 
.$?,.(£) the space of regular operators on E. When E is Dedekind complete, then 
also l£r(E) is a Dedekind complete Banach lattice and every T e J£?r(£) has 
a modulus \T\. The center Z(E) of E can now be defined by Z(£) = 
= {Te <£r(E): \T\ < XI for some X > 0}. 

Proposition 1.8. Let E he a Dedekind complete complex Banach lattice. Then 
a sequence (xn)neZ in E is positive definite if and only if x0 > 0 and there exists 
a positive definite sequence (nn)neZ in Z(E) such that Knx0 = xnfor all neZ. 

Proof. If x0 > 0 and there exists a positive definite sequence (Kn)neZ in Z(E) 
such that Knx0 = xn for all n e Z , then it is immediate from the definition that 
(nn

xo)nez 1s positive definite in £. Conversely assume that (xn)neZ is a positive 
definite sequence in £. Then by Proposition 1.2 we have that x0 > 0 and 
|x,,| < x0 for all neZ. Since £ is Dedekind complete, there exist Kn in Z(£) such 
that xn = Knx0 for all neZ. We can assume that Kn = 0 on {x0}

d for all n e Z. 
Now for all finite sequences Xn of a complex scalars we have 
(Z/Xm>UmTC/-m)xo > 0. This implies that X/Zm^m^/-m >_0 on {x0}

dd for all 
finite sequences Xn of complex scalars and thus also X/Xm^,lm7r/_m > 0 on £ for 
all finite sequences Xn of complex scalars. Hence (Kn)neZ is a positive definite 
sequence in Z(E). • 

Theorem 1.9. Lef £ be a complex Dedekind complete Banach lattice and (xn)neZ 

in E be a positive definite sequence. Then NYJ"=O
 x" converges in order to 

a positive element of E. In particular, when E has order continuous norm, then 
NYJ^O

 xn converges in norm to a positive element of E. 

Proof. Let (7r,.),.6Z in Z(£) be the positive definite sequence in Z(£) such that 
Knx0 = xn for all n e Z and let A : C(J) -> Z(£) be the positive linear operator of 
Theorem 1.4 such that A(ein0) = Kn. Then ^n=o *n = A^n-o ein0). Now 
N (££=() em0) converges pointwise to X{o], s o by the Lebesgue Dominated Conver
gence theorem we get that for all 0 < f e Z(E)* we have </, ^X^=olxn> = 
= <^*fN-E^-0

Ie^)> - <-4*fX{o}> = <f9A**(x{0)> as N -+ oo. Observe the here 
X{0}is considered an element of C(J)** by defining </*,X{o}> = Li({0}).We now will 
use the fact that Z(E) = C(K) and that there exists a cr-order continuous positive 
projection P from the Borel functions on K to C(K) (see [5] for a more detailed 
discussion of this fact and see [3, Lemma 5.6.22 and Remark 5.6.24] for a self 
contained proof of the existence of such a projection). Now taking f = 8(I) with 
coeK we obtain that <(5„„ ^Xl"o 7Cn>. -> <-4*5w, Z{o}> = <^-4**(x{0j> as 
IV -> oo. Hence g(co) = {A**(x{0^8(O} is a Borel function on K such that 
JvX^=~o,7Cn converges pointwise to g on K. Hence jfY,n=onn converges in order to 
Pg in Z(E). It follows now directly that jfY^=o xn converges in order to (Pg)x0 

i n £ . D 
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Remark. Without the assumption of Dedekind completeness one can not expect 
that for positive definite sequences (xn)neZ in £ the sequence NZ^=oxw will 
converge in order to an element in £ + . Take e.g. x{(t) = X[o,±](t) + (2 — 2t)x\^,\jt) 
in £ = C[0,1]. Then it is easy to verify that xn = x1"1 defines a positive definite 
sequence in £ for which the sequence (-$^=0 xn) does not converge in order to 
an element in £. 

