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Smoothness in &(C(X), C(7)) 

R. GRZAŠLEWICZ 

Wroclaw*) 

Received 15. March 1996 

Let B(j5?(C(K), C(7))) be the unit ball of the space of operators acting from the space of continuous 
functions 0(X) into C(Y) (X, Y — compact metric spaces). The purpose of this paper is to give 
a characterization of the smooth points of B(j£?(C(K), C(Y))). 

Let E, F be Banach spaces. The unit ball of E is denoted by B(E) and its smooth 
points by smooth B(E). Recall that x e smooth B(E) if there exists a unique 
continuous linear functional £eE* such that £(x) = ||£|| = 1 (note that such 
a ^ G ext B(£*)). We point out that there is a connection between smoothness and 
the differentiability of the norm (see e.g. [2]). We denote the linear space of all 
(compact) bounded linear operators from E into F by (jf (E, F)) JSf(E, F). 

The investigations of the smooth points in the spaces of operators were started 
by Holub [7] considering compact operators on Hilbert space. This was extended 
by Heinrich [6] to the compact operators acting on arbitrary Banach spaces and by 
Kittaneh and Younis [8] to the space of bounded operators on Hilbert space. We 
also have a description of smooth points in S£(F, F), p, r e [1, oo) ([3, 4]). 

The aim of this paper is to present a description of smooth points of the unit 
ball of js?(c(jsr), c(y)). 

Note that if an operator T: E -> F is a smooth point of the unit ball then 
T attains its norm on at most one vector (up to constant multiple) and moreover 
if ||T|| = ||T*u|| = ||u|| = 1 for some u e F * then T*ue smooth B(£*). 

Let X, Y be compact Hausdorff spaces. By C(X) we denote the Banach space 
of scalar valued continuous functions on X equipped with the supremum norm. 
Note that smooth B(C(X)) = {f e C(X): there exist x0eX such that 1 = |f(x0)| > 
|f(x)| for all x 4= x0} (cf. Banach classical monograph [1], p. 168). This was 
extended by Sundaresan [9] to the space of vector valued continuous functions 
C(X, E). Moreover if card X > N0 then smooth B(C(X)*) = 0, and if 
card X < N0 then smooth B(C(X)*) = {fie C(X)*: ||/i|| = 1 and supp fi = X}. 
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Remark. Consider a closed subspace Ex = {(14,): lim u2n_x exists, u2n = 0, ne N} 
n->oo 

of J00. We can find a functional fj{ on Ex such that ^((n-)) = lim u2n-i with 
n—>oo 

H-7*|| = 1. And we can extend fjl into r\x acting on the whole /°° with Hr/J = 1. 
Analogously we can find f]2e(l°°)* such that \\rj2\\ = 1 and rj{((un)) = lim u2n for 

n—>oo 

all (wn) e Z°° having the limit lim u2n. We may also build 77, with the above 

properties choosing cluster points vhv2e (5N\N of the sets Di = {2n — l i n e f̂ J} 
and D2 = {2n:n e f . } , respectively, and putting r\v = 5Vj, i = 1, 2 (5X0 denotes the 
point mass measure at x0). In this construction we use well known identification 
l°° = C(N) with C(j8N), and (Z00)* with C(j3r\l)* = Jt(fiN\ where ]8N is the 
Cech-Stone compactification of the positive integers N. 

Lemma. Let X and Y be compact metric spaces and let card X > K0, and let 
Te B(j£?(C(X), C(Y))) be such that there exists a sequence {yn} of distinct points 
of Y with \\T*8yn\\ -> 1. Then T$smooth B(j£?(C(X), C(Y))). 