2. Positive definite diagonal sequences 

In this section we shall show that certain sequences of operators on a Banach 
lattice £ are positive definite. We assume throughout this section of the paper that 
E is Dedekind complete (i.e., that Re £ is a Dedekind complete vector lattice). We 
denote by J5f,(£) the space of regular operators on £, i.e., those operators which 
can be written as linear combinations of positive operators. Note that J£r(E) 
coincides with the space of all order bounded operators on £, and is also denoted 
by yh(E). The space =£?,.(£) is a subspace of the space J^(£) of all bounded linear 
operators on £, but in general J£?,.(£) is not a closed subspace. Under the 
assumptions, the space Jz ,̂.(£) is a complex vector lattice (where the positive cone 
consists of all positive operators on £), and for T e J£?r(£) the modulus \T\ is given 
by 17] (x) = sup {|Tz|: |z| < x] for all x > 0 e E. For any T e J£r(E), the regular 
norm is defined by ||T||r := || \T\ ||, and then (j^,(£), || • ||r) is a complex Banch 
lattice algebra. Note that ||T|| < ||T|| r holds for all Te J^,.(£), but in general the 
two norms || • || and || • ||r are not equivalent. Recall that the center Z(E) of £ is 
defined by Z(£) = {Te i£r(E): \1\ < XI for some X > 0}. It is well known that 
Z(£) is a commutative full subalgebra of the space *£?(£). If T e Z(E), then 
||T|| = ||T|| r = inf{>! > 0 : |T| < ^/}.By definition, Z(£) is equal to the principal 
ideal generated by / in J5f,.(£). Actually, Z(£) is a band in J£?,.(£) (see [9], section 
142), and so we have the band decomposition 

J^r(£) = Z(£) 0 Z(E)d. 

The corresponding band projection in J£?r(£) onto Z(£) will be denoted by 3). The 
projection onto the disjoint complement Z(E)d will be denoted by Q)L, i.e., 
2fL = I — Q). In this paper we will call @(T) the diagonal of the operator T; Q) is 
called the diagonal map. The following theorem was proved for positive operators 
in [5, Proposition 2.3]. The proof differs only in some minor places of the proof 
given in [5], but as it is crucial for the approach presented here, we will present it 
in detail. 

Theorem 2.1. Let E he a Dedekind complete Banach lattice and let 
S,TeSer(E) such that \S\\T\ = \T\\S\ and r(\S\),r(\T\) < 1. Then there exists 
a (unique) sequence {FM}.f=1 in Z(E) such that 

78 



и-1 

9(ST-l)= £F„_ ,_? (T*) 
k=0 

and VjL, \Fk\ < I for all n > 1. 

Proof. Define the sequence {Gn},?!, in ^J(E) inductively by 

G, = S, G„ = 0_(G„_,)T (n > 2), 

and let F„ = 9(G„). Note that GnT = G„+1 + FnT for all n _t 1. We first show that 

(1) 5T"-1 = G„ + "£ F„_,T* 
A = l 

for all n > 2. Since 5 T = _2_L(S)T + ®(S)T = G2 + FXT, (1) holds for n = 1. 
Assuming that (1) holds for some n > 2 we have 

ST" = STn~lT = JG„ + ^ Ғ„_,THГ 

= G„T + "£ Ғ„_,T*+1 

A = l 

= G„+1 + Ғ„T + "£' Ғ„_,T*+1 = G„+1 + £ Ғ„+1_,T* 
A = l k = 

which is (1) for n + 1. From (1) it follows immediately that 

n - l 

®(sг-l) = £ ғ„_,_?(г*) 
A=l 

for all n > 2. It remains to prove that Y_k=i \Fk\ < / for all n > 1. To this end take 
0 < ueE,X > 1 and put w = R(X,\S\)R(X,\T\)u. Since |T|w < Xw, we have 
|G,Jw < 9L(\Gn_x\)\T\w < X@±(\Gn_{\)w = X(\Gn_{\w - IF,,^ w) for all n > 2. 
We claim that 

(2) |G„|w<A''w- X^IF^Jw 
A = l 

for all n > 2. Indeed, it follows from |S|w < Xw that |G2|w < ^(IGJw — |Pi|w) = 
= A(|5|w - IFJw) < X2w - X\F{\w, which is (2) for n = 2. Now assume that (2) 
holds for some n > 2. Then 

|G„+1|w < 2(|G„|vv - \F„\w) < X [xnw - "£V|T„_,|w) - A|T„| 

= A " + 1 w - £ ^ | T „ + 1 _ , | w , 
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and this proves the claim. It now follows from (2) that 

| F > < | G > < Xnw - £ A*|ІF„_„| w . 
k = ì 

and hence 

for all n > 2, i.e., 

£ A"-A'|Ft| w < 2"w 
k=\ 

_ ] A»-*|FA | - A"; 
- J t - = 1 

= o 

for all « > 2. Since M < i.2w, this implies that 

_>'-'in|-A"/Tu = 0, 
L„ = l 

and hence _>_£_. AM_A'|FAJw < A"u for all n > 2. This holds for any X > 1, so we 
may conclude that _T„_i l-F̂ u < u for all 0 < ueE and all n > 2, and this 
completes the proof of the theorem. • 