Proof. Let T satisfies the conditions from the Lemma. We may and do assume 
that the sequence {yn}r=i is converging to y0eY, and we can choose open 
neighborhood Un of yn such that Ukl n Uk2 = 0 if ki 4= k2. Now We fix hn e C(Y) 
such that hn(yn) = 1, hn(U

c
n) = 0, 0 < hn < 1 (eventually we consider a sub

sequence). Now we choose a converging sequence {xk} (lim xk = xQ) of distinct 
k-KX> 

points of X. Then we choose its subsequence {x„} such that 
\T*5y,n\(X\{x2n_hx2n})-+ 1. Let An, A~ be the Hahn decomposition of X to 
positive and negative part with respect to the measure T*5yn. Put Bn = 
A:\{x2n_ux2n}, Bn = An\{x2n_ux2n}. For any R e i?(C(X), C(Y)) we define 
a sequence (un) by 

«? = (R*K)(K) ~ (R*K)(Bn) + ( - i ) " [ ( ^ J ( { x 2 „ _ , } ) - (R*syn)({x2n}j]. 

Obviously (u*) e lx and || (--__?> || —-» £ ll-*ll and ||(t.J)||x = ||T|| = 1. Now we define 
functionals £• (i = 1, 2) on £?(C(X), C(Y)) by £,{R) = t]((u*)), where t]t is construc
ted as in Remark. We have ||£|| = 1 = £(T), e.i. £, supports B(j£?(C(X), C(7))) at 
T. To finish the proof we need to show that £, 4= £2- To get it we define S: 
C(X) -> C(Y) by 

(Sfif) (>•) = _ !»„(>) [_<*_,-1) " 6<x_,)] , 5 6 C(X) 
n=l 

or equivalently 

n = l 

Obviously 5 is linear. If g e C(X) then an = g(x2n_{) — g(x2n) -> 0. Because /zn have 
norm equal to one and disjoint supports the series £anh„ is uniformly convergent. 

n 
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Thus Sg = YJhn(y)[g(x2n_l) - g(x2n)] = YJanhneC(X) and ||Sa|| < 2|M|, i.e. 
5 e &(C(X), C(Y)). We have us = {-if- 2. Therefore &(S) = -..((it*)) = - 2 4 = 
2 = ij-flug)) = &(S). D 

Theorem. Let X and Y be compact metric spaces, 
(a) //card X > K0 t7ien smoof/i B(.Sf(C(X), C(7))) = 0. 
(fc) / / card X < N0 r/ien ^moor/i B(.S?(C(X), C(Y))) = {TeB(.£?(C(X), C(7))): 

there exists an isolated point y0 of Y such that T*5yo e smooth B(C(X)*) and 
sup ||T*5,|| < 1}. 

Proof. Let T e J£?(C(X), C(y)). Suppose that cardX > K0. In view of the 
Lemma the operator T could only be a smooth point if ||T*(5)0|| = 1 for y0 isolated 
point of y, and if T*Syoesmooth B(C(X)*). Because smooth B(C(X)*) = 0 if 
card X > K0, we get (a). 

To finish (b) we need to show that any operator from the right side set actually 
is a smooth point. Obviously a functional £0 defoned by £0(-R) = no(-R*<5>0)>

 where 
n0eC(Z)** supports B(C(X)*) at T*5>0. Suppose that f with ||f|| = {(V) = 1 
supports B(&(C(X), C(Y))) at T, too. We denote l[yK)} ® /i0e (&(C(X\ C(Y)) 
defined by 

g 6 C(X). Each R e (£(C(X), C(Y)) has a representation i? = R0 + Rh where 
R0 = l w i ? = l w <S> .R*«5W i?! = l n W * . Obviously | | / y < oo. We have £(R,) = 0 
since 1 ± ei(Ri) = £(T + sRt) < ||£|| \\T ± eRJ < 1 for sufficiently small 
8 > 0. Hence £(R) = £(RQ) = £ (1 W ® *̂<5>0)- Now we consider a functional 

lxeC(Jt)*-+Z{lM®v)eR. 

It has norm equal to one and supports B(C(.AT)*) at T*5yo e smooth B(C(X)*). 
Hence £(R) = £(dyo ® R*Syo) = n0(R*l{yo\) which shows the uniqueness of the 
supporting functional and smoothness at T. • 

Note that if card X < K0 (C(X) is finite dimensional) we have 

&(c(x\ C(Y)) = JT(C(Z), c(y)) = c(y, c(xf) = c(y, /J), 
and in this case we get the above characterization by Heinrich's result [6] for 
compact operators or by Sunderesan's results [9] for C(y, /^). • 
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