Now we shall consider positive definite sequences in Z(£). Let (Un)neZ be 
a positive definite sequence in Z(E) with UQ = I. Let U(z) = ___„>0 Unz". Then by 
Theorem 1.6 we have that ReU(z) >\l for all |z| < 1. Hence F(z) = 1 — ^_j 
satisfies |F(z)| < I for all |z| < 1 and F(0) = 0. Conversely, if F(z) is an analytic 
function on {z: \z\ < 1} with values in Z(F) and satisfies |F(z)| < I for all \z\ < 1 
and F(0) = 0, then U(z) = j ^ satisfies ReL7(z) > _ for all |z| < 1. Writing 
F(z) = ___̂ =1 F„z" for \z\ < 1 we can express the relation between L7(z) and F(z) by 
means of the recurrence relation 

(3) l/o = l , Un = F„ + F„_lFl + ... + FxUn. ( п _ l ) . 

From the above discussion it follows now that a sequence (Un)neZ in Z(E) with 
U0 = I is positive definite if and only if the unique sequence Fn defined by the 
recurrence relation (3) defines an analytic function F(z) = _T,f=1FMzH for \z\ < 1 
such that |F(z)| < I for all \z\ < 1. In particular it is a sufficient (but not necessary) 
condition to require that the sequence Fn satisfies _£,._. 1 |F,.[ < / in order that the 
corresponding sequence Un is positive definite. From this we obtain immediately 
by taking 5 = T in Theorem 2.1 the following corollary. 

Corollary 2.2. Let E be a Dedekind coimAete Banach lattice and let T e =£?r(E) 
such that r(\T\) = 1. Then the sequence {@(T")}neZ is positive definite. 

Remark. It was observed by Toeplitz that positive definiteness of a sequence 
can be expressed in terms of non-negativity of a corresponding sequence of 
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Toeplitz determinants. In our situation this says that under the above hypotheses 
we have that 

ЩT) 

Җт) 

I 

Җf) 

@(т2) 
®(т) 

i 

Җгj ЩT"-1) ®(T"-2) 

ҖT") 

®(Tn~') 

2>(T'-2) 

I 

> 0 

for all n > 1. 
[5] the above corollary was derived from Ando's inequality (see [2] for a proof 

of this inequality for matrices). As indicated in the introduction, here we shall now 
obtain Ando's inequality as an easy consequence of Corollary 1.7. 

Corollary 2.3 (Ando's Inequality). Let E be a Dedekind complete Banach 
lattice and let Te <£r(E). Then \TR(X, T)\ < \XR(X, T)\for all \X\ > r(\T\). 

Proof. Without loss of generality we can assume that r(\T\) = 1. Since for 
>leo(T) we have TR(X,T) = XR(X,T) - / , it is clear that \®L[TR(X, T)]\ = 
= |®1[A.R(A, T)]\. Hence the theorem is equivalent to the inequality 
\9[TR(X,T)]\ < \S)[XR(XyT)]\ in Z(E). From Corollary 1.7 it follows together 
with the above corollary that \f,n^MTn)zn\ < |X„>o®(T")z"| for all \z\ < 1, which 
turns into the inequality \S)[TR(Xy T)]\ < \Q)[XR(X, T)]\ if we put z = \. • 

Let now 0 < T e J£?r(-E) be an arbitrary positive operator. Then we denote by 
&T the band projection on the band {T}dd generated by T in J£r(E). Recall now 
that a positive operator T is called a Riesz homomorphism if x A y = 0 in 
E implies Tx A Ty = 0 and that T is called interval preserving if 
T[0, x] = [0, Tx] for all 0 < xe E. Also recall that a positive operator T is 
called order continuous if xr [ 0 in order implies Txr [ 0 in order. 

Proposition 2.4. Let E be a Dedekind complete Banach lattice and let 
S e JS?r(E). Then the following holds. 

(1) If T is an order continuous Riesz homomorphism, then ^fiTS) = T2(S). 
(2) If T is an interval preserving operator, then ^7{ST) = S)(S)T. 

Proof. We can assume that S > 0, the general case follows by linearity. 
Assume first that T is an order continuous Riesz homomorphism. Then left 
multiplication by T is a Riesz homomorphism on S£r(E) (see [1, Theorem 7.5]). 
Hence SP^TS) = sup,, (TS A nT) = T sup/? (S A nl) = W(S). Hence (1) holds. 
The proof of (2) is completely similar, when one observes that in this case right 
multiplication by T is an order continuous Riesz homomorphism on J£?r(£) (see [1, 
Theorem 7.4]). • 

81 



Corollary 2.5. Let E be a Dedekind complete Banach lattice and let S e j£?r(E) 
with r(\S\) = 1. Then the following holds. 

(1) If T is an order continuous Riesz homomorphism, then {^i{TSn)}neZ is 
positive definite. 

(2) IfTis an interval preserving operator, then {^V(S"T)}„eZ is positive definite. 

Proof. From the above proposition it follows in case (1) that 
0>£TSn) = TQ)(Sn) and in case (2) that SP^T) = Q)(Sn)T. The sequence 
{®(S")}neZ is now positive definite by Corollary 2.2. From Definition 1.1 it is 
immediate that the product from the right (or from the left) of a positive definite 
sequence in ^r(E) with a positive operator is again positive definite in J£?,(£). 
Hence the corollary follows. • 

3. Diagonal elements of contractions o n / 

In this section we indicate another way of obtaining positive definite scalar 
sequences from the "diagonal elements" of powers of an operator. Let 1 < p < oo 
and let J denote an arbitrary non-empty set. Denote by e, the sequence in £p{I) with 
/^-coordinate equal to 1 and all other coordinates equal to 0. By e*we denote the 
same sequence, considered as element of the dual space of tCp(l). If now T is 
a bounded operator on /.,(/), then one can consider <!",., e,*> as a diagonal element 
of T. 

Theorem 3.1. Let T be a linear contraction on ^p(l). Then for each i e I the 
sequence {<Te,, ef)}neZ is positive definite. 

Proof. Let |z| < 1 and define x = ^„>0T"e,zn. Then x — ex• = zTx. Hence 
||.x — e\p < \\x\\p. Assume first 1 < p < oo. Then it follows from ||x — e#-||p < 
< ll̂ ll̂  that \x(i) — 1| < |x(/)| and thus Re<x,e*> > 2- It follows now from the 
scalar version of Theorem 1.6 that {(Tlehef)}„eZ is positive definite. In case 
p = oo one can consider T* on ifx and by using that e*is an atom one can proceed 
as above in this case. • 

In case H is Hilbert space and x e H, then by representing H as a space tf2(l) 
with x = e{ for some i, we obtain the known result that {<TIx,.x>}f|eZ is positive 
definite for any contraction T on H (see e.g. [4, Proposition 2.3.1]). Based on the 
Hilbert space case, one could conjecture that in case £ is a Banach space and T is 
a contraction on E, then for xe E with \\x || = 1 and / e F* with ||f|| = <f, x> = 1 
the sequence {<TIx,f>} is positive definite. This is not the case, as the following 
example shows. 

Example. Let E = U2 with 

max {|x|,|y|}, in case xy > 0 
'" ] \x\ + lyl, otherwise. 
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Define T on E by T(x,y) = (x — y,x — y). It is easy to see that ||T|| = 1 with 
respect to this norm on E. Consider now the complexification Ec of E, where 

Ik + iy\\c = sup ||(cos 6)x + (sin 0)j;|| . 
o 

One can verify easily that the complexification of T on Ec has the same norm as 
Ton £ and also thatjfe, = (1,0) and ef = (1,0), then ||e,||c = 1 and \\ef ||c = 1, 
but the sequence {<T'el5ef >} is not positive definite, e.g. by Proposition 1.2, since 
1 + ei0 + e~i0 = 1 + 2 cos 6 is not nonnegative for all 9. 
